
VOLUME 81, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 AUGUST 1998

chieve
g,

cal

o be
tural
Global and Local Control of Spatiotemporal Chaos in Coupled Map Lattices
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We present a simple method, using constant pinnings, to suppress spatiotemporal chaos and a
global control in coupled map lattice models under different situations, e.g., for uniform pinnin
nonuniform pinning with regular or random distributions, and lattices with spatial heterogeneity in lo
dynamics and coupling strength. The method is easy to implement and does not require anya priori
information of the system dynamics or explicit changes in its parameters. This method can als
used for local control of spatiotemporal dynamics, an aspect that has crucial importance in many na
systems. [S0031-9007(98)06896-3]

PACS numbers: 05.45.+b, 05.50.+q, 47.20.Ky, 87.22.–q
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Spatially extended systems are commonly described
ing coupled map lattice (CML) models which exhibit a
wide variety of novel and complex spatiotemporal beha
iors including spatiotemporal chaos (STC) for differen
levels of spatial coupling and nonlinearity in the local dy
namics [1]. Along with physicochemical systems such
plasma devices, laser systems, and chemical reactions
CMLs are also being increasingly used in modeling sp
tially extensive excitable media in biology, such as th
cardiac, neural, or retinal tissue, and metapopulations
ecology, where the coupled discrete nature of the me
and the resulting spatiotemporal dynamics has sign
cance in both physical and biological functions [2]. Al
terations in the normal functions in these systems lead
pathological conditions, and thus control of spatiotemp
ral dynamics has major implications in biological func
tions. However, only a few methods have been propos
for controlling such spatially extended systems [3–5].

The dynamical control of spatially extended system
can have two different motivations: (a) control of the fu
system by manipulating all or parts of the system, a
(b) controlling only a localized spatial region, leaving th
rest of the system unperturbed. The first is needed wh
one desires to exert global control over the system
the event of its exhibiting undesirable dynamics, e.g., i
stabilities in coupled chemical reactors, or in arrays
Josephson junctions, etc. The second is extremely u
ful in situations where local control is required without in
terfering with other parts of the system, viz., suppressi
activities of an ectopic node in the heart, or introducin
localized alterations in neural tissues.

In this Letter we propose a novel and simple method
control the spatiotemporal dynamics in CMLs by applyin
constant pinning in the spatial domain. The STC in the la
tice can be suppressed by pinning all sites uniformly, a
the high dimensional system can thus be stabilized in a
desired periodic state on appropriately varying the pinni
strengths in few time steps (,50). Global suppression
of STC (as measured by negative maximum Lyapun
exponent,lmax) can also be achieved by this method b
0031-9007y98y81(7)y1401(4)$15.00
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the application of regularly spaced or randomly distribute
nonuniform pinnings. The major advantage of the metho
is that, unlike other feedback or adaptive control algo
rithms [3,6], it does not require anya priori knowledge
of the system dynamics, such as stable or unstable fix
points and periodic orbits, nor does it require modifyin
or tracking any of the system parameters or variables e
plicitly. Therefore this method can also be easily used
suppress chaos in lattices with heterogeneity in the loc
nonlinear parameter or in the coupling strength—a sit
ation common in reality. In addition to global control, we
show that this method can also effectively control spatio
temporal dynamics in spatially localized regions in CMLs

The diffusively coupled map lattice model in one
dimension is given by the following general form [1]:

xn11sid ­ s1 2 edfsssxnsidddd

1
e

2
f fsssxnsi 2 1dddd 1 fsssxnsi 1 1ddddg , (1)

where n ­ 1, 2, . . . , N are the discrete time steps,i ­
1, 2, . . . , L is the discrete lattice sites with periodic bound
ary conditions,xnsid represents a continuous state,e is
the diffusive coupling strength to the nearest neighb
sites, andfsxd governs the local dynamics. Herefsxd ­
rxs1 2 xd for 1 # r # 4, 0 # x # 1, which shows the
universal bifurcation structure of period doubling route t
chaos with increasing nonlinear parameterr [7].

The method proposed to control the spatiotempor
dynamics in CMLs involves applying constant pinnings o
the lattice sites as follows:

xn11sid ­ s1 2 edfsssxnsidddd

1
e

2
f fsssxnsi 2 1dddd 1 fsssxnsi 1 1ddddg 1 pnsid ,

(2)

wherepnsid represents the pinning strength at theith site
at nth time step. It can assume negative or positive valu
depending on the nature of the local dynamics [8] and c
© 1998 The American Physical Society 1401
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be either uniform and the same on all the lattice sites
nonuniform and site dependent; i.e., it assumes differe
constant values at different sites. For uniform glob
pinning, pnsid ­ p, for i ­ 1, 2, . . . , L. For nonuniform
pinning, pnsid ­ dsi 2 ipdp, whereip is the inverse of
the pinning density,pd : if dsi 2 ipd ­ 1, the ith site
is said to be pinned and takes a finite valuep, or else
pnsid ­ 0. For all numerical simulations the lattice length
is L ­ 60, and the initial conditions are chosen randoml
from the rangexc 6 0.01, wherexc is the critical point of
the local map function (xc ­ 0.5 here) [9].

