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Abstract: In the present work, neural network (NN)-based approaches are compared to a potential field approach
for tackling navigation problems of a car-like robot in dynamic environment. Two different approaches are de-
veloped to determine an optimal NN. In the first approach, connecting weights of the NN are tuned by using a
back-propagation (BP) learning algorithm and a systematic study is conducted to obtain optimal number of hid-
den neurons, whereas a genetic algorithm (GA) is used for designing a suitable NN automatically, in the second
approach. Results of the above approaches are compared to those of a potential field method, through computer
simulations, for solving the navigation problems of a car-like robot. The combined GA-NN approach is found to
perform better than both the BPNN approach and potential field approach, for most of the randomly-generated
test scenarios. CPU times of all the approaches have come out to be low and thus, these are suitable for online
implementations.

Keywords: Neural Network, Back-Propagation, Genetic Algorithm, Potential Field Method, Car-Like Robot,
Navigation

List of Symbols

α Momentum constant
η Learning rate
φp j (·) Activation function associated withj th neuron

lying on pth layer
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vi j (t ) Connecting weights betweeni th input neuron

and j th hidden neuron at iterationt
w j k (t ) Connecting weights betweenj th hidden neuron
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1. Introduction

THERE is a growing interest in developing intelligent
systems for mobile robots, to meet their increasing de-

mand in manufacturing units, nuclear power plants, space
applications and others. An intelligent robot should be able
to take the decisions online, as the situation demands. To
ensure this, a robot must be intelligent enough to behave
quickly and flexibly. To meet these requirements, a robot
must have a proper motion planning scheme. Motion plan-
ning of a car-like robot is a complicated task, due to the
fact that its both nonholonomic and dynamic constraints
are to be satisfied during navigation [1]. The problem be-
comes more difficult, when the environment is dynamic.
Both analytical and graph-based techniques had been used
by various investigators [2], to solve navigation problems
of mobile robots. In this connection, the work of Fiorini
and Shiller [3], Wanget al. [4] are important to mention, in
which obstacle avoidance problems of a robot in the pres-
ence of some moving obstacles were tackled. Although po-
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tential field method [5] appears to be the most popular one,
in this context, the performance of this method depends on
the chosen potential functions and it may have the local
minima problem also. Moreover, most of the conventional
motion planning techniques are not suitable for online im-
plementations, due to their inherent computational com-
plexity and limitations. Interested readers may refer to [6]
for a more detailed information. Realizing the fact that it is
difficult to develop an adaptive motion planner of a robot
through explicit design, researchers working in this field of
research started thinking, whether a suitable motion plan-
ner can be evolved by using evolutionary techniques. For
this purpose, the field of evolutionary robotics (ER) [7] has
been emerged as a thrust area in robotic research. Although
ER includes evolution of both fuzzy logic-based and neu-
ral network (NN)-based controllers for solving some real-
world problems, most of the investigators working in this
field of research, concentrate on evolution of feedforward
NNs. This may be due to the fact that NNs exhibit some
important characteristics, such as generalizability, robust-
ness to noise, adaptability and learning capability. For a
proper study of such characteristics, one may refer to [8]–
[10]. Quite a few investigators tried to develop a suitable
robot controller based on NNs. Some of their works are
mentioned below.

Yang and Meng [11] proposed an NN-based approach
for solving navigation problems of a point robot. More-
over, Gu and Hu [12] modeled the kinematics of a car-like
robot by using a three-layered feedforward NN, whose con-
necting weights were optimized by following a steepest de-
scent algorithm. However, the developed NN-model rep-
resenting the nonlinear kinematics of the robot may fail,
when the robot is subjected to some dynamic constraints.
Floreano and Mondada [13], [14] studied the evolution of
an NN-controller by using a genetic algorithm (GA). The
evolution of the controller was carried out on a physical
robot — Khepara. A few more researchers had also at-
tempted to evolve the NN-controllers by using the GAs.
In this connection, work of Miglinoet al. [15], Nolfi and
Parsi [16], Husbandset al. [17], Noguchi and Terao [18]
are important to mention. However, all such methods were
unable to yield the best result, as the architecture of the
NN was not optimized. Moreover, they assumed a two-
layered (consisting of input and output layers) architecture
of the NN, which might not be optimal in any sense. Later
on, Baluja [19], Meeden [20] introduced a hidden layer in
the NN-structure for solving the similar kind of problems.
But, they did not perform the structural optimization of
the NN. Cliff et al. [21], Harvey et al. [10] evolved the
collision-avoidance behavior and Lee [22] evolved behav-
iors of autonomous robot in a pursuit system using a com-
bined NN and a GA. The performances of their methods
widely depend on the selection of fitness function of the
GA. Thus, an improper choice of fitness function may de-
teriorate the proper functioning of the NN. Recently, Prati-
har [23] has carried out a comprehensive review on vari-
ous aspects of evolutionary robotics. More recently, Nel-
sonet al. [24] have used an NN-controller for competitive
game playing with teams of mobile robots. In their ap-
proach, a GA has been utilized to determine the optimal
weights of the NN-controller, while evolving a proper be-

havior —win. Heeroet al. [25] proposed a path selection
mechanism by using an NN. They trained the controller in a
partially-unknown environment, but no attempt was made
to optimize the architecture of the controller. Kondo [26]
suggested a neuro-modulatory NN model, for the devel-
opment of a peg-pushing behavior of a mobile robot. Al-
though they studied the robustness of the network against
the specific environmental perturbations during optimiza-
tion, no attempt was made to evolve the structure of the
NN. Capi and Doya [27] used a parallel GA, to optimize a
recurrent neural controller. In their approach, a sequential
mode of training was considered. Thus, the evolved behav-
ior of the network was far from the true optimal. Hagras
and Sobh [28] explored some important points related to
training of the autonomous agents working in an unstruc-
tured environment. They pointed out that neural controllers
evolved using a GA could perform well for the behavior
control of autonomous robots. Yamada [29] developed an
evolutionary behavior-based learning approach for model-
ing an action-based environment of a mobile robot. In his
approach, self organizing map (SOM) was applied to clas-
sify the training environment without a teacher and opti-
mization of the classified model of training environment
was carried out by using a GA. However, the combined
GA-SOM approach was found to yield solutions, which
were locally tuned and it was seen to be a bit computa-
tionally expensive. Thus, there is a chance of further im-
provement of the NN-based controller.

