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In this paper we show that the analysis of the dynamics in localized regionsubesystemsan
be used to characterize the chaotic dynamics and the synchronization ability of the spatiotemporal
systems. Using noisy scalar time-series data for driving along with simultaneous self-adaptation of
the control parameter representative control goals like suppressing spatiotemporal chaos and
synchronization of spatiotemporally chaotic dynamics have been discussei99& American

Institute of Physicg.S1054-150(08)01301-9

Most physical, chemical and biological systems are high-
dimensional and exhibit complex spatiotemporal patterns
including spatiotemporal chaost The synchronization
and control of the spatiotemporally chaotic dynamics in
these systems is currently being investigated and has
been reviewed in Refs. 211. In this paper we study the
synchronization and regulation of the spatiotemporal sys-
tems using time-series data from local regions. This ap-
proach may help in specifying the requirements of time-
series data from the spatial domain for control. Since the
phase space is large for spatiotemporal systems it may be
worthwhile to first show how the conventional diagnostics
for low dimensional systems may be appropriately uti-
lized to study the synchronization behavior of higher-
dimensional spatiotemporally chaotic systems. The feasi-
bility of the approach may be seen by studying the
behavior of the sub-system invariant properties such as
the Lyapunov dimension and Kolmogorov-Sinai (K-S)
entropy'?19 for increasing sub-system size. Important
and illustrative control goals, e.g., suppressing spatiotem-
poral chaos by directing the system to desired stable fixed
point or low-period states (servo-control), and dynamical
synchronization of the spatiotemporally chaotic systems
using localized sub-systeminformation have been ad-
dressed in this context. The above aims have been carried
out for two prototype examples of coupled map lattices
(CMLs), viz, the diffusively coupled logistic map
(LCML ) and the diffusively coupled Henon map
(HCML).

I. INTRODUCTION

The first CML studied is obtained by diffusively cou-
pling N logistic maps on a one-dimensional latfitand is
defined as

Xn+1(1)=(1—e)f(xn(i)) + g[f(xn(i — 1) +f(xa(i+1))],
D
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where,n is the discrete time; the lattice sitej=1,2,. .. ,N;
and e the diffusive coupling coefficient. The nonlinear func-
tion f(x) is given by the quadratic form

f(Xn)=Xns1=1—ax2.

2

Equation(1) exhibits a wide variety of spatiotemporal pat-
terns, viz., periodic, quasiperiodic, chaotic and complex fro-
zen patterns depending on the choice of parameteand
€.1%In Fig. 1(a) is shown the typical spatiotemporally chaotic
dynamics of the LCML(1) for periodic boundary conditions
and randomiinitial conditions. This complex pattern arises
due to interactions between the diffusion and nonlinear
mechanisms in the LCML. The bifurcation parameter 1.9
has been chosen such that the local @ pexhibits tempo-
ral chaos (Lyapunov exponent\~0.55). The coupling
strength chosen was=0.4.

The second CML considered is the diffusively coupled
Henon map lattice in 1-D

Xins1(0)= (1= O)F¢; n(10)+ 5 TF(x; o= 1)

+ (X n(i+1))], (3
where
Xipe1=F1(Xyn,Xopn)=1— axin+ Xons
Xon+1=F2(X1n,Xo0) = BX1n, (4)

i=1,2;i=1,2,.. N. Again, the parameter values have been
so chosen that the local Henon map exhibits chaotic dynam-
ics («=1.4 andB=0.3 for which the maximum Lyapunov
exponent\ .~ 0.42)%° On assumingdentical initial con-
ditions forx; (i), the HCML (3) exhibits spatially homoge-
neous but temporally chaotic dynamies seen in Fig. (b)

for n<100]. On giving random perturbations to the central
five lattice sites ah=100, a changeover from spatially ho-
mogeneous to an inhomogeneous spatiotemporal pattern is
observed with the spread of perturbation to the boundaries
because of diffusive couplindrig. 1(b)]. The following sec-
tion discusses the analysis of spatiotemporally chaotic dy-
namics in terms of the sub-system invariant measures. In
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Now, from a knowledge of the spectrum of sub-system
Lyapunov exponents,xi(s), the effective sub-system
Lyapunov dimensiond(® , may be obtained and is defined
as

