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Synchronization and control of spatiotemporal chaos using time-series
data from local regions
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In this paper we show that the analysis of the dynamics in localized regions, i.e.,sub-systemscan
be used to characterize the chaotic dynamics and the synchronization ability of the spatiotemporal
systems. Using noisy scalar time-series data for driving along with simultaneous self-adaptation of
the control parameter representative control goals like suppressing spatiotemporal chaos and
synchronization of spatiotemporally chaotic dynamics have been discussed. ©1998 American
Institute of Physics.@S1054-1500~98!01301-9#
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Most physical, chemical and biological systems are high
dimensional and exhibit complex spatiotemporal patterns
including spatiotemporal chaos.1 The synchronization
and control of the spatiotemporally chaotic dynamics in
these systems is currently being investigated and ha
been reviewed in Refs. 2–11. In this paper we study the
synchronization and regulation of the spatiotemporal sys-
tems using time-series data from local regions. This ap-
proach may help in specifying the requirements of time-
series data from the spatial domain for control. Since the
phase space is large for spatiotemporal systems it may b
worthwhile to first show how the conventional diagnostics
for low dimensional systems may be appropriately uti-
lized to study the synchronization behavior of higher-
dimensional spatiotemporally chaotic systems. The feasi
bility of the approach may be seen by studying the
behavior of the sub-system invariant properties such as
the Lyapunov dimension and Kolmogorov-Sinai „K-S…

entropy12–19 for increasing sub-system size. Important
and illustrative control goals, e.g., suppressing spatiotem
poral chaos by directing the system to desired stable fixed
point or low-period states „servo-control…, and dynamical
synchronization of the spatiotemporally chaotic systems
using localized sub-systeminformation have been ad-
dressed in this context. The above aims have been carrie
out for two prototype examples of coupled map lattices
„CMLs …, viz., the diffusively coupled logistic map
„LCML … and the diffusively coupled Henon map
„HCML ….

I. INTRODUCTION

The first CML studied is obtained by diffusively cou
pling N logistic maps on a one-dimensional lattice16 and is
defined as

xn11~ i !5~12e! f ~xn~ i !!1
e

2
@ f ~xn~ i 21!!1 f ~xn~ i 11!!#,

~1!

a!Electronic mail: ravi@ncl.ems.res.in
3001054-1500/98/8(1)/300/7/$15.00
where,n is the discrete time;i the lattice site,i 51,2,. . . ,N;
ande the diffusive coupling coefficient. The nonlinear fun
tion f (x) is given by the quadratic form

f ~xn![xn11512axn
2 . ~2!

Equation~1! exhibits a wide variety of spatiotemporal pa
terns, viz., periodic, quasiperiodic, chaotic and complex f
zen patterns depending on the choice of parametersa and
e.16 In Fig. 1~a! is shown the typical spatiotemporally chaot
dynamics of the LCML~1! for periodic boundary conditions
and random initial conditions. This complex pattern arise
due to interactions between the diffusion and nonlin
mechanisms in the LCML. The bifurcation parametera51.9
has been chosen such that the local map~2! exhibits tempo-
ral chaos ~Lyapunov exponentl;0.55). The coupling
strength chosen wase50.4.

The second CML considered is the diffusively coupl
Henon map lattice in 1-D

xj ,n11~ i !5~12e! f j~xj ,n~ i !!1
e

2
@ f j~xj ,n~ i 21!

1 f j~xj ,n~ i 11!!#, ~3!

where

x1,n11[ f 1~x1,n ,x2,n!512ax1,n
2 1x2,n ,

x2,n11[ f 2~x1,n ,x2,n!5bx1,n , ~4!

j 51,2; i 51,2, . . .N. Again, the parameter values have be
so chosen that the local Henon map exhibits chaotic dyn
ics (a51.4 andb50.3 for which the maximum Lyapunov
exponent,lmax;0.42).20 On assumingidentical initial con-
ditions for xj ,0( i ), the HCML ~3! exhibits spatially homoge-
neous but temporally chaotic dynamics@as seen in Fig. 1~b!
for n,100#. On giving random perturbations to the centr
five lattice sites atn5100, a changeover from spatially ho
mogeneous to an inhomogeneous spatiotemporal patte
observed with the spread of perturbation to the bounda
because of diffusive coupling@Fig. 1~b!#. The following sec-
tion discusses the analysis of spatiotemporally chaotic
namics in terms of the sub-system invariant measures
© 1998 American Institute of Physics
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section III the dynamical synchronization and control of sp
tiotemporal chaos in these CMLs is discussed for repres
tative goals.