The design of an NN includes the selection of input-
output parameters of the process to be controlled, number
of hidden layer(s), number of neurons present in the hidden
layer(s) and the connectivity among the neurons of the suc-
cessive layers. The performance of an NN widely depends
on the synaptic weights at different layers and its architec-
ture. Initially, some efforts were made by various inves-
tigators [13], [14], [17], to design a fixed architecture NN.
However, a designer should have a proper knowledge of
the problem, to design a suitable NN-architecture for solv-
ing it. Moreover, a proper learning is required, so that the
controller behaves in an optimal sense. In this context, two
major learning methods, such as supervised and reinforce-
ment learning are available in the literature. In supervised
learning, updating proceeds through a teacher by follow-
ing different learning rules, like Hebbian learning rule [30],
Widrow-Hoff learning rule [31], back-propagation (BP) al-
gorithm [32], and others. The BP algorithm has gained
the maximum popularity, due to its ease of use. But, the
main drawback of supervised learning lies in the fact that
the teacher needs to have enough knowledge of the search
space, which is often difficult to obtain beforehand. To
overcome this problem, Barto and Anandan [33] proposed
an associative reward-penalty learning rule, in which both
the maximization of reward probability and the minimiza-
tion of penalty factors were carried out simultaneously. Be-
ing a reinforcement learning rule, it will not require any
teacher during training.

Besides the overwhelming majority in applications,
there exist quite a few difficulties of both the supervised
and reinforcement learning paradigms, for solving complex
real-world problems. All such problems are explored and
the probable solution methods available in the literature are
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mentioned below.
1. They are all typically the local search algorithms and

achieve the best solution in the region of their start-
ing point. Moreover, obtaining a global solution is of-
ten dependent on a proper choice of initial parameters
and selection of a search technique, like simulated
annealing (SA) [34], genetic programming (GP) [35],
GAs [36], and others.

2. A priori selection of an NN architecture is very much
tedious. It is due to the fact that a large structure
of NN provides better generalizability but learning
becomes insufficient, whereas small structure learns
well but has a less generalizing capability. Moreover,
improper selection of NN structure may lead to either
over training or under training [37]. Yao and Liu [38],
Ritchie et al. [39] used GP for this purpose. How-
ever, the application of GP is restricted due to the
fact that it takes a large amount of time for finding
a solution. GAs have been widely used by various in-
vestigators for developing a suitable architecture of a
fully-connected NN. In this connection, work of Yen
and Lu [40], Takahama and Sakai [41], Sunet al. [42],
Son et al. [43], Kim et al. [44] are worth mention-
ing. Islamet al. [45], Kang and Isik [46] also used
GAs to optimize a partially-connected NN. All these
approaches applied network growing and/or pruning
methods to optimize the structure of NN. In net-
work growing approach, either a single or a group
of hidden neurons are added to the existing network
in successive iterations, whereas the same is deleted
in network pruning approach. As it is very diffi-
cult to arrange the hidden neurons based on their
performance supremacy, a designer is unable to un-
derstand the basis of network growing/pruning tech-
niques for the structural optimization of NNs. Thus,
there is a possibility that the optimized architecture
may contain some inefficient/redundant hidden neu-
rons and/or connectivity.

3. Learning rates and momentum constants must be
guessed heuristically or through systematic tests to
ensure better convergence. To solve this problem,
Castillo et al. [47] utilized a GA to obtain the best
set of learning parameters. Though this combined
GA-BP approach increased the search speed of the
BP algorithm, the local minima problem was still not
absent.

Understanding all such drawbacks of traditional learning
methods and available global search algorithms, Gupta and
Sexton [48], Sexton and Gupta [49] demonstrated that for
a wide variety of complex functions, the GAs are able to
achieve superior solutions for NN optimization, compared
to those obtained by BP algorithm. However, a GA is ba-
sically a fitness function-driven search tool, which is blind
for any other aspect that is not explicitly considered on fit-
ness function. Thus, it may provide an optimal architecture
of NN that is large in size for better generalizability, but
it will extend the training time and increases the computa-
tion. A few investigators have added a network complexity
term also in the fitness function, to penalize a large NN by
loosing some amount of its generalizing capability. Thus,
there is still a need to develop a suitable technique of NN

optimization, which will evolve a proper NN-architecture
having a meaningful generalizing quality in a reasonable
training time. Interested readers may refer to [50], for a
more detailed discussion on GA-based optimization of NN.

An attempt is made in this study, to design and de-
velop an optimal/near-optimal NN-based motion planner,
for solving navigation problems of a car-like robot. Si-
multaneous optimization of both topology and connecting
weights of the NN are carried out offline, by using two dif-
ferent approaches. In Approach 1, a BP learning algorithm
is used to tune the synaptic weights and the hidden neu-
rons are optimized through a systematic study. However,
in Approach 2, a sequential binary-coded GA with uniform
crossover is applied to evolve the optimal controller, auto-
matically. The performances of these two approaches are
tested through computer simulations and their results are
compared with that of a potential field method (i.e., Ap-
proach 3), for solving navigation problems of a car-like
robot in dynamic environment.

The rest of the text is organized as follows: In Section 2,
the problem is stated and a possible solution technique
based on NN is identified. The proposed three approaches
are explained in Section 3. Results of computer simulations
are presented and discussed in Section 4. In Section 5, the
performances of the proposed methods are compared with
those of some other methods used for solving the similar
kind of problems. Finally, some concluding remarks are
made in Section 6 and the scope for future work is indi-
cated in Section 7.