1 J

d(LS)Zj + WZL )\i(s) y (6)

j+1

on using the well-known Kaplan and YorkdKY)
conjecturé’! Herej is the largest integer for which the sum
of the exponents\{¥+ ... +A{¥=0.If \,<0, thend(¥=0
and if j=mny, thend(®=mn,.%° The Lyapunov dimension
gives the effective dimensionality of the underlying attractor.
The corresponding intensive quantity, the sub-system dimen-
sion densityp{¥, may then be defined as

e = v

It gives an estimate of the number of degrees of freedom
required to characterize the dynamical behavior of the full
spatiotemporal system.

Another important invariant measure is the Kolmogorov-
FIG. 1. Spatiotemporal chaos in CMLs for lattice side-100 (every 10th Sinai (KS) entropy and ZIZS defmed_ _as the sum C_'f positive
iteration is plottedl : (a) Spatiotemporal dynamics of LCML fo=1.9, |—_yapun0V e?(pone”t3+ SOt quan“f'es_the mean informa-
€=0.4. Random initial conditions were assumedhat0. (b) Spatiotempo-  tion production and growth of uncertainty in a system sub-
ral dynamics of HCML fora=1.4,3=0.3,e=0.3. Atn=0 identical initial jected to small perturbatioﬁé_For regular predictable be-
conditions were assumed. A finite random perturbation given to the centra]lh,ilvi(._)r the KS entropy is zero while for chaotic systems it
five lattice sites, ah=100 results in the complex spatiotemporal behavior L. " P .
because of coupling. takes a finite positive value, and is infinite for continuous

stochastic processes. The sub-system KS-enttdpy,is de-

fined as
section Il the dynamical synchronization and control of spa-
tiotemporal chaos in these CMLs is discussed for represen- h<$>:2 )\<+S> (8)
tative goals.
and the corresponding density function, the sub-system en-
Il. ANALYSIS OF SPATIOTEMPORAL DYNAMICS tropy density,pf”, is given by
For a CML of sizeN, there arenN Lyapunov exponents E]S): Z )\(f)/ns- 9

(m being the number of degrees of freedom in the corre-
sponding single map, i.em=1 for logistic map andn=2

for Henon map and their computation can be taxing and
practically infeasible for largeN. However, if attention is
restricted to a localized sub-system of sizg<<<N), the
calculation of the Lyapunov exponents is significantly re-
duced tomng. The calculation of these sub-system expo-
nents is similar to those of the full system, that is, by time-
averaging the growth rate of linearized orthonormal vector
X!, within the sub-system, and is given by

The dependence of these invariant measures as a func-
tion of the sub-system siz@, is discussed below. In Fig.
2(a) is shown the plot of the sub-system dimensidfY), as
a function of its sizeng (solid line corresponds to LCML and
the dashed line to HCML The sub-system dimensiat}® is
seen to linearly increase with the sub-system sizior both
the CMLs. This suggests that it may be possible to determine
3he effective dimensionality of the whole system from sub-
system analysis. Further, the saturating behavior of the sub-

o - | %p+ 4 system dimension density'® [Fig. 2b)] helps in determin-
A= limsup | A I=1...mns. (5  ing the critical sub-system size,., required to predict the
n—oo