II. ANALYSIS OF SPATIOTEMPORAL DYNAMICS

For a CML of sizeN, there aremN Lyapunov exponents
(m being the number of degrees of freedom in the cor
sponding single map, i.e.,m51 for logistic map andm52
for Henon map! and their computation can be taxing an
practically infeasible for largeN. However, if attention is
restricted to a localized sub-system of sizens(,,N), the
calculation of the Lyapunov exponents is significantly
duced tomns . The calculation of these sub-system exp
nents is similar to those of the full system, that is, by tim
averaging the growth rate of linearized orthonormal vect
dxn

l , within the sub-system, and is given by

l l
~s!5 lim

n→`

sup ln
udxn11

l u
udx0

l u
, l 51 . . .mns . ~5!

While calculating these exponents, the flow of information
the sub-system boundary sitesk51 and k5ns , may be
treated as~a! noise effects, or,~b! explicitly corrected by
evaluating the sub-system Lyapunov exponents only
ns22 sites~i.e., excluding the boundary sites!. Our calcula-
tions of the sub-system Lyapunov exponents,l l

(s) for both
treatments~a,b! were found to be in quantitative agreeme
with open boundary conditions used for the sub-system
namics.

FIG. 1. Spatiotemporal chaos in CMLs for lattice sizeN5100 ~every 10th
iteration is plotted! : ~a! Spatiotemporal dynamics of LCML fora51.9,
e50.4. Random initial conditions were assumed atn50. ~b! Spatiotempo-
ral dynamics of HCML fora51.4,b50.3,e50.3. At n50 identical initial
conditions were assumed. A finite random perturbation given to the ce
five lattice sites, atn5100 results in the complex spatiotemporal behav
because of coupling.
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Now, from a knowledge of the spectrum of sub-syste
Lyapunov exponents, l i

(s) , the effective sub-system
Lyapunov dimension,dL

(s) , may be obtained and is define
as

dL
~s!5 j 1

1

ul j 11
~s! u(i 51

j

l i
~s! , ~6!

on using the well-known Kaplan and Yorke~KY !
conjecture.21 Here j is the largest integer for which the sum
of the exponents,l1

(s)1 . . . 1l j
(s)>0. If l1,0, thendL

(s)50
and if j 5mns , thendL

(s)5mns .20 The Lyapunov dimension
gives the effective dimensionality of the underlying attract
The corresponding intensive quantity, the sub-system dim
sion density,rd

(s) , may then be defined as

rd
~s!5

dL
~s!

ns
. ~7!

It gives an estimate of the number of degrees of freed
required to characterize the dynamical behavior of the
spatiotemporal system.

Another important invariant measure is the Kolmogoro
Sinai ~KS! entropy and is defined as the sum of positi
Lyapunov exponentsl1 .22 It quantifies the mean informa
tion production and growth of uncertainty in a system su
jected to small perturbations.21 For regular predictable be
havior, the KS entropy is zero while for chaotic systems
takes a finite positive value, and is infinite for continuo
stochastic processes. The sub-system KS-entropy,h(s), is de-
fined as

h~s!5( l1
~s! ~8!

and the corresponding density function, the sub-system
tropy density,rh

(s) , is given by

rh
~s!5( l1

~s!/ns . ~9!

The dependence of these invariant measures as a f
tion of the sub-system size,ns is discussed below. In Fig
2~a! is shown the plot of the sub-system dimension,dL

(s) , as
a function of its sizens ~solid line corresponds to LCML and
the dashed line to HCML!. The sub-system dimensiondL

(s) is
seen to linearly increase with the sub-system sizens for both
the CMLs. This suggests that it may be possible to determ
the effective dimensionality of the whole system from su
system analysis. Further, the saturating behavior of the s
system dimension density,r (s) @Fig. 2~b!# helps in determin-
ing the critical sub-system size,nsc , required to predict the
dimensionality of the full system. Similar behavior was o
served in the sub-system KS entropy,h(s) and the entropy
density,rh

(s) , for increasing sub-system size@Figs. 2~c! and
2~d!#. This implies that though the entropy increases linea
with the sub-system size, the average rate of informat
loss/gain levels off forns.nsc . The above relationships
were also observed for logistic maps diffusively coupled o
2-dimensional square lattice of sizeN3N ~results not
shown!. These results indicate that it may be possible
analyze the dynamical behavior of reaction-diffusion s
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tems from an analysis of relatively smaller sub-systems. T
feature may prove to be computationally very advantageo
especially in higher spatial dimensions.