2. Statement of the Problem and a Proposed
Method of Solution

The dynamic motion planning problem of a car-like
robot is tackled in the present study. The problem has been
defined and a feasible method of solution is identified in
this section, as discussed below.

2. 1 Statement of the problem

A car-like robot has to find a collision-free, time-optimal
path, while navigating among a few moving obstacles. It is
to be noted that the obstacles are nothing but the moving
objects (either regular or irregular shaped), whose bound-
aries have been represented by their corresponding bound-
ing circles. Since the environment is dynamic, the robot
has to move quickly, flexibly and cooperatively based on
the collected information of the environment. Moreover,
a car-like vehicle is subjected to both kinematic and dy-
namic constraints, which restrict its motion. Thus, it can
only move backward or forward in a direction tangent to
its trajectory and its turning radius is lower bounded be-
cause of the mathematical limits on the steering angle [51].
Hence, a car-like robot will have to find its collision-free
path during navigation among moving obstacles, that will
not only satisfy the kinematic and dynamic constraints of
the robot, but also the planned path will have to be time-
optimal one. Thus, the present problem can be treated as a
constrained optimization problem. To reduce the complex-
ity of the problem, all the moving obstacles are represented
by their bounding circles and at a time, only one obstacle is
treated to be critical by assuming that there is no overlap-
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Fig. 1 Flowchart of the motion-planning scheme

ping between the two obstacles. Moreover, the wheels of
the robot are considered to move due to pure rolling action
only and back hitting of the robot by the obstacles is ne-
glected, in the present work. It is also to be noted that the
robot’s motion is planned based on the predicted position
(Ppr edi cted ) of the obstacles, which may be determined by
linearly extrapolating from its present (Ppr esent ) and pre-
vious positions (Ppr evi ous) as given below:

Ppr edi cted = Ppr esent + (Ppr esent −Ppr evi ous ). (1)

Our aim is to design a suitable controller of the robot that
can plan and control its collision-free motion, while navi-
gating among some moving obstacles in an optimal/near-
optimal way, online.

2. 2 Motion planning scheme

The developed motion planning scheme of the robot is
explained with the help ofFig. 1. The total path (starting
from a pre-defined position to a fixed goal) of the robot
is assumed to be a collection of some small segments (ei-

ther a straight one or a combination of straight and curved
paths), each of which is traversed during a fixed time∆T .
The critical obstacle is identified by considering the rel-
ative velocity of the robot with respect to the obstacle and
the direction of movement of the obstacle. If the robot finds
any critical obstacle ahead of it, the motion planner is ac-
tivated. Otherwise, the robot moves toward the goal in a
straight path with a maximum possible velocity. The task
of the motion planner is to determine the acceleration (a)
and deviation (θ1) of the robot based on the distance and
angle inputs, to avoid collision with it. If required, the devi-
ation as suggested by the motion planner, is to be corrected
by using a collision-avoidance scheme [51], to ensure the
robot’s path to be completely collision-free. Moreover, if
the robot starts its motion from rest, it may require an ad-
ditional∆T /4 time to align its main axis towards its future
direction of movement. Again, sometimes the robot’s mo-
tion as provided by the motion planner may violate its kine-
matic and/or dynamic constraints. In such a situation, the
robot is stopped for∆T time at the present position itself.
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Fig. 2 A schematic diagram of the neural network structure

Thus, there will be an additional∆T time per such occa-
sion. This process will continue, until the robot reaches
its destination and total traveling timeT is calculated by
adding all intermediate steps taken by the robot to reach
it. It is important to mention that the last time step (Tr em)
may not be a complete one and it depends on the distance
left uncovered (dg oal ) by the robot. If it (i.e., the goal dis-
tancedg oal ) comes out to be less than or equal to a prede-
fined minimum distance (dmi n), it starts decelerating and
stops at the goal. Our aim is to design a suitable adaptive
motion planning algorithm, so that the robot will be able
to reach its destination with the lowest possible traveling
time by avoiding collision with the obstacles. Therefore,
the present problem can be treated as a constrained travel-
ing time (T ) minimization problem as indicated below:

Minimize T =∑
∆T +∑ ∆T

4
+Tr em (2)

subjected to the conditions,
• The path is collision-free,
• No constraint of the robot is violated.
It is important to mention that the minimum traveling

time is possible to achieve, only when the robot traverses
through a straight path with the maximum possible veloc-
ity of it. To ensure this, the present problem is solved indi-
rectly by minimizing the error due to both deviation and ac-
celeration outputs of the controller, simultaneously. Since
the robot’s path is planned based on the predicted position
of the obstacles in the environment, there is a chance that
the robot may collide with the most critical obstacle dur-
ing its movement from the present position to the predicted
position. Hence, a separate collision-avoidance scheme is
developed to tackle such a situation, in which a geometry
correction (in the direction opposite to the movement of
the critical obstacle) is given to the deviation of the robot,
as determined by the motion planner.

2. 3 A possible solution using a neural network (NN)

NN has the capability of solving different complex real-
world problems and it may also provide a feasible solution
to the present problem. The steps involved in designing a
suitable NN-controller are discussed below.

2. 3. 1 Selection of the topology of the NN:Figure 2
shows the architectural graph of a three-layered feedfor-
ward NN with a single hidden layer. For simplicity, the
structure of the NN is considered to be fully-connected,
i.e., a neuron in any layer of the network is connected to
all the neurons of the previous layer. In the first layer, two
neurons representing the two inputs of the controller, such
asdistanceof the robot from its most critical obstacle and
their includedanglewith reference to the goal are consid-
ered, in the present work. There are two neurons at the out-
put layer expressing two different outputs of the controller,
namelydeviationandaccelerationof the robot required to
avoid collisions with the moving obstacles and to reach the
destination in minimum traveling time. The number of hid-
den layer neurons is varied in a reasonable range, to get the
best result from the controller. For ease of implementa-
tion, we have assumed a fixed bias to each neuron of the
architecture. A tangent hyperbolic function is taken as the
activation function of the neurons in the NN-architecture.