dimensionality of the full system. Similar behavior was ob-
While calculating these exponents, the flow of information atserved in the sub-system KS entrofy® and the entropy
the sub-system boundary sités=1 and k=ng, may be density,pff), for increasing sub-system sigEigs. Zc) and
treated as(@) noise effects, or(b) explicitly corrected by 2(d)]. This implies that though the entropy increases linearly
evaluating the sub-system Lyapunov exponents only fowith the sub-system size, the average rate of information
ns— 2 sites(i.e., excluding the boundary side©ur calcula- loss/gain levels off forng>n,.. The above relationships
tions of the sub-system Lyapunov exponemﬁ) for both  were also observed for logistic maps diffusively coupled on a
treatmentga,b) were found to be in quantitative agreement 2-dimensional square lattice of sizdXN (results not
with open boundary conditions used for the sub-system dyshowr). These results indicate that it may be possible to
namics. analyze the dynamical behavior of reaction-diffusion sys-
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FIG. 2. Behavior of the sub-system invariants as a function of sub-system
size ng for LCML (solid line) and HCML (dashed ling : (a) Lyapunov
dimension,d(® ; (b) dimension densityp® ; (c) entropy,h®; (d) normal-

ized entropyp{® . Parameters and lattice size identical to Fig. 1.

tems from an analysis of relatively smaller sub-systems. This
feature may prove to be computationally very advantageous,
especially in higher spatial dimensions. (e)

Ill. SYNCHRONIZATION AND CONTROL OF
SPATIOTEMPORAL CHAQOS

In this section, we discuss the synchronization and con- " 4000
trol of spatiotemporally chaotic dynamics for different goals
with the following important factors considered, vizl) a
mechanism by which a control parameter may be self-
adapted so that synchronization in the system and the desir-

able dynamics becomes possil), allow for restrictions in

th vailabilit f lar tim i ignals in th fi IFIG. 3. Stabilization of the spatiotemporally chaotic dynamics with noise
€ avaia y of scala €-Series sighals € spa areduction for the LCML. The response systefn=(1.9) was assumed to be

domain; and3) negate the effects of noise in the time-seriesyien by noisy time-series signats, (), from a sub-systemr=21) of
data. From recent studies on the dynamical synchronizatiofhe process ¢=0.3). (3 Measurement noisey 7n(K) =X} 1(K) —X1(K),

of low-dimensional chaotic systems it is known that a givenintroduced in the monitored sub-system process variakigsSpace-time
system(called theresponsg can be made to follow the dy- behavior of the error signal®, (i) =Xy 5(i) = Xya(i), i=1,. .. | N. ey(i) is
namics of another system by driving the former with scalarséen to fall to zero at all the lattice sites indicating complete synchronization

. . . _ .. of the response dynamics with the proceg&s. Space-time plot of the
time-series signals from the latt&¥.2° The condition for the P il ne P 9. Space P .
d:tapter signalsA« implemented; stiffness coefficient for adaptation,

synchronization to occur is that the response system shouﬁzom. Note that an—0, the adapter&—0.0 which then eventually

possess negative conditional Lyapunov exponents. Fo”OWéssumes an average value-ot.6 (the initial difference betweena anda).

ing the results of section Il, we would now like t0 S€e The adapter signals continuously filter the noise showtalino achieve the
whether sub-system data may suffice in assessing the Sydynamical synchronization seen (b).

chronization ability of the spatiotemporal system.
Before discussing the results, we present the methodol-

ogy adopted to synchro_nize the dynamics of spat@otempor%herenn(k) denotes the random noise in the inter(,.5
systems governed by different attractors. For clarity we dey¢ strengthy. The response system, written in a different

fine the driving system by notation from eq(10), is given by

wherex,(i)=X; (i), j=1,... m (m denotes the number of . ) A -
degrees of freedom in the local magndi=1,... N. To where x,(i) are the corresponding variables,and 3 the

incorporate the effects of noise arising due to measuremefigSPonse parameters, amf(k), the driving variables. To
errors, the sub-system driving signals are assumed to piudy the ability of the response system to synchronize its
given by dynamics with that of the driving syste(i0), we analyzed