III. SYNCHRONIZATION AND CONTROL OF
SPATIOTEMPORAL CHAOS

In this section, we discuss the synchronization and c
trol of spatiotemporally chaotic dynamics for different goa
with the following important factors considered, viz.,~1! a
mechanism by which a control parameter may be s
adapted so that synchronization in the system and the d
able dynamics becomes possible;~2! allow for restrictions in
the availability of scalar time-series signals in the spa
domain; and~3! negate the effects of noise in the time-ser
data. From recent studies on the dynamical synchroniza
of low-dimensional chaotic systems it is known that a giv
system~called theresponse! can be made to follow the dy
namics of another system by driving the former with sca
time-series signals from the latter.23–29The condition for the
synchronization to occur is that the response system sh
possess negative conditional Lyapunov exponents. Foll
ing the results of section II, we would now like to se
whether sub-system data may suffice in assessing the
chronization ability of the spatiotemporal system.

Before discussing the results, we present the metho
ogy adopted to synchronize the dynamics of spatiotemp
systems governed by different attractors. For clarity we
fine the driving system by

xn11~ i !5F@xn~ i !,xn~ i 61!,a,b#, ~10!

wherexn( i )5xj ,n( i ), j 51, . . . ,m (m denotes the number o
degrees of freedom in the local map!, and i 51, . . . ,N. To
incorporate the effects of noise arising due to measurem
errors, the sub-system driving signals are assumed to
given by

x1,n8 ~k!5x1,n~k!1ghn~k!, k51, . . . ,ns , ~11!

FIG. 2. Behavior of the sub-system invariants as a function of sub-sys
size ns for LCML ~solid line! and HCML ~dashed line! : ~a! Lyapunov
dimension,dL

(s) ; ~b! dimension density,rd
(s) ; ~c! entropy,h(s); ~d! normal-

ized entropy,rh
(s) . Parameters and lattice size identical to Fig. 1.
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wherehn(k) denotes the random noise in the interval~-.5,.5!
of strengthg. The response system, written in a differe
notation from eq.~10!, is given by

x̂n11~ i !5F@ x̂n~ i !,x̂n~ i 61!,xn8~k!,â,b̂#, ~12!

where x̂n( i ) are the corresponding variables,â and b̂ the
response parameters, andxn8(k), the driving variables. To
study the ability of the response system to synchronize
dynamics with that of the driving system~10!, we analyzed
the conditional Lyapunov exponents for a localized su
system (ns.nsc). These exponents were calculated by mo

FIG. 3. Stabilization of the spatiotemporally chaotic dynamics with no

reduction for the LCML. The response system (â51.9) was assumed to be
driven by noisy time-series signals,x1,n8 (k), from a sub-system (ns521) of
the process (a50.3). ~a! Measurement noise,ghn(k)5x1,n8 (k)2x1,n(k),
introduced in the monitored sub-system process variables.~b! Space-time

behavior of the error signals,e1( i )5 x̂1,n( i )2x1,n( i ), i 51, . . . ,N. e1( i ) is
seen to fall to zero at all the lattice sites indicating complete synchroniza
of the response dynamics with the process.~c! Space-time plot of the

adapter signals,Dâ implemented; stiffness coefficient for adaptatio

m50.01. Note that atn50, the adapterDâ50.0 which then eventually

assumes an average value of21.6 ~the initial difference betweena andâ).
The adapter signals continuously filter the noise shown in~a! to achieve the
dynamical synchronization seen in~b!.

m
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FIG. 4. Controlling the spatiotemporally chaotic dynamics of a response system (â51.4,b̂50.3) to temporally 2-period state (a50.8,b50.3). The results
are shown for HCML.~a! Spatiotemporally chaotic dynamics of the response system (a51.4,e50.4). ~b! Spatiotemporal dynamics of the response syst
on driving it with sub-system time-series signalsx1,n8 (k), k541, . . . ,60.Self-adaptive mechanism was simultaneously implemented.~c! Oscillatory behavior
with phase locking in the spatial domain exhibited by the response system on driving it with time-series signalsx1,n( j ), j 55,10,. . . ,100. ~d! Space-time

convergence ofDâ to 20.6 for m50.001.
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toring the growth rate of (m21)ns sets of linearized ortho
normal vectors obtained on excluding the variables used
driving. For the HCML, the calculations showed that t
maximum sub-system conditional exponent is negative
using x1,n( i ) as the driving signals indicating possible sy
chronization. On the other hand, ifx2,n( i ) were used for
driving, the maximum conditional exponent was found to
positive and synchronization is not guaranteed. A synchro
zation study on HCMLs with different initial conditions bu
same parameter values~i.e., â5a, b̂5b) did confirm the
above results. It may be also noted that in the case of LCM
the local map being governed by a single variable~i.e.,
m51) precludes the observance of negative conditio
Lyapunov exponents and synchronization in their dynam
is difficult.