2. 3. 2 Optimization of the synaptic weights:The per-
formance of an NN-controller depends on its connecting
(synaptic) weights and biases. Since the input and output
layers contain two neurons each, there exist four connect-
ing weights corresponding to one neuron lying on the hid-
den layer. Thus, forJ number of hidden neurons, there
are4J synaptic weights, as it is a fully-connected network.
These weights are to be optimized to get the best perfor-
mance of the network and while doing that, a proper care
should be taken, so that the weights do not come out of
their ranges.

2. 3. 3 Tuning of the activation functions:The pattern of
the input-output relationship is widely dependent on the
activation functions of different layers. Several functions,
such as linear, hard-limit, sigmoidal, hyperbolic and others
have been used by various investigators [37]. A tangent hy-
perbolic function is utilized in the present study, as shown
below:

φ(Ip j ) = eCp Ip j −e−Cp Ip j

eCp Ip j +e−Cp Ip j
(3)

whereCp is a constant to be optimized to get the better
performance of the controller andIp j denotes the input to
a neuronj lying on thepth layer.

2. 3. 4 Optimization of the NN architecture: Generaliz-
ing power of an NN can be improved by optimizing both
the number of hidden layers and the number of neurons
present in a hidden layer. However, optimizing the number
of hidden neurons is found to be more biologically plausi-
ble and has a greater effect on the performance of NN.

In the present work, an attempt is made to optimize both
the architecture of an NN and its synaptic weights by fol-
lowing two different approaches. In Approach 1, the synap-
tic weights of the network are tuned by using a BP learning
algorithm, whereas in Approach 2, the whole task of de-
signing an NN-controller is given to a GA.

3. Proposed Algorithm

Navigation problem of a car-like robot is solved by us-
ing an NN, for the development of which two different ap-
proaches, namely BPNN approach (i.e., Approach 1) and a
GA-NN approach (i.e., Approach 2) have been developed,
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in this paper. Moreover, the said navigation problem has
also been solved by utilizing a potential field approach (i.e.,
Approach 3). The performances of these three approaches
have been compared, in the present work. All these ap-
proaches are discussed below, in detail.

3. 1 Approach 1: Back-propagation neural network
(BPNN)

The architecture of the NN is shown in Fig. 2. Signal-
flow through the network progresses in the forward direc-
tion (from left to right) following a layer-by-layer basis.
The formulation of this approach is explained below.

3. 1. 1 Layer 1: Two variables, namely distance (i.e.,
I11(t )) and angle (i.e.,I12(t )) are fed as the inputs to the
network and the outputs are calculated as follows:

O1i (t ) =φ1i (I1i (t )+b1i ) (4)

wherei = 1 indicates the distance input and angle input is
represented byi = 2, b1i are the bias values.

3. 1. 2 Layer 2: Let us consider that there exists a total
of J number of hidden neurons at this layer. The input to a
neuronj lying on this layer may be determined as follows:

I2 j (t ) =
2∑

i=1
(O1i (t )×vi j (t )) (5)

wherej = 1,2, · · · , J . Therefore, the output ofj th neuron at
iterationt is calculated as shown below:

O2 j (t ) =φ2 j (I2 j (t )+b2 j ) (6)

whereb2 j are the bias values.

3. 1. 3 Layer 3: The input to a neuronk lying on the third
layer is calculated as follows:

I3k (t ) =
J∑

j=1
(O2 j (t )×w j k (t )) (7)

wherek = 1 represents the deviation output andk = 2 in-
dicates the neuron corresponding to acceleration output.
Hence, the output from this layer is obtained as follows:

O3k (t ) =φ3k (I3k (t )+b3k ) (8)

whereb3k represent the bias values.

3. 1. 4 Backward calculation: During training, the con-
necting weights between the input layer and hidden layer
(i.e.,vi j (t )) and those between the hidden layer and output
layer (i.e.,w j k (t )) are to be tuned to minimize the error
in prediction. A BP algorithm along with a batch mode of
training is followed for minimizing the mean squared error
(MSE). Let us consider that there areM training scenarios
and in a particular scenario (say,mth), the robot takesSm

number of steps to reach the goal, starting from a fixed ini-
tial position. Thus, at a particular time steps for mth train-
ing scenario, half squared error corresponding to a neuron
k lying on the third layer may be calculated as follows:

E ms
3k (t ) = 1

2

[
T ms

3k −Oms
3k (t )

]2 (9)

whereT ms
3k andOms

3k (t ) indicate the target output and cal-
culated output of the controller at a time step s formth

training scenario, respectively. Target output for deviation
is considered to be equal to zero and that for acceleration
is taken as the maximum permissible acceleration of the
robot. The updated weights between the hidden and output
layers are then calculated by using the following expres-
sion:

w j k (t +1) = w j k (t )−η
∂E 3k (t )

∂w j k (t )
+α∆w j k (t −1) (10)

whereη is learning rate andα is usually a positive num-
ber called momentum constant. Now,∂E 3k (t )/∂w j k (t ) is
determined as follows:

∂E 3k (t )

∂w j k (t )
= ∂E 3k (t )

∂E
m
3k (t )

∂E
m
3k (t )

∂E ms
3k (t )

× ∂E ms
3k (t )

∂Oms
3k (t )

∂Oms
3k (t )

∂I ms
3k (t )

∂I ms
3k (t )

∂w j k (t )
(11)

where MSE during training per iteration, i.e.E 3k (t ) may
be obtained as follows:

E 3k (t ) = 1

M

M∑
m=1

E
m
3k (t ) = 1

M

M∑
m=1

1

Sm

Sm∑
s=1

E ms
3k (t )

= 1

M

M∑
m=1

1

2Sm

Sm∑
s=1

[
T ms

3k −Oms
3k (t )

]2 . (12)

To calculate the change invi j (t ) weight (i.e.,∆vi j (t )),
the contributions of both the outputs are to be taken into ac-
count, i.e., errors due to both the outputs are to be combined
together during the BP processing. Thus, it is essential to
find out the effect of individual output in the change in er-
ror and to do so; four possible combinations are to be dealt
with, as discussed below:

• Change in weights due to deviation output, associated
with distance input,

• Change in weights due to acceleration output, associ-
ated with distance input,

• Change in weights due to deviation output, associated
with angle input,

• Change in weights due to acceleration output, associ-
ated with angle input.