, the conditional Lyapunov exponents for a localized sub-
X1n(K) =X n(K) +y7a(k),  k=1,...n;, (1) system (s>ns,). These exponents were calculated by moni-
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FIG. 4. Controlling the spatiotemporally chaotic dynamics of a response systeri.,3=0.3) to temporally 2-period statevE0.8,83=0.3). The results
are shown for HCML(a) Spatiotemporally chaotic dynamics of the response system1(4,e=0.4).(b) Spatiotemporal dynamics of the response system
on driving it with sub-system time-series signalg,(k), k=41, . . . ,60.Self-adaptive mechanism was simultaneously implemerigscillatory behavior
with phase locking in the spatial domain exhibited by the response system on driving it with time-seriessigfialsj =5,10,. . . ,100. (d) Space-time
convergence oha to —0.6 for ©~=0.001.

toring the growth rate ofri—1)ng sets of linearized ortho- |nitially, the same value ofr is assumed at all the lattice

normal vectors obtained on excluding the variables used fogjtes, but different from that of the driving system, i.e.,
driving. For the HCML, the calculations showed that the ;, jy— ;= . For the sub-system lattice sites where the sig-
maximum sub-system conditional exponent is negative o
usingx, ,(i) as the driving signals indicating possible syn-
chronization. On the other hand, ¥,,(i) were used for

driving, the maximum conditional exponent was found to be, - o - , _
positive and synchronization is not guaranteed. A synchroni-AanH(k)_A“n(k)+M[X1,n(k) X1n(K)],  k=1,... ?153)
zation study on HCMLs with different initial conditions but

same parameter valugse., «=«a, B= ) did confirm the \where u is the stiffness coefficient for adaptation and
above results. It may be also noted that in the case of LCMLA&O(i)ZO. For the lattice sites outside the sub-system an
the local map being governed by a single varialile.,
m=1) precludes the observance of negative condition
Lyapunov exponents and synchronization in their dynamic
is difficult. - N - .
However, if driving is carried out on a response system ~ @n+1(1) =@o(i)+Aan. (i),

with a different setting of the control parameter, i@#«,  The Jinear functional form for adaptation considered in eg.
then synchronization of the response system dynamics cagy 3 js only representative and other functional forms of ad-
not be brought apout by driving alone. In this situation, theaptation, e.g., cubic, history-linear, sign, é&3may be at-
control parametex needs to be altered appropriately so thattempted. Further, the choice @f may be rationalized by
synchronization becomes possible. Self-adaptive mechatudying the stability characteristics of the response and
nisms for parametric estimations have been studied in thgdapter dynamics. As long as the combined system has nega-
context of temporal chaotic systeris For spatiotemporal  tive eigenvalues synchronization should be possible. A range
systems, the self-adaptation of the control parameter may hsf ;. values can satisfy this requirement and within this range
carried out as follows. We begin by introducing a space-timehe specific value ofu will determine the rapidity with
dependence in the response control parameter,&n({i,). which synchronization occurs.

Nals are available, the parametric correctiana,, . ;(k) may
be dynamically evaluated as

Jpverage adaptatiol; A &nﬂ(k)/ns, was employed. The re-
S§ponse parameter then self-adapts to the desired valia

i=1,2,.. N. (14)
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FIG. 5. On using scalar time-series signais,(k), from a sub-system of HCML exhibiting chaotic dynamies<1.4,3=0.3) to drive the response system
(a=1.4, B=0.28) operating on a different chaotic attractéa) Till n<500, the error between the non-monitored process and response variables,
€,=Xpn(i) —>A<2Yn(i), i=1,... N, is shown without driving or adaptation. Synchronization is obtained only within the sub-sy&jefpace-time behavior of

the adapter signals convergingm;@=0.02 (the initial difference betweeg and/?).