However, if driving is carried out on a response syst
with a different setting of the control parameter, i.e.,âÞa,
then synchronization of the response system dynamics
not be brought about by driving alone. In this situation, t
control parameterâ needs to be altered appropriately so th
synchronization becomes possible. Self-adaptive mec
nisms for parametric estimations have been studied in
context of temporal chaotic systems.30–34For spatiotempora
systems, the self-adaptation of the control parameter ma
carried out as follows. We begin by introducing a space-ti
dependence in the response control parameter, i.e.,ân( i ).
or

n

e
i-

,

l
s

n-

t
a-
e

be
e

Initially, the same value ofâ is assumed at all the lattic
sites, but different from that of the driving system, i.e
â0( i )5âÞa. For the sub-system lattice sites where the s
nals are available, the parametric corrections,Dân11(k) may
be dynamically evaluated as

Dân11~k!5Dân~k!1m@ x̂1,n~k!2x1,n8 ~k!#, k51, . . . ,ns ,
~13!

where m is the stiffness coefficient for adaptation an
Dâ0( i )50. For the lattice sites outside the sub-system
average adaptation,(kDân11(k)/ns , was employed. The re
sponse parameter then self-adapts to the desired valuea via

ân11~ i !5â0~ i !1Dân11~ i !, i 51,2, . . .N. ~14!

The linear functional form for adaptation considered in e
~13! is only representative and other functional forms of a
aptation, e.g., cubic, history-linear, sign, etc.,30,33 may be at-
tempted. Further, the choice ofm may be rationalized by
studying the stability characteristics of the response
adapter dynamics. As long as the combined system has n
tive eigenvalues synchronization should be possible. A ra
of m values can satisfy this requirement and within this ran
the specific value ofm will determine the rapidity with
which synchronization occurs.
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FIG. 5. On using scalar time-series signals,x1,n(k), from a sub-system of HCML exhibiting chaotic dynamics (a51.4,b50.3) to drive the response system

(â51.4, b̂50.28) operating on a different chaotic attractor.~a! Till n,500, the error between the non-monitored process and response vari

e25x2,n( i )2 x̂2,n( i ), i 51, . . . ,N, is shown without driving or adaptation. Synchronization is obtained only within the sub-system.~b! Space-time behavior of

the adapter signals converging toDb̂50.02 ~the initial difference betweenb and b̂).
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Using the above methodology, we discuss representa
cases pertaining to controlling spatiotemporal chaos.
first aim was to suppress chaos in a spatiotemporal sys
and direct it to a desired stable fixed point state via s
adaptation of the control parameter along with simultane
driving. Noisy time-series signals@shown in Fig. 3~a!# from a
sub-system of sizens521 localized in the central region o
the lattice of the driving system (a50.3) were used to drive
the spatiotemporally chaotic dynamics of the response
tem (â0( i )51.9). A rapid space-time synchronization in th
dynamics of the response and the driving system is depi
by plotting the error signalsen( i )5 x̂n( i )2xn8( i ) in Fig. 3~b!.
The space-time convergent behavior ofDân( i ) to a value of
21.6 ~the initial difference in the control parameter! by self-
adaptation is shown in Fig. 3~c!. The fluctuations inDân( i )
is due to the presence of noise in the driving signals whic
constantly filtered by the adapter eqs.~13!. Thus, the simple
form of self-adaptation given in eq.~13! can be effectively
used even in the presence of reasonable extents of noi
suppress chaos in the dynamics. The implementation of
driving signals along with the adapter mechanism leads
faster convergence to the desired stable state. Further
cause the final state is a stable one, the system continu
operate in this state even after the driving and self-adap
mechanism have been switched off. Similar results were
obtained for HCML using scalar sub-system time-series
nals~results not shown!. These results suggest that it may
possible to suppress chaos in real experimental situation
using scalar time-series signals from a local sub-system
spatial self-adaptation of the control parameter.