Therefore, the weights between input and hidden layers
are updated by using the following expression:

vi j (t +1) = vi j (t )−η
∂E 3(t )

∂vi j (t )
+α∆vi j (t −1) (13)

where
∂E 3(t )

∂vi j (t )
= 1

2

2∑
k=1

∂E 3k (t )

∂vi j (t )
(14)

where

∂E 3k (t )

∂vi j (t )
= ∂E 3k (t )

∂E
m
3k (t )

∂E
m
3k (t )

∂E ms
3k (t )

∂E ms
3k (t )

∂Oms
3k (t )

∂Oms
3k (t )

∂I ms
3k (t )

× ∂I ms
3k (t )

∂Oms
2 j (t )

∂Oms
2 j (t )

∂I ms
2 j (t )

∂I ms
2 j (t )

∂vi j (t )
. (15)

It is important to mention that the bias values of all the
neurons are assumed to be constant throughout the study
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and training is provided for a fixed number of hidden neu-
rons at a time. A set of 200 training data are created at ran-
dom, in which initial position, size, velocity, and direction
of movement of the obstacles are varied. During training,
the learning rateη and momentum constantα are varied
in the range of (0.01, 0.1) and (0.1, 1.0), respectively. BP
algorithm is initiated by randomly generating the weights
in a range of (0, 1) and is terminated when the difference
in error in two successive iterations becomes equal to or
less than a user-specified value of 0.00001. It is important
to mention that there is a chance that the updated weights
may come out of their ranges. In such a situation, those par-
ticular weights are modified by using the expression given
below:

Vi j (t +1) =
1−V 2

i j (t +1)

1+V 2
i j (t +1)

. (16)

3. 2 Approach 2: Genetic-neural (GA-NN) system

Realizing the fact that it is difficult to develop a neu-
ral controller through explicit design, researchers working
in this field started thinking, whether it can be evolved by
using an evolutionary technique. Simultaneous optimiza-
tion of weights and the architecture of an NN is addressed
in this section. To select proper magnitudes of the con-
stant of activation functions (C1,C2,C3) and to optimize
the weights of the network, we need to deal with a few
continuous variables, whereas tuning of the architecture in-
volves the problem dealing with discrete variables. Thus,
the present problem can be treated as a mixed-integer opti-
mization problem, involving both the integer and real vari-
ables. A binary-coded GA with 850-bits long string is used
for this purpose. The first 30 bits will carry information of
three continuous variables —C1,C2,C3 (10 bits for each
variable), representing the constants of hyperbolic func-
tions at three different layers. Out of the remaining 820
bits, every 41 bits (starting from31st bit location of 850-
bits long string) are used to indicate the existence of a hid-
den neuron (1 for presence and 0 for absence) and its cor-
responding four synaptic weights (10 bits for each weight).
Therefore, a GA-string will look as follows:

1 · · ·1︸ ︷︷ ︸
C1

0 · · ·1︸ ︷︷ ︸
C2

1 · · ·0︸ ︷︷ ︸
C3

. . .

. . . 1︸︷︷︸
j th hidden neuron

1 · · ·1︸ ︷︷ ︸
v1 j

0 · · ·1︸ ︷︷ ︸
v2 j

1 · · ·0︸ ︷︷ ︸
w j 1

0 · · ·0︸ ︷︷ ︸
w j 2

. . .

︸ ︷︷ ︸
Architecture of NN

in which 41-bits are shown to indicate the presence
of j th neuron and its connecting weights, such as
v1 j , v2 j , w j 1, w j 2.

It is important to mention that we have restricted our
search up to a maximum of twenty neurons lying in the
hidden layer. During optimization, the constants of activa-
tion function for three layers are varied in a range of (0.1 to
15.0) and the weights are allowed to vary from 0.0 to 1.0.
The ranges of variation of different variables are selected
after a careful study.

Figure 3 shows the working principle of the combined
GA-NN approach. The GA begins its search by randomly
creating a number of solutions (equals to the population

size) represented by the binary strings and each string in-
dicates a typical NN-based controller. A particular NN-
controller differs from other, in terms of the number of
hidden neurons, connecting weights and constants of ac-
tivation function at different layers. Each solution in the
population is then evaluated, to assign a fitness value. Af-
ter the fitness is assigned to each solution in the population,
they are modified by using three operators — reproduction,
uniform crossover and bit-wise mutation. One iteration in-
volving these three operators followed by the fitness eval-
uation, is called a generation. Generations proceed until a
termination criterion is satisfied. In this approach, the GA
is allowed to run for a pre-specified number of generations.
The fitness evaluation criterion, as followed in the present
work, is discussed below.

3. 2. 1 Fitness calculation Navigation problem of a car-
like robot is considered in the present work. It is to be noted
that the same set of 200 training data used in Approach 1,
has also been utilized in Approach 2. For each training sce-
nario, the robot will initiate its motion from a pre-defined
starting position and reaches the goal in 2-D environment,
by avoiding collisions with the obstacles and to complete
the path, it may take several time steps (∆T ). Thus, in each
time step∆T , the NN-controller will have to determine the
two outputs, namelydeviationandacceleration, based on
the two input conditions, such asdistanceandangle. Our
aim is to design the controller, in such a manner that the
robot is able to reach the goal in the lowest possible travel-
ing time, by avoiding collisions with the obstacles and not
violating any constraint. Hence, the present problem can be
treated as a constrained traveling time minimization prob-
lem. The minimum traveling time is possible to achieve,
only when the robot travels with zero deviation and max-
imum acceleration. Therefore, the fitness of a GA-string
(say,n) is considered to be the average of cumulativede-
viationandaccelerationerrors, determined after the whole
training set is passed and it is given as follows:

F i tness = 1

M

M∑
m=1

1

Sm

Sm∑
s=1

2∑
k=1

∣∣T ms
3k −Oms

3k (n)
∣∣ (17)

where all the symbols have their usual meaning as ex-
plained in Section 3.1.