Using the above methodology, we discuss representativieRomogeneous and temporally periodic oscillations were used
cases pertaining to controlling spatiotemporal chaos. Outo drive the chaotic dynamics of the respofsieown in Fig.
first aim was to suppress chaos in a spatiotemporal systed{a)]. On using the self-adaptive mechanigeq.(13)] along
and direct it to a desired stable fixed point state via selfwith driving, the desired spatially homogeneous and tempo-
adaptation of the control parameter along with simultaneousally periodic pattern is observed only within the sub-system
driving. Noisy time-series signalshown in Fig. 8a)] froma  [Fig. 4(b)]. Outside the sub-system, the dynamics is not
sub-system of size;=21 localized in the central region of phase synchronized, though oscillating periodically in time.
the lattice of the driving systemy=0.3) were used to drive On using driving signals from every 5th lattice site, we were
the spatiotemporally chaotic dynamics of the response sysble to obtain complete synchronization with phase locking
tem (ag(i)=1.9). A rapid space-time synchronization in the in the response and the desired system dynaffics 4(c)].
dynamics of the response and the driving system is depicte@ihus, though local sub-system data is sufficient to suppress

by plotting the error signale,(i)=X,(i) —x.(i) in Fig. 3b). chaos and direct the system to a stable periodic state, for
phase synchronization, time-series measurements from the

full spatial domain is requiredwhich may be spaced out
depending on the complexity of the desired staf€he
1qs:pace -time evolution of the parametric correction is shown in
4(d).
The above studies were focused on directing the system
éo stable states. Now we discuss the more difficult case of

The space-time convergent behaviorAof (i) to a value of

— 1.6 (the initial difference in the control parametdry self-
adaptation is shown in Fig.(®. The fluctuations im a,(i)

is due to the presence of noise in the driving signals which i
constantly filtered by the adapter e§$3). Thus, the simple
form of self-adaptation given in eq13) can be effectively

used even in the presence of reasonable extents of noise : ; .
suppress chaos in the dynamics. The implementation of thelrectmg a spatiotemporal system from one chaotic state to
another. The results in this study are presented for the

driving signals along with the adapter mechanism leads to
faster convergence to the desired stable state. Further, b%'CML [eqs.(3),(4)] with sub-system driving signals used to

cause the final state is a stable one, the system continues g¥&luate parametric corrections3 in the alternate control
operate in this state even after the driving and self-adaptivearametes. This was carried out in a procedure identical to
mechanism have been switched off. Similar results were alsevaluatlngAa anda [egs.(13),(14)]in Figs. 3, and 4. In this
obtained for HCML using scalar sub-system time-series sigease, synchronization was possible only within the sub-
nals(results not shown These results suggest that it may besystem[Fig. 5a)], even though the response system control
possible to suppress chaos in real experimental situations tparameter had been appropriately self-adapted. 5b)].
using scalar time-series signals from a local sub-system witifthe asynchronous behavior outside the sub-system is be-
spatial self-adaptation of the control parameter. cause of the sensitive dependence of the chaotic dynamics to
Next we considered controlling the spatiotemporallyinitial conditions and suggests that driving signals from the
chaotic dynamics to a temporally 2-period state. The subentire spatial domain will be required for complete synchro-
system time-series data from an HCML exhibiting spatiallynization in this case and was confirm@dsults not shown

o]
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curacy, there exists a range pfi and u, values wherein
0.2 multiparameter self-adaptation was successful. Considerable
{a) potential exists in applying this technique in accurately char-
acterizing available mathematical models of an experimental
system. Using experimental time-series data from a sub-
system, the parameter values in the mathematical model
(now the response systeman thus be ascertained.

A
AaGV

IV. CONCLUSION

To summarize, the interesting scaling relationships that
—0.4 exist in the sub-system invariant properties as a function of

200 400 600 increasing sub-system size have been used to study the syn-
chronization properties of high-dimensional spatiotemporal
chaotic systems in a simpler fashion. Our results show that
0.02 suppressing spatiotemporal chaos and controlling the system
(b) in desired stable fixed or low-period states is possible using
only sub-system data via self-tuning of a control parameter.
0.01 Simultaneous adaptation of more than one parameters using
only sub-system information is also possible. These results
allow for relaxation in the monitoring of time-series data
from the spatial domain for control purposes. On the other
hand, the synchronization studies with chaotic spatiotempo-
ral dynamics suggest that synchronization may be possible
only in regions from which time-series data is available.

-0.01
0 200 400 600
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