Next we considered controlling the spatiotempora
chaotic dynamics to a temporally 2-period state. The s
system time-series data from an HCML exhibiting spatia
ve
ur
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homogeneous and temporally periodic oscillations were u
to drive the chaotic dynamics of the response@shown in Fig.
4~a!#. On using the self-adaptive mechanism@eq.~13!# along
with driving, the desired spatially homogeneous and tem
rally periodic pattern is observed only within the sub-syst
@Fig. 4~b!#. Outside the sub-system, the dynamics is n
phase synchronized, though oscillating periodically in tim
On using driving signals from every 5th lattice site, we we
able to obtain complete synchronization with phase lock
in the response and the desired system dynamics@Fig. 4~c!#.
Thus, though local sub-system data is sufficient to supp
chaos and direct the system to a stable periodic state,
phase synchronization, time-series measurements from
full spatial domain is required~which may be spaced ou
depending on the complexity of the desired state!. The
space-time evolution of the parametric correction is shown
Fig. 4~d!.

The above studies were focused on directing the sys
to stable states. Now we discuss the more difficult case
directing a spatiotemporal system from one chaotic state
another. The results in this study are presented for
HCML @eqs.~3!,~4!# with sub-system driving signals used
evaluate parametric correctionsDb̂ in the alternate contro
parameterb̂. This was carried out in a procedure identical
evaluatingDâ andâ @eqs.~13!,~14!# in Figs. 3, and 4. In this
case, synchronization was possible only within the s
system@Fig. 5~a!#, even though the response system cont
parameter had been appropriately self-adapted@Fig. 5~b!#.
The asynchronous behavior outside the sub-system is
cause of the sensitive dependence of the chaotic dynami
initial conditions and suggests that driving signals from t
entire spatial domain will be required for complete synch
nization in this case and was confirmed~results not shown!.
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Apart from estimating a control parameter, in many si
ations, it would be desirable to accurately estimate other
trinsic system parameters. Such a situation can arise w
the other parameters of the response system are not knoa
priori .33–35Here we show that self-adaptation of two para
eters is simultaneously possible on using time-series sig
only from a sub-system. In this study both the response
tem parametersâ0 andb̂0 were set differently from the driv-
ing system (a51.1,b50.3, â051.4,b̂050.28). The para-
metric correctionsDâ and Db̂ were then simultaneousl
estimated by using the following two sets of adapter eq
tions within the sub-system

Dân11~k!5Dân~k!1m1@ x̂1,n~k!2x1,n~k!#,

Db̂n11~k!5Db̂n~k!1m2@ x̂2,n~k!2x2,n~k!#, ~15!

with m1 andm2 the stiffness coefficients for adaptation, a
k51, . . . ,ns . As before, average correction
(kDân11(k)/ns and (kDb̂n11(k)/ns were implemented
outside the sub-system. The simultaneous convergenc
Dân→20.3 andDb̂n→0.02 in Figs. 6~a!, 6~b! suggest that
multiparameter estimation may be possible in hig
dimensional chaotic systems. Although driving signals
both the variables in the sub-system were necessary for

FIG. 6. Simultaneous estimation of both the parameters in HCML us
only sub-system time-series signals. The average parametric correc

Dâav and Db̂av implemented over the entire spatial domain are show
These values, respectively, converge to20.360.01 and 0.0260.001 for
m151.0 andm2520.1.
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curacy, there exists a range ofm1 and m2 values wherein
multiparameter self-adaptation was successful. Consider
potential exists in applying this technique in accurately ch
acterizing available mathematical models of an experime
system. Using experimental time-series data from a s
system, the parameter values in the mathematical mo
~now the response system! can thus be ascertained.

IV. CONCLUSION

To summarize, the interesting scaling relationships t
exist in the sub-system invariant properties as a function
increasing sub-system size have been used to study the
chronization properties of high-dimensional spatiotempo
chaotic systems in a simpler fashion. Our results show
suppressing spatiotemporal chaos and controlling the sys
in desired stable fixed or low-period states is possible us
only sub-system data via self-tuning of a control parame
Simultaneous adaptation of more than one parameters u
only sub-system information is also possible. These res
allow for relaxation in the monitoring of time-series da
from the spatial domain for control purposes. On the ot
hand, the synchronization studies with chaotic spatiotem
ral dynamics suggest that synchronization may be poss
only in regions from which time-series data is available.
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