It is important to mention that the error in deviation
could be either positive or negative. Thus, an absolute
value of error is taken for the fitness determination. More-
over, if the output of the controller in the predicted distance
step is such, that the robot may collide with the most criti-
cal obstacle during its movement from the present position
to the predicted position, a fixed penalty equals to 200 (se-
lected at random) is added to the fitness. Again, some-
times the robot’s motion as suggested by the NN-based
controller, is not possible to implement due to its kinematic
and/or dynamic constraints. In such a situation, the robot
is stopped for that particular time step and a fixed penalty
equals to 2000 (selected at random) is added to the fitness,
to avoid such incidences. As there are two inputs of the
NN-architecture and there is some coupling effect among
them, topology of the NN having less than three hidden
neurons may affect its generalizing capability. To avoid
such a situation, another fixed penalty (equals to 2000,
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Fig. 3 A schematic diagram showing the working principle of the genetic-neural system

which is selected at random) is added to the fitness of the
GA.

3. 3 Approach 3: Potential field method

Potential field method is one of the most popular con-
ventional methods for solving the motion-planning prob-
lems of a mobile robot. In this approach, the robot in
the configuration space is represented as a particle under
the influence of an artificial potential field. The poten-
tial field function can be defined over free surface as the
sum of an attractive potential, pulling the robot towards
the goal configuration and a repulsive potential pushing the
robot away from the obstacle. However, the performance
of the potential field method depends on the chosen artifi-
cial potential function. Several potential functions, such as
parabolic-well, conic-well, hyperbolic function, rotational
field function, quadratic, exponential function, are tried by
various investigators [2], [5], out of which, parabolic and
hyperbolic functions are widely used for solving the similar
problem [52], due to their nonlinear approximation capabil-
ity about the system. The attractive potential fieldUat t (X )
can be defined as a parabolic-well as follows:

Uat t (X ) = 1

2
ξat t d 2

g oal (X ) (18)

whereξat t is a positive scaling factor of attractive potential
anddg oal (X ) denotes the Euclidean distance of the robot
from its current position to the goal.

The repulsive potential fieldUr ep (X ) can be expressed
as follows:

Ur ep (X ) = 1

2
ξr ep

[
1

dobs (X )
− 1

dobs (0)

]2

(19)

whereξr ep is a positive scaling factor of repulsive potential
anddobs (X ) indicates the Euclidean distance of the robot
from the obstacle anddobs (0) represents the distance of in-
fluence of the obstacle and is made equal to the distance
between the center of the robot’s bounding circle and that
of the obstacle.

Attractive potential force is then determined by differen-
tiating the attractive potential with respect todg oal (X ), as
given below:

Fat t (X ) = ξat t dg oal (X ). (20)

Figure 4(a) shows a graph of attractive forceFat t (X )
vs. distancedg oal (X ), from which, it can be observed that
when the distance between the robot and its goal becomes
equal to zero, there will not be any attractive force and it
increases in a linear fashion with the increase ofdg oal (X ).
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Fig. 4 Variations of the forces with goal distance and obstacle distance — (a) attractive force vs.
goal distance and (b) repulsive force vs. obstacle distance

The above pattern of the attractive force is chosen after a
careful study, to ensure that the robot reaches the goal with
zero velocity.

Similarly, the repulsive potential forceFr ep (X ) can be
determined as follows:

Fr ep (X ) =−ξr ep
1

d 2
obs (X )

[
1

dobs (X )
− 1

dobs (0)

]
. (21)

A graph of repulsive forceFr ep (X ) vs. obstacle distance
dobs (X ) is shown in Fig. 4(b). From this figure, it is evident
that the obstacles closer to the robot, exert more repulsive
force compared to those which are far away from it. The
resultant potential forceF (X ) is then calculated by adding
Fat t (X ) with Fr ep (X ) vectorially. In this approach, the ac-
celeration output is taken to be proportional to the mag-
nitude of the resultant forceF (X ) and deviation output is
considered as the angle made between the direction of the
resultant potential force and the new reference line joining
the CG of the robot at the present time step and the goal
position.

4. Results and Discussion

The navigation problems of a car-like mobile robot, in
the presence of some moving obstacles, are solved with the
help of an NN-based controller, which is optimized with
the help of a set of training scenarios, to get the best re-
sult. Two different approaches are proposed to optimize
the NN controller. In Approach 1 (i.e., BPNN Approach),
the connecting weights of the network are updated with
the help of a BP algorithm as explained in the Section 3.1,

whereas in Approach 2 (i.e., GA-NN Approach), both the
connecting weights and the architecture of the network are
optimized by using a binary-coded GA. Two hundred train-
ing scenarios are generated at random for the training pur-
pose. A particular training scenario is different from the
other, in terms of the initial position of the obstacles and
their size, speed and direction of movement. The time in-
terval (∆T ) is taken to be equal to sixteen seconds. The
robot is assumed to have a maximum and minimum ac-
celeration of0.05 [m/s2] and0.005 [m/s2], respectively. It
is to be noted that the robot is assumed to be a cube of
63 [mm]×63 [mm]×63 [mm] and the maximum and min-
imum velocities of the robot are considered to be equal to
0.2 [m/sec] and0.02 [m/sec], respectively. Results of com-
puter simulations are presented for three different cases. In
simulations, the radii of the obstacle boundaries are varied
between0.1 [m] to 0.5 [m] and their velocities are assumed
to vary within a range of0.1 [m/sec] to 0.4 [m/sec]. In
Case 1, the robot is allowed to navigate among eight mov-
ing obstacles, whereas more complex environment hav-
ing twelve and sixteen moving obstacles are considered
in Cases 2 and 3, respectively. The performances of Ap-
proach 1 and Approach 2 are compared among themselves
and to that of a potential field method (i.e., Approach 3),
for solving the same problem.

