
Digital Image Restoration Techniques And Automation

Ninad Pradhan
Clemson University
npradha@clemson.edu

a course project for ECE847 (Fall 2004)

Abstract
The restoration of digital images can be carried out using
two salient approaches, image inpainting and constrained
texture synthesis. Each of these have spawned many
algorithms to make the process more optimal, automated
and accurate. This paper gives an overview of the current
body of work on the subject, and discusses the future trends
in this relatively new research field. It also proposes a
procedure which will further increase the level of
automation in image restoration, and move it closer to being
a regular feature in photo-editing software.

Keywords: image restoration, inpainting, texture synthesis,
multiresolution techniques

1. Introduction
Image restoration or �inpainting� is a practice that predates
the age of computers. It is a technique used by art museum
craftsmen to fill in parts of a painting which have decayed
or been damaged over the course of many years. It is called
inpainting as a literal terms for the process of painting in
holes or cracks in an artwork. Digital image restoration has
received attention over the last few years, because of the
many applications that is has in image processing, including
removal of scratches, objects, text or logos from digital
images, while still retaining the consistency of the image in
those areas which have been restored or retouched.

The problem in inpainting is posed as follows: given an area
to be inpainted, filling in the missing areas or modifying the
damaged ones in a non-detectable way for an observer not
familiar with the original images [4]. Texture synthesis
accepts a given sample texture and creates an output image
which can have arbitrary dimensions, but which retains the
texture properties derived from the original sample [15].

Both these approaches have different direct applications:
where inpainting is used explicitly for filling holes in an
image, texture synthesis draws from natural or artificial
textures to create a textured pattern, which finds extensive
applications in graphics and 3-D animation [17]. However,
they are basically methods used to synthesize a pixel given
some information about another set of pixels. We can think
of the texture synthesis problem, which requires an input
texture, as reducing to the inpainting problem if we assume
that the sample or input texture which it attempts to

replicate can be found in the same image where the region
to be synthesized lies.

Hence we see that, for two dimensional digital images, one
can use both texture synthesis and inpainting approaches to
restore the image. This is the motivation behind studying
work done in these two fields as part of the same paper. The
two approaches can be collectively referred to as hole filling
approaches, since they do try and remove unwanted features
or �holes� in a digital image.

The common requirement for hole filling algorithms is that
the region to be filled has to be defined by the user. This is
because the definition of a hole or distortion in the image is
largely perceptual. It is impossible to mathematically define
what a hole in an image is. A fully automatic hole filling
tool may not just be unfeasible but also undesirable, because
in some cases, it is likely to remove features of the image
which are actually desired. The user should have control
over the selection of the region, after which the filling is
entirely automatic across the spectrum of methods to fill
texture or inpaint.

Some attempts have been made at automatic hole filling,
notably ones by Shih et al [9], who use a GUI tool which
automatically fills an image, but later allows user to undo
corrections to certain parts of the image. This technique uses
the power to noise ratio in a pixel window and some global
image statistics to determine if the inpainting operation
should be carried out. I have proposed a method similar to
theirs in its use of multiple resolution windows to detect a
hole in the image, but which diverges in the details and
hands over control of the inpainting to the user before the
actual inpainting operation is performed by software.

Thus, this paper collates some of the defining work in
inpainting and texture synthesis, which is of relevance to 2D
image restoration, and finally proposes an approach to take
the process towards more user-friendliness and automation.

2. Inpainting
There are two schools of thought on approaching an
inpainting problem: making use of information about the
local neighbourhood of a pixel only, and making use of
global statistics to aid the local statistics.

2.1. Local inpainting
Bertalmio et al [4] define the problem of local inpainting as,
given a region to be inpainted Ω and its boundary ∂Ω, to
synthesize pixel values from the boundary inwards, using
neighbourhood pixel information to continue the inpainting
process.

Fig 1: Local inpainting [5]

These methods assume a prior information about the
probability distribution of the relation between a pixel value
and its neighbourhood, which will help fill in a pixel lying
on the hole boundary. Also, other properties such as high
smoothness, low total variation or low curvature are
assumed to create the framework on which the actual
algorithm runs.

There are two significant approaches to local information
based hole filling of images:

• Based on Partial Differential Equations
• Based on convolution

2.1.1. PDE based methods
The seminal work of Bertalmio et al [4] illustrates the PDE
based method aptly. They provide an elegant mathematical
treatment of the inpainting problem.

They define isophotes, or lines of equal gray value, as
having to propagate inside the image boundary for the part
of the image to be inpainted. This process is similar to
estimating the optical flow in the neighbourhood of the
boundary, and following these lines of flow, or isotopes, to
the interior of the hole. Smoothness of flow is achieved by
use of discrete 2D Laplacian, and the variation thus obtained
is projected into the isophotes direction.