Global control of STC with uniform pinning.—(i) Ho-
mogeneous lattices: We show the effect of uniform pin
ning on the CML dynamics for a homogeneous lattic
(samer and e at all the sites). Figure 1(a) summarize
the long term spatiotemporal behavior of the CML whe
subjected to both negative and positive pinning strengt
in the (r-p) parameter space. In a uniformly pinned lat
tice, the long term dynamics is similar at all the site
and depends only on the pinning strengthp. Figure 1(b)
shows the dynamical behavior of a lattice site in a CM
with r ­ 4 for varying pinning strengths. A clear period-
halving behavior is seen with a decrease in the magnitu
of p, from spatiotemporally chaotic to periodic and equ
librium behavior. Thus it is possible to find the prope
choice of pinning strength required to control spatiotemp
rally chaotic dynamics in homogeneous CMLs to desire

FIG. 1. (a) Spatiotemporal behavior of the CML inr-p
parameter space. The regions marked 1, 2, and 4 exh
fixed-point, 2 and 4 period dynamics;.4 includes higher
periodic states and STC with small stable periodic window
xnsid ! 2` in the rest of the region. (b) The period-halving
behavior exhibited ati ­ 30 in the CML (r ­ 4, ande ­ 0.8)
as a function of uniformp. (c) STC (shown in left) in a
spatially heterogeneous CML (r ­ 3.9 6 0.1, e ­ 0.7 6 0.01)
is suppressed to fixed point state (shown in right) by pinnin
uniformly with p ­ 20.15; here data for100 consecutive time
steps are superimposed after eliminating1000 transients.
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stable states using this simple method. It is clear that o
need not have any information about the system param
ters or stableyunstable states of the CML to implement thi
method.

(ii) Heterogeneous lattices: Most natural systems a
unlikely to have the same system parameters over
entire spatial domain [e.g., the growth rate (r) may not be
identical in all the subpopulation patches, or the junction
coupling strengths (e) may vary in arrays of coupled
nonlinear oscillators or within cells in an excitable tissu
[2] ]. The left side of Fig. 1(c) shows the STC in a het
erogeneous CML with small random variations inr and
e. In contrast to the homogeneous lattice where
sites exhibit identical dynamics, here, because of spa
parametric variations, suppression of STC is achieved w
different lattice sites settling down to different fixed poin
dynamical states for a chosen value of pinning streng
[see the right side of Fig. 1(c)]. It may be noted that a
control algorithms which involve parametric corrections t
control the system dynamics [3,6] will not work easily in
such situations.

Global control of STC with nonuniform pinning.—
Having uniform distribution of probes over the entir
spatial domain to control the system dynamics is neith
very efficient nor always practically feasible. This metho
can also be used to suppress STC (measured by2lmax)
in the CMLs with nonuniform pinning at a lower density
of pinned sites.

(i) Regularly spaced pinned sites: The left side o
Figs. 2(a) and 2(b) show weak and strong STC in CML
This chaotic dynamics can be suppressed (shown in
right sides of the figures) by applying nonuniform pinnin
at a very low densitypd ­ 0.1 [i.e., one in ten sites in
Fig. 2(a)] and a denser distribution ofpd # 0.25 for a
highly chaotic lattice [in Fig. 2(b)]. Fixed point control
of STC can be achieved by pinning the alternate sit
(pd ­ 0.5) of the CML.

Whenpd , 1, e plays an important role in the suppres
sion of STC at higher values ofr. In Fig. 3 is shown the
behavior of thelmax for the full CML, for increasing values
of e at different pinning densities. There exists more tha
one window ine at pinning densitiespd $ 0.25 where
STC is suppressed in a highly chaotic CML (r ­ 4). Con-
trol is easily achieved in a weakly chaotic lattice (r ­ 3.6)
even forpd # 0.25 over a large range ofe. Thus, control
of STC is possible in CMLs over a wide range ofe andpd

at low r values, but at higherr, only a narrow range ofe
andpd is available for control.