4. 1 Case-1: Navigation among eight moving obstacles

The navigation problem of a car-like robot among eight
moving obstacles is studied in a grid of19.95×19.95 [m2].
In Approach 1, several combinations of learning rate pa-
rameterη and momentum constantα are simulated, to ob-
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Fig. 5 Simulation results to obtain an optimal set of learning rate and momentum constant for eight
obstacles case: (a) error vs. learning rate (η), (b) traveling time vs. learning rate (η), (c) error
vs. momentum constant (α), (d) traveling time vs. momentum constant (α)
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Fig. 6 Results of computer simulations to select the optimal constant value for activation functions
and number of hidden neurons for eight obstacles case: (a) error vs. constant of activation
functions (Cp )), (b) traveling time vs. constant of activation functions (Cp )), (c) error vs.
number of hidden neurons (J), (d) traveling time vs. number of hidden neurons (J)
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serve their effect on the network convergence. When the
momentum constant is made equal to zero, the best con-
vergence is achieved forη = 0.1, whereas the best conver-
gence of the same network is achieved for a combination
of η = 0.04 andα = 0.8. The simulation results to deter-
mine the best combination of learning rate and momentum
constant are shown inFig. 5. It is important to note that
although it is a traveling time minimization problem, it has
been solved indirectly by minimizing the average of devi-
ation and acceleration errors, for ease of implementation.
Both the average error and traveling time have shown the
similar trends with the learning rate and momentum con-
stant, considered separately (refer to Fig. 5). As the per-
formance of a BP learning algorithm depends on the con-
stant of activation functions (Cp ) and a proper choice of
the number of hidden neurons also, experiments are car-
ried out to select the optimal set of those parameters, for
which the best performance of the NN is achieved. The
experimental results for determining the optimal values of
these two parameters of NN (Approach 1 with momen-
tum), during the training are shown inFig. 6. Nature of
variations of the average error and that of traveling time
with number of hidden neurons and constant of activation
functions considered separately, are seen to be dissimilar
at a few points (refer to Fig. 6). It could be due to the
fact that the average error (in normalized scale) is calcu-
lated by giving equal weightage to both deviation and ac-
celeration errors, whereas in practice, deviation error may
have a slightly different effect on traveling time from that
an acceleration error has. Moreover, it is to be noted that
deviation error has been calculated based on the reference
(the line joining the current position of the robot and the
fixed goal), which itself is varying, whereas acceleration
error is determined considering a fixed reference, i.e., the
maximum permissible acceleration. The optimal parame-
ters obtained in this way, are listed inTable 1. The per-
formance of a GA is dependent on its parameter setting,
experiments are carried out with different sets of parame-
ters, to find the most suitable one. Results of the paramet-
ric study are shown inFig. 7. The best results are obtained
with the following GA-parameters: uniform crossover with
probability pc = 0.5, mutation probabilitypm = 0.00084,
population sizeY = 130, maximum number of generation
M axg en = 180. Table 1 shows the optimal numbers of
hidden neuron, activation function constants at different
layers, training accuracy and training time required to con-
verge to an error equal to 0.074456, during optimization.
Moreover, Approach 2 has obtained a less average absolute
error during training as compared to that of Approach 1
(refer to Table 1). It could be due to the fact that a BP al-
gorithm may converge to a local minimum, whereas a GA
may be called a global optimizer. It is to be noted that
in Approach 1, the constants of activation functions of the
different layers are assumed to be the same, to make the
analysis simpler.

The performances of three approaches are studied for
forty test scenarios (selected at random), which are not in-
cluded among the training scenarios. In most of the sce-
narios, traveling time taken by the robot in Approach 2,
comes out to be less than that of other two approaches, as
shown inTable 2. It may be due to the fact that the po-

Table 1 Optimized parameters related to the architecture of NN ob-
tained by two approaches for eight obstacles case — (Case 1)

Approach 1 Approach 2

with without
momentum momentum

Number of 5 5 5
hidden neurons (J)

Constant of
activation function

Layer 1 (C1) 3.5 12 14.479

Layer 2 (C2) 3.5 12 9.964

Layer 3 (C3) 3.5 12 8.582

Training error 0.057553 0.074456 0.006427

Training time (sec.) 8.150 8.710 3.138
required to converge
to an error of 0.74456

Test error 0.070466 0.125490 0.055416

tential field method does not have any in-built optimization
module and as the BP algorithm works based on a steepest
descent method, there is a chance of its solutions for get-
ting stuck at local minima. A particular test scenario (say
4th of Table 2) is shown inFig. 8, where the movements
of both the obstacles and the robot are shown. An inter-
esting fact may be noticed that when the direction of goal
is just opposite to the direction of movement of the most
critical obstacle, the robot by following the potential field
method moves with a very low speed, as a result of which,
the robot takes more time to reach the goal. Thus, the short-
est distance path obtained by potential field method may
not always be the optimal path, in terms of traveling time.
However, the NN-based controllers are seen to tackle such
situations effectively. It may be due to the fact that the NN-
based approaches may have some adaptability.

To check the feasibility of these approaches, for online
implementations, their CPU times are compared. It is to
be noted that experiments are conducted on a Pentium - IV
Intel PC. The CPU times of the BPNN with momentum,
GA-NN approach and potential field method are found to
be 0.015, 0.016 and 0.013 seconds, respectively. Thus, po-
tential field method is seen to be the fastest of all, although
the performance of GA-NN approach is found to be better
than that of others, in terms of traveling time.

