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Abstract 
The restoration of digital images can be carried out using 
two salient approaches, image inpainting and constrained 
texture synthesis. Each of these have spawned many 
algorithms to make the process more optimal, automated 
and accurate. This paper gives an overview of the current 
body of work on the subject, and discusses the future trends 
in this relatively new research field.  It also proposes a 
procedure which will further increase the level of 
automation in image restoration, and move it closer to being 
a regular feature in photo-editing software.  
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1. Introduction 
Image restoration or �inpainting� is a practice that predates 
the age of computers. It is a technique used by art museum 
craftsmen to fill in parts of a painting which have decayed 
or been damaged over the course of many years. It is called 
inpainting as a literal terms for the process of painting in 
holes or cracks in an artwork. Digital image restoration has 
received attention over the last few years, because of the 
many applications that is has in image processing, including 
removal of scratches, objects, text or logos from digital 
images, while still retaining the consistency of the image in 
those areas which have been restored or retouched.  

The problem in inpainting is posed as follows: given an area 
to be inpainted, filling in the missing areas or modifying the 
damaged ones in a non-detectable way for an observer not 
familiar with the original images [4]. Texture synthesis 
accepts a given sample texture and creates an output image 
which can have arbitrary dimensions, but which retains the 
texture properties derived from the original sample [15].  

Both these approaches have different direct applications: 
where inpainting is used explicitly for filling holes in an 
image, texture synthesis draws from natural or artificial 
textures to create a textured pattern, which finds extensive 
applications in graphics and 3-D animation [17]. However, 
they are basically methods used to synthesize a pixel given 
some information about another set of pixels. We can think 
of the texture synthesis problem, which requires an input 
texture, as reducing to the inpainting problem if we assume 
that the sample or input texture which it attempts to  

 

 

 

replicate can be found in the same image where the region 
to be synthesized lies.  

Hence we see that, for two dimensional digital images, one 
can use both texture synthesis and inpainting approaches to 
restore the image. This is the motivation behind studying 
work done in these two fields as part of the same paper. The 
two approaches can be collectively referred to as hole filling 
approaches, since they do try and remove unwanted features 
or �holes� in a digital image. 

The common requirement for hole filling algorithms is that 
the region to be filled has to be defined by the user. This is 
because the definition of  a hole or distortion in the image is 
largely perceptual. It is impossible to mathematically define 
what a hole in an image is. A fully automatic hole filling 
tool may not just be unfeasible but also undesirable, because 
in some cases, it is likely to remove features of the image 
which are actually desired. The user should have control 
over the selection of the region, after which the filling is 
entirely automatic across the spectrum of methods to fill 
texture or inpaint.  

Some attempts have been made at automatic hole filling, 
notably ones by Shih et al [9], who use a GUI tool which 
automatically fills an image, but later allows user to undo 
corrections to certain parts of the image. This technique uses 
the power to noise ratio in a pixel window and some global 
image statistics to determine if the inpainting operation 
should be carried out.  I have proposed a method similar to 
theirs in its use of multiple resolution windows to detect a 
hole in the image, but which diverges in the details and 
hands over control of the inpainting to the user before the 
actual inpainting operation is performed by software.  

Thus, this paper collates some of the defining work in 
inpainting and texture synthesis, which is of relevance to 2D 
image restoration, and finally proposes an approach to take 
the process towards more user-friendliness and automation.  

2. Inpainting 
There are two schools of thought on approaching an 
inpainting problem: making use of information about the 
local neighbourhood of a pixel only, and making use of 
global statistics to aid the local statistics.  



2.1. Local inpainting  
Bertalmio et al [4] define the problem of local inpainting as, 
given  a region to be inpainted Ω and its boundary ∂Ω, to 
synthesize pixel values from the boundary inwards, using 
neighbourhood pixel information to continue the inpainting 
process.  

 
Fig 1: Local inpainting [5] 

These methods assume a prior information about the 
probability distribution of the relation between a pixel value 
and its neighbourhood, which will help fill in a pixel lying 
on the hole boundary. Also, other properties such as high 
smoothness, low total variation or low curvature are 
assumed to create the framework on which the actual 
algorithm runs.   