Authors also utilize anisotropic diffusion every few
iterations [8] to minimize the effect of noise. Anisotriopic
diffusion helps connect lines at the boundary of the
inpainted region.

Maintaining the isophote direction is a major sub-problem
for PDE based methods. The Laplacian is used by Bertalmio
et al. The Curvature-Driven Diffusion (CDD) model takes

into account geometric information of isophotes when
defining the �strength� of the diffusion process, thus
allowing the inpainting to proceed over larger areas.

PDE based methods are mathematically sound, do not
require any user intervention, once the region to be
inpainted has been selected and no assumptions on the
topology of the region to be inpainted, or on the simplicity
of the image, are made.

Fig 2: Results from Bertalmio et al [4]

However, there is a significant price to pay for these
advantages [5]. These methods are extremely slow for
practical applications, practical implementation details are
not easily available, and require solution of nontrivial
iterative equations (which also contributes to making them
computationally expensive, and slowing them down).

2.1.2. Convolution based methods
These methods [6] make use of psychological findings that
the human brain is more sensitive to edge information than
information which gives details of a texture in the image,
and reason that human visual system can tolerate some
amount of blurring in areas not associated with high contrast
edges.

Their second tenet is the use of sampling theorem, which
imposes a fundamental limit on the quality of the
information, in our case, scale of the texture, that can be
restored by any automatic inpainting model.

These methods use the above principles to come up with a
simple diffusion algorithm. This algorithm initializes the
hole to zero colour information, and repeatedly convolves
the image with a kernel which is rotationally symmetric.

The positives are that the algorithm is really fast and works
well for images which do not have many high contrast edges
or high frequency components (e.g. natural textures).

Fig 3: Results from Oliveira et al [6]

Since there is no �intelligence� associated with the
convolution, the algorithm gives poor results at high
contrast edges. A user defined convolution barrier has to be
put in place to retain edge information, which reduces the
degree of automation. Images with large amounts of high
frequency texture also exhibit errors when the convolution
algorithm is run over them.

2.1.3. The FMM (Fast Marching Method)-based
algorithm
This algorithm [5] can be looked at as the PDE based
approach without the computational overheads. It is
considerably faster than the PDE based algorithms, simple
to implement, and produces results which are comparable to
those given by the PDE method. It is also better positioned
technically than the brute force convolution method.

The salient features of the algorithm are that an estimator is
used for image smoothness (simplifies computation of
flow), and smoothness is estimated as a weighted average
over a known image neighborhood of the pixel.

The FMM is responsible for ensuring that the pixels closest
to the known region get painted first, which is similar to the
manner in which actual inpainting is carried out. FMM
maintains a narrow band which separates known pixels from
unknown, and also specifies which pixel to inpaint next.

A directional component is used to weight the contribution
of the pixel closest to target pixel more than those further
away.

2.2. Global inpainting
Inpainting based on global statistics [8] is a fledgling
concept but worth a mention here because it highlights a
potential weakness in local inpainting. Local algorithms
give identical completions when the immediate boundary of
the hole is identical. Human visual system takes more global
information into account. Global statistics are similarly
important in painting restoration. The major drawback with
respect to this paper is that the algorithm does not perform
well with natural textures as seen in photographs.

It captures the �look� of a training image in a probability
distribution over images, using image histograms.
Probability of an image is defined by means of a small
number of sufficient statistics or features, each of which can
be evaluated at an arbitrary location in the image.

Optimization is done using loopy Belief Propagation, a
method used to pick a value from the probability
distribution of the image given the hole boundary.

The drawbacks in the current implementation of global
statistics-based inpainting are that the probability model
does not capture texture very well, and the optimization
method yields results which are not as good as expected.

We now look at the other approach, namely texture
synthesis.

3. Texture Synthesis

3.1. Problem definition
Efros and Leung [15] have formulated the problem of
texture synthesis as follows:

�Let us define texture as some visual pattern on an infinite
2-D plane which, at some scale, has a stationary
distribution. Given a finite sample from some texture (an
image), the goal is to synthesize other samples from the
same texture. Since a given texture sample could have been
drawn from an infinite number of different textures, it is
assumed that the texture sample is large enough to capture
the stationarity of the texture�. A texture is said to be
stationary when, if we move a window over an image,
consecutive windows appear to be the same [14].

We are interested in constrained texture synthesis or hole
filling, in which the synthesized region must look like the
surrounding texture, and the boundary between the new and
old regions must be invisible.

In the problem, there are two major issues which need to be
addressed: modeling of a texture, and sampling of texture
from a given probability distribution.