(ii) Random distribution of pinned sites: Instead of pin
ning a few regularly spaced lattice sites, in some practic
situations it may be advantageous to be able to suppr
chaos by pinning sites randomly. For example, to suppre
certain types of cardiac arrhythmia (e.g., tachycardia
electrical stimulations are generally applied to differe
parts of the whole tissue [3,5,10]. In Fig. 4 we show th
results culled from 100 experiments each on random
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FIG. 2. Space-amplitude plots for nonuniform pinning (“1”
denote the pinned sites). (a) CML (r ­ 3.6) exhibiting two-
band STC (left side) and suppression of STC (lmax ­ 20.13)
with p ­ 20.25 andpd ­ 0.1 (right side); (b) CML (r ­ 3.9)
exhibiting fully developed STC (left side) and suppression
chaos (lmax ­ 20.07) with p ­ 20.45 and pd ­ 0.25 (right
side). Heree ­ 0.7.

pinned CMLs for increasing pinning densities, where th
suppression of STC is scored by the percentage of ca
with negativelmax. It is clear that for a weakly chaotic
CML (denoted by dashed lines), control of STC is po
sible even by randomly pinning only a few sites. How
ever, as expected, control of STC in fully turbulen
CML (denoted by the solid line) is more difficult—though
it is still possible in about15% of the cases by randomly

FIG. 3. Role of coupling strengthe in suppression of STC
(regions of negativelmax) in CMLs at different pinning
densities forp ­ 20.4.
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FIG. 4. Suppression of STC in CMLs (e ­ 0.7, p ­ 20.4)
with randomly distributed pinned sites.

pinning only75% of the sites. With the increase in pin-
ning density, success rate increases and randomly pinni
90% of the sites yield control of STC in.50% of the
cases. Thus, this method can also be useful in system
where regularly spaced distribution of pinning may not b
feasible.

Local control of spatiotemporal dynamics.—Control of
the dynamics in spatially localized regions, leaving the re
of the system undisturbed, is usually not addressed in sp
tially extended systems, though this has important applic
tions in both physical and biological systems [11]. With
many of the existing algorithms, spatially localized con
trol is not possible since parametric changes are needed
achieve control. The present method can be effective
used for controlling the dynamics in spatially localized
regions in a CML. Figure 5 shows that when a region
of ten sites in a CML exhibiting spatiotemporal chaos is
pinned locally leaving the rest of the sites undisturbed,
shows suppression of STC in that localized region, an
the rest of the lattice continues to show STC. The desire

FIG. 5. Space-time-amplitude plot for local control. Sites
i ­ 26, . . . , 35 in the CML (r ­ 4.0, e ­ 0.8) exhibiting STC
are pinned withp ­ 20.3 and controlled to equilibrium state
while the rest of the lattice continues to exhibit STC.
1403
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dynamics in the pinned region can be obtained by approp
ately choosing the pinning strength (from Fig. 1). In thi
method a pinned site can exert its influence to at most thr
neighboring sites depending on the coupling and pinnin
strengths. Thus suppression of STC is indeed quite stric
localized when coupling is weak, and the pinning regio
can be appropriately chosen at high coupling strengths.

To summarize, we have shown that it is possible to su
press spatiotemporal chaos in coupled map lattice mo
els both globally and locally by applying constant pinnin
signals. Using this simple method we have shown the fo
lowing: (a) Spatiotemporal dynamics of the CML can b
controlled to desired dynamics by appropriately pinnin
all the sites. A few test experiments on the map functio
controlling the local dynamics can suffice for the learnin
phase of the method. (b) Control of dynamics is possib
with heterogeneity in the parameters. (c) Global control
STC is possible by pinning fewer sites that are distribute
in a regular or random fashion throughout the lattice. Th
provides considerable relaxation in the density and dist
bution of the pinned sites and allows targeting control si
nals to be spatially fairly nonspecific—a useful measu
in experimental protocols. (d) Spatially localized suppre
sion of STC without disturbing the rest of the lattice can b
effectively achieved to the desired dynamics by choosin
appropriate pinning strengths—a property that can ha
important applications.

The suppression of STC achieved in this method
due to the fact that spatially localized negative pinnin
effectively reduces the nonlinear parameter of the loc
dynamics (logistic map here), thereby inducing stability i
the local dynamics and, in turn, in the whole CML. Thi
method works for different forms of the one-dimensiona
single humped functions [7] in the local dynamics with
negative and positive pinnings by either pushing the syste
towards the region of reduced slope of the hump,
towards the region of inflection, if one exists [8,12]
Our preliminary investigations show that this method als
works in CMLs where the local dynamics is governe
by two-dimensional maps and continuous dynamics. T
method is easily applicable for controlling STC in two
dimensional CMLs without any modification. Persistenc
of pinning required for control in this method is quite
realistic, since many of the therapeutic measures of cont
involve regular application of drugs, or the presence
in situ pacemakers to control pathologies till physica
alteration or removal are performed. In physicochemic
systems, this allows the controlled state to be robu
against perturbations. Thus this theoretical approach h
important potential for implementation on a variety o
physical and biological systems.
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