There are two significant approaches to local information 
based hole filling of images: 

• Based on Partial Differential Equations 
• Based on convolution 

2.1.1. PDE based methods 
The seminal work of Bertalmio et al [4] illustrates the PDE 
based method aptly. They provide an elegant mathematical 
treatment of the inpainting problem.   

They define isophotes, or lines of equal gray value, as 
having to propagate inside the image boundary for the part 
of the image to be inpainted. This process is similar to 
estimating the optical flow in the neighbourhood of the 
boundary, and following these lines of flow, or isotopes, to 
the interior of the hole. Smoothness of flow is achieved by 
use of discrete 2D Laplacian, and the variation thus obtained 
is projected into the isophotes direction. 

Authors also utilize anisotropic diffusion every few 
iterations [8] to minimize the effect of noise. Anisotriopic 
diffusion helps connect lines at the boundary of the 
inpainted region. 

Maintaining the isophote direction is a major sub-problem 
for PDE based methods. The Laplacian is used by Bertalmio 
et al. The Curvature-Driven Diffusion (CDD) model takes 

into account geometric information of isophotes when 
defining the �strength� of the diffusion process, thus 
allowing the inpainting to proceed over larger areas. 

PDE based methods are mathematically sound, do not 
require any user intervention, once the region to be 
inpainted has been selected and no assumptions on the 
topology of the region to be inpainted, or on the simplicity 
of the image, are made. 

 
Fig 2: Results from Bertalmio et al [4] 

However, there is a  significant price to pay for these 
advantages [5]. These methods are extremely slow for 
practical applications, practical implementation details are 
not easily available, and require solution of nontrivial 
iterative equations (which also contributes to making them 
computationally expensive, and slowing them down). 

2.1.2. Convolution based methods 
These methods [6] make use of psychological findings that 
the human brain is more sensitive to edge information than 
information which gives details of a texture in the image, 
and reason that  human visual system can tolerate some 
amount of blurring in areas not associated with high contrast 
edges. 

Their second tenet is the use of sampling theorem, which 
imposes a fundamental limit on the quality of the 
information, in our case, scale of the texture, that can be 
restored by any automatic inpainting model. 

These methods use the above principles to come up with a 
simple diffusion algorithm. This algorithm initializes the 
hole to zero colour information, and repeatedly convolves 
the image with a kernel which is rotationally symmetric.  

The positives are that the algorithm is really fast and works 
well for images which do not have many high contrast edges 
or high frequency components (e.g. natural textures). 

 
Fig 3: Results from Oliveira et al [6] 



Since there is no �intelligence� associated with the 
convolution, the algorithm gives poor results at high 
contrast edges. A user defined convolution barrier has to be 
put in place to retain edge information, which reduces the 
degree of automation. Images with large amounts of high 
frequency texture also exhibit errors when the convolution 
algorithm is run over them. 

2.1.3. The FMM (Fast Marching Method)-based 
algorithm 
This algorithm [5] can be looked at as the PDE based 
approach without the computational overheads. It is 
considerably faster than the PDE based algorithms, simple 
to implement, and produces results which are comparable to 
those given by the PDE method. It is also better positioned 
technically than the brute force convolution method. 

The salient features of the algorithm are that an estimator is 
used for image smoothness (simplifies computation of 
flow), and smoothness is estimated as a weighted average 
over a known image neighborhood of the pixel. 

The FMM is responsible for ensuring that the pixels closest 
to the known region get painted first, which is similar to the 
manner in which actual inpainting is carried out. FMM 
maintains a narrow band which separates known pixels from 
unknown, and also specifies which pixel to inpaint next.  

A directional component is used to weight the contribution 
of the pixel closest to target pixel more than those further 
away. 