3.2. Markov Random Field methods
Most of the texture synthesis methods make use of Markov
Random Fields to come up with a distribution from where to
pick the intensity value of a pixel.

Markov Random Field methods model a texture as a
realization of a local and stationary random process. That is,
each pixel of a texture image is characterized by a small set
of spatially neighboring pixels, and this characterization is
the same for all pixels.

Markov random fields define a powerful framework for
specifying nonlinear interactions between features of the
same nature or of a different one. They help to combine and
organize spatial and temporal information by introducing
strong generic knowledge about the features to be estimated.

They have been proven to cover a large variety of known
textures and hence are the most widely used in synthesis.

Since there is no distinct classification for texture synthesis
methods, unlike the image inpainting methods, I am
presenting a summary of some of the widely referenced
papers in this field.

3.3.1. Efros and Leung [15]
The pixels are grown from an initial seed, and they are
grown pixel by pixel. For evaluating a synthesis metric, a
neighbourhood around the unknown pixel value is taken, the
size of which is chosen to correspond to the scale of the
biggest regular feature expected in image.

Fig 4: Hole-filling results from Efros-Leung [15]

The Efros-Leung algorithm suffers from the drawback that
it is slow, can handle only frontal-parallel textures, and
sometimes gives garbage growth in some image sectors. It is
also a slow algorithm.

3.3.2. Wei-Levoy [14]
The goals of this implementation are to be efficient, general,
user friendly and able to produce high quality, tileable
textures.

It uses multiresolution pyramids, like Gaussian pyramids,
which are hierarchy of low-pass filtered versions of the
original image, such that successive levels correspond to
lower frequencies. This use of multiresolution has to do
with the fact that large scale structures need large pixel
neighbourhoods to achieve good results in synthesis.

They also use a technique known as tree structured vector
quantisation (TSVQ) to speed up the process. TSVQ causes
blurring of edges, which is an unwanted effect. Performs
relatively poorly on textures consisting of an arrangement of
distinct objects of irregular but familiar shapes and sizes.

3.3.3. Ashikhmin [10]
Modification of the WL algorithm which performs better on
this specific type of textures. It is significantly faster than
the basic or accelerated WL algorithm even though coding
complexity is about the same as the basic WL algorithm.
The patches created by this algorithm have irregular shapes,
which is useful for a variety of natural textures.

Another prominent approach is Harrison�s resynthesizer
[13].

4. Partial automation of restoration process
Multiresolution methods have been dealt with in [2] and
[16] but in different contexts. They are used to improve the
performance of inpainting and texture synthesis methods.
The overview of multiresolution is as follows.

To reduce computational burden, the search for an
appropriate neighbourhood is begun at a very coarse
resolution. When a match is found, the set of matched
windows is subjected to a higher resolution scan and so
down to the point where we are satisfied with the degree of
correlation between the unknown pixel�s neighbourhood
and the matched sets, and can choose the pixel colour value.

Shih et al [9] have developed an automated image inpaint
tool. They use the variance of neighbourhood pixels and a

multiresolution strategy to inpaint. The user has control over
the process as a reversible control, in the sense that the user
gains control to be able to undo changes which the
automatic tool has already implemented. It uses PSNR as a
metric in the multiresolution calculations.

The need for such kind of automation stems from the
requirement for inpainting to be more accessible to the
everyday user. As basic requirements, such a tool should be
as automated as possible. Currently both texture synthesis
and inpainting approaches to hole filling center around the
assumption that the area to be filled in is well defined by the
user. This can be a tedious process for an image with
multiple distortions.

Instead, the reverse of multiresolution strategy and selective
segmentation can be used to identify cracks in an image.
Global image statistics such as average intensity and
variance are calculated first.

The algorithm begins with a window of sufficiently high
resolution. Within this window, it calculates the average
pixel value and the variance measured against the mean of
the entire image. If a weighted sum of these two values is
much different from a similar weighted sum for the entire
image, then the region is marked as a probable hole region.

We know for sure that a hole or crack in an image will show
up if a segmentation algorithm is run over it.

At this stage, it is not known if the window contains a hole
edge or if it is inside the hole. The resolution is now
lowered, so we have a bigger window to look at, and
gradient in both directions is calculated in this expanded
window. A high gradient value indicates the presence of an
edge in this expanded window. A segmentation algorithm is
run for this expanded window. If the gradient values do not
show a value beyond some threshold, then it is an indicator
of the window still being inside the hole or crack, and
further decrease in resolution takes place till we have a
window large enough to give us gradient changes.

Windows in which wall following has already been carried
out are not considered in successive iterations of the
multiresolution algorithm. This avoids repetition. Also, at
the next free location, the window resolution is back to a
high value.