2.2. Global inpainting 
Inpainting based on global statistics [8] is a fledgling 
concept but worth a mention here because it highlights a 
potential weakness in local inpainting. Local algorithms 
give identical completions when the immediate boundary of 
the hole is identical. Human visual system takes more global 
information into account. Global statistics are similarly 
important in painting restoration. The major drawback with 
respect to this paper is that the algorithm does not perform 
well with natural textures as seen in photographs. 

It captures the �look� of a training image in a probability 
distribution over images, using image histograms. 
Probability of an image is defined by means of a small 
number of sufficient statistics or features, each of which can 
be evaluated at an arbitrary location in the image. 

Optimization is done using loopy Belief Propagation, a 
method used to pick a value from the probability 
distribution of the image given the hole boundary. 

The drawbacks in the current implementation of global 
statistics-based inpainting are that the probability model 
does not capture texture very well, and the optimization 
method yields results which are not as good as expected. 

We now look at the other approach, namely texture 
synthesis. 

3. Texture Synthesis  

3.1. Problem definition 
Efros and Leung [15] have formulated the problem of 
texture synthesis as follows:  

�Let us define texture as some visual pattern on an infinite 
2-D plane which, at some scale, has a stationary 
distribution. Given a finite sample from some texture (an 
image), the goal is to synthesize other samples from the 
same texture. Since a given texture sample could have been 
drawn from an infinite number of different textures, it is 
assumed that the texture sample is large enough to capture 
the stationarity of the texture�. A texture is said to be 
stationary when, if we move a window over an image, 
consecutive windows appear to be the same [14]. 

We are interested in constrained texture synthesis or hole 
filling, in which the synthesized region must look like the 
surrounding texture, and the boundary between the new and 
old regions must be invisible. 

In the problem, there are two major issues which need to be 
addressed: modeling of a texture, and sampling of texture 
from a given probability distribution.  

3.2. Markov Random Field methods 
Most of the texture synthesis methods make use of Markov 
Random Fields to come up with a distribution from where to 
pick the intensity value of a pixel.  

Markov Random Field methods model a texture as a 
realization of a local and stationary random process. That is, 
each pixel of a texture image is characterized by a small set 
of spatially neighboring pixels, and this characterization is 
the same for all pixels. 

Markov random fields define a powerful framework for 
specifying nonlinear interactions between features of the 
same nature or of a different one. They help to combine and 
organize spatial and temporal information by introducing 
strong generic knowledge about the features to be estimated. 

They have been proven to cover a large variety of known 
textures and hence are the most widely used in synthesis. 

Since there is no distinct classification for texture synthesis 
methods, unlike the image inpainting methods, I am 
presenting a summary of some of the widely referenced 
papers in this field. 

3.3.1. Efros and Leung [15] 
The pixels are grown from an initial seed, and they are 
grown pixel by pixel. For evaluating a synthesis metric, a 
neighbourhood around the unknown pixel value is taken, the 
size of which is chosen to correspond to the scale of the 
biggest regular feature expected in image.  



 
Fig 4: Hole-filling results from Efros-Leung [15] 

The Efros-Leung algorithm suffers from the drawback that 
it is slow, can handle only frontal-parallel textures, and 
sometimes gives garbage growth in some image sectors. It is 
also a slow algorithm. 

3.3.2. Wei-Levoy [14] 
The goals of this implementation are to be efficient, general, 
user friendly and able to produce high quality, tileable 
textures. 

It uses multiresolution pyramids, like Gaussian pyramids, 
which  are hierarchy of low-pass filtered versions of the 
original image, such that successive levels correspond to 
lower frequencies.  This use of multiresolution has to do 
with the fact that large scale structures need large pixel 
neighbourhoods to achieve good results in synthesis.  

They also use a technique known as tree structured vector 
quantisation (TSVQ) to speed up the process. TSVQ causes 
blurring of edges, which is an unwanted effect. Performs 
relatively poorly on textures consisting of an arrangement of 
distinct objects of irregular but familiar shapes and sizes. 

3.3.3. Ashikhmin [10] 
Modification of the WL algorithm which performs better on 
this specific type of textures. It is significantly faster than 
the basic or accelerated WL  algorithm even though coding 
complexity is about the same as the basic WL algorithm. 
The patches created by this algorithm have irregular shapes, 
which is useful for a variety of natural textures. 

Another prominent approach is Harrison�s resynthesizer 
[13].  

4. Partial automation of restoration process 
Multiresolution methods have been dealt with in [2] and 
[16] but in different contexts. They are used to improve the 
performance of inpainting and texture synthesis methods. 
The overview of multiresolution is as follows. 

To reduce computational burden, the search for an 
appropriate neighbourhood is begun at a very coarse 
resolution. When a match is found, the set of matched 
windows is subjected to a higher resolution scan and so 
down to the point where we are satisfied with the degree of 
correlation between the unknown pixel�s neighbourhood 
and the matched sets, and can choose the pixel colour value.  

Shih et al [9] have developed an automated image inpaint 
tool. They use the variance of neighbourhood pixels and a 

multiresolution strategy to inpaint. The user has control over 
the process as a reversible  control, in the sense that the user 
gains control to be able to undo changes which the 
automatic tool has already implemented. It uses PSNR as a 
metric in the multiresolution calculations. 

The need for such kind of automation stems from the 
requirement for inpainting to be more accessible to the 
everyday user. As basic requirements, such a tool should be 
as automated as possible. Currently both texture synthesis 
and inpainting approaches to hole filling center around the 
assumption that the area to be filled in is well defined by the 
user. This can be a tedious process for an image with 
multiple distortions.  

Instead, the reverse of multiresolution strategy and selective 
segmentation can be used to identify cracks in an image. 
Global image statistics such as average intensity and 
variance are calculated first. 

The algorithm begins with a window of sufficiently high 
resolution. Within this window, it calculates the  average 
pixel value and the variance measured against the mean of 
the entire image. If a weighted sum of these two values is 
much different from a similar weighted sum for the entire 
image, then the region is marked as a probable hole region.  

We know for sure that a hole or crack in an image will show 
up if a segmentation algorithm is run over it. 

At this stage, it is not known if the window contains a hole 
edge or if it is inside the hole. The resolution is now 
lowered, so we have a bigger window to look at, and 
gradient in both directions is calculated in this expanded 
window. A high gradient value indicates the presence of an 
edge in this expanded window. A segmentation algorithm is 
run for this expanded window. If the gradient values do not 
show a value beyond some threshold, then it is an indicator 
of the window still being inside the hole or crack, and 
further decrease in resolution takes place till we have a 
window large enough to give us gradient changes. 

Windows in which wall following has already been carried 
out are not considered in successive iterations of the 
multiresolution algorithm. This avoids repetition. Also, at 
the next free location, the window resolution is back to a 
high value.  

At the end of the process, the wall following data is merged 
to get continuous regions which have been marked as 
probable holes in the image. The user is returned a set of 
regions which he or she can accept or reject for the 
automated inpainting procedure to follow.  

At present, this method has not been tested and remains a 
hypothesis. However, with proper threshold values for the 
gradients and with a well considered equation for weighting 
pixel intensity variance and the average intensity value, we 
should be able to automate inpainting further without 



incurring too much of a time lag between giving the image 
as input and completing the inpainting or texture synthesis.  

 

5. Future work and applications 
Texture synthesis algorithms give excellent results in 
replicating patterns occurring in images, but stick to 
available data from input textures. Image inpainting makes 
use of local neighbourhood information and can produce 
pixel values which are not seen in the rest of the image 
given the use of isophotes. A natural amalgamation would 
be to tie the two together, and use inpainting algorithms 
which collaborate with texture synthesis to give improved  
restoration  results [18].  

The texture synthesis application of extrapolating a given 
photograph [15] can be used to produce a merging tool for 
360 degree photographs which will not require the 
photograph frames to be exactly continuous. 

Inpainting can be used in conjunction with 3d reconstruction 
and shape analysis to build an integrated robot system for 
excavation. The role of inpainting could be to fill in texture 
into an artifact which has been identified by the shape 
analysis, and 3d reconstruction will be given a complete and 
continuous textured object image to further process. 
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