At the end of the process, the wall following data is merged
to get continuous regions which have been marked as
probable holes in the image. The user is returned a set of
regions which he or she can accept or reject for the
automated inpainting procedure to follow.

At present, this method has not been tested and remains a
hypothesis. However, with proper threshold values for the
gradients and with a well considered equation for weighting
pixel intensity variance and the average intensity value, we
should be able to automate inpainting further without

incurring too much of a time lag between giving the image
as input and completing the inpainting or texture synthesis.

5. Future work and applications
Texture synthesis algorithms give excellent results in
replicating patterns occurring in images, but stick to
available data from input textures. Image inpainting makes
use of local neighbourhood information and can produce
pixel values which are not seen in the rest of the image
given the use of isophotes. A natural amalgamation would
be to tie the two together, and use inpainting algorithms
which collaborate with texture synthesis to give improved
restoration results [18].

The texture synthesis application of extrapolating a given
photograph [15] can be used to produce a merging tool for
360 degree photographs which will not require the
photograph frames to be exactly continuous.

Inpainting can be used in conjunction with 3d reconstruction
and shape analysis to build an integrated robot system for
excavation. The role of inpainting could be to fill in texture
into an artifact which has been identified by the shape
analysis, and 3d reconstruction will be given a complete and
continuous textured object image to further process.

Acknowledgements
Dr. Birchfield, for teaching us various aspects of digital
image processing, and briefly introducing us to texture
synthesis after a lecture.

Vikram Iyengar and Brijesh Pillai, my original project group
partners, for our discussion which led to the excavation
application and ultimately to our individual projects.

References
1. Digital inpainting based on the MumfordShah �Euler image
model. (2002)
S. Esedoglu and J. Shen. European J. Appl. Math., (2002)

2. A Multiscale Method for Automated Inpainting (2003)
R.J.Cant and C.S.Langensiepen. ESM2003

3. Image Inpainting Implementation
Sanjay G. Mavinkurve and Elijah M. Alper
http://www.eecs.harvard.edu/~sanjay/inpainting/

4. Image Inpainting (2000)
Marcelo Bertalmio et al. Siggraph 2000, Computer Graphics
Proceedings (417-424)

5. An Image Inpainting Technique based on the Fast Marching
Method.(2004)
A.Telea. Journal of Graphics Tools, vol. 9, no. 1, ACM Press,
2004

6. Fast Digital Image Inpainting (2001)
M. Oliveira, B. Bowen, R. McKenna, and Y. -S. Chang. In Proc.
VIIP 2001, pp. 261�266, [CITY]: [PUB], 2001.

7. Learning How to Inpaint from Global Image Statistics
(2003)
Anat Levin et al. Proceedings of the Ninth IEEE International
Conference on Computer Vision (2003) - Volume 2 Page: 305

8. Image selective smoothing and edge detection by nonlinear
diffusion (1992)
Catte et al. SIAM Journal on Numerical Analysis Volume 29 ,
Issue 1 (February 1992) Pages: 182 - 193

9. An automatic image inpaint tool. (2003)
Timothy K. Shih et al. ACM Multimedia 2003: 102-103

10. Synthesizing Natural Textures (2001)
Ashikhmin, M. 2001 Symposium on Interactive 3D Graphics,
pages 217-226.

11. Fast Texture Transfer (2003)
Ashikhmin, M. IEEE Computer Graphics and Applications
Volume 23 , Issue 4 (July 2003) Pages: 38 - 43

12. Enhanced Texture Editing using Self Similarity
S. Brooks, M. Cardle, and N.A. Dodgson. VVG2003

13. A Non-Hierarchical Procedure for Re-Synthesis of
Complex Textures (2001)
Paul Harrison. {WSCG} 2001 Conference Proceedings

14. Fast Texture Synthesis using Tree-structured Vector
Quantization. (2000)
Wei, L., Levoy, M. SIGGRAPH 2000 pp 479-488.

15. Texture synthesis by non-parametric sampling. (1999)
A. Efros and T. Leung. In International Conference on Computer
Vision, volume 2, pages 1033�8, Sep 1999.

16. Multiresolution sampling procedure for analysis and
synthesis of texture images (1997)
J. S. De Bonet.. In T. Whitted, editor, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 361�368. ACM
SIGGRAPH

17. Growing Fitted Textures (2001)
Gabriele Gorla et al. SIGGRAPH 2001 Conference Abstracts and
Applications, p. 191.

18. GPU Image Inpainting via Texture Synthesis
Hamilton Chong
www.people.fas.harvard.edu/~hchong/goodies/inpaint.pdf

19. Non-Texture Inpainting by Curvature-Driven Diffusions
(CCD) (2000)
Chan, T., Shen, J. UCLA CAM TR 00-35, September 2000.