4. 2 Case 2: Navigation among twelve moving obstacles

In the present case, a car-like robot is allowed to navigate
among twelve moving obstacles. In Approach 1, the best
network convergence is noticed with the following combi-
nations of learning parameters:η= 0.09 with zero momen-
tum andη = 0.09, α = 0.9. During training using a GA,
the best result is obtained with the following GA param-
eters: pc = 0.5, pm = 0.00028,Y = 50, M axg en = 140.
The optimal number of neurons lying in the hidden layer
and constants of activation functions, for which the best re-
sult is obtained by following the first two approaches are
shown inTable 3. It is to be noted that Approach 2 has
converged to an error value less than that obtained by Ap-
proach 1 during training (refer to Table 3). It could be due
to the fact that the solutions provided by Approach 1 are
locally optimal. It is also to be noted that Approach 2 has
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Fig. 7 Results of the parametric study to obtain the optimal GA-parameters for eight obstacles case:
(a) fitness vs. mutation probability, (b) fitness vs. population size, (c) fitness vs. maximum
no. of generations.

taken less CPU time to converge to a training error equals
to 0.117783, compared to Approach 1.

After the training is over, effectiveness of these two NN-
based approaches is compared to that of the potential field
method, for forty randomly generated test scenarios (refer

to Table 4). The traveling time taken by the robot by fol-
lowing Approach 2, has come out to be less compared to
that of the other approaches, in most of the test scenarios.
This could be due to the fact that both the Approaches 1
and 3 may suffer from local minima problem. A particu-
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(a)

(b)

Fig. 8 Navigation problem of the robot in the presence of eight moving obstacles (Case 1,4th test
scenario of Table 2) — (a) initial position of the robot and obstacles, (b) collision-free paths
obtained by the robot along with its positions using three different approaches

lar test scenario (say,3rd of Table 4) is shown inFig. 9,
in which the complete path of the robot determined by fol-
lowing all the approaches are shown. CPU time values of
all the approaches are found to lie within 0.01 to 0.043 sec-
onds, thus making them suitable for online implementa-

tions.
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(a)

(b)

Fig. 9 Navigation problem of the robot in the presence of twelve moving obstacles (Case 2,3rd test
scenario of Table 4) — (a) initial position of the robot and obstacles, (b) collision-free paths
obtained by the robot using three different approaches

4. 3 Case 3: Navigation among sixteen moving obsta-
cles

A car-like robot will have to find its collision-free, time-
optimal path, while navigating among sixteen moving ob-
stacles. Learning through BP algorithm showed the best

convergence for a learning rate ofη = 0.1 with zero mo-
mentum and for a learning rate ofη= 0.01 with a momen-
tum constant equal to0.2. The following GA-parameters
have provided the best result during training:pc = 0.5,pm

= 0.00068,Y = 120, M axg en = 200. Table 5 shows the

©2004 Cyber Scientific Machine Intelligence & Robotic Control,6(2), 39–59 (2004)



54 N. B. Hui and D. K. Pratihar

Table 2 Comparison of three approaches in terms of traveling time in
seconds — (Case 1)

Approach 1 Approach 2 Approach 3

with without
momentum momentum

1 175.963730 178.164581 159.550446 178.524124

2 142.870316 146.946960 143.863022 146.425659

3 171.570801 205.301224 165.427750 209.450928

4 174.888504 178.143600 173.776031 184.135132

5 157.882721 172.881149 157.953186 178.245010

6 160.797668 181.496536 159.347763 194.534424

7 156.013824 149.744980 148.014725 161.899689

8 164.310211 188.803574 152.000000 189.441681

9 173.727585 179.673218 167.921829 190.962875

10 152.000000 155.528442 157.960449 176.404892

11 141.425659 141.425659 141.425659 141.425659

12 172.516312 241.048401 172.825790 289.274567

13 161.961761 155.759018 156.694977 300.836670

14 145.868912 156.379013 151.969116 162.882812

15 141.425659 141.425659 141.425659 141.425659

16 141.425659 141.425659 141.425659 141.425659

17 178.068741 223.757202 157.646286 236.722610

18 175.333572 187.712997 158.815842 226.126068

19 175.986343 157.300674 152.000000 189.769791

20 149.913300 197.349823 151.946030 223.653763

21 149.601776 156.764252 148.982162 161.598373

22 161.714920 157.345657 151.912170 160.582855

23 191.464325 171.854111 174.333206 176.487411

24 155.882629 168.000000 159.852829 189.633835

25 172.057816 207.908585 144.392242 231.962524

26 176.717545 205.273743 173.620514 204.485992

27 160.284363 162.642044 159.116898 252.080582

28 188.355911 228.945175 180.017624 252.810272

29 162.026566 179.627914 163.034134 188.768692

30 141.425659 141.425659 141.425659 141.425659

31 156.844055 156.941940 153.122543 162.793091

32 164.440552 173.797974 163.181793 188.707077

33 188.885849 197.947662 178.671295 223.671066

34 176.371811 188.577820 183.850067 176.367493

35 183.944870 209.801590 157.915100 223.711395

36 161.968826 162.064590 160.398346 199.937103

37 156.285263 165.808502 162.890671 189.224640

38 157.417282 157.720490 151.991440 163.232864

39 176.236145 236.130905 177.890533 190.068359

40 162.870514 164.450073 160.315414 192.058929

optimal number of hidden neurons and constants of activa-
tion functions, for which the best result is obtained by the
Approaches 1 and 2. During training, Approach 2 is found
to yield the less error compared to Approach 1. More-
over, Approach 2 has shown faster convergence than Ap-
proach 1, during the training. It may be due to the fact that
Approach 1 requires dealing with a large number of pa-

Table 3 Optimized parameters related to the architecture of NN ob-
tained by two approaches for twelve obstacles case — (Case 2)

Approach 1 Approach 2

with without
momentum momentum

Number of 4 5 9
hidden neurons (J)

Constant of
activation function

Layer 1 (C1) 3 10 10.867

Layer 2 (C2) 3 10 11.263

Layer 3 (C3) 3 10 8.499

Training error 0.074412 0.117783 0.009430

Training time (sec.) 1.30 5.20 0.85
required to converge

to an error of 0.117783

Test error 0.091710 0.231172 0.082622

rameters, selection of which plays an important role in the
convergence criterion. As the BP algorithm, which works
based on the steepest descent search, is replaced by a GA-
based search in Approach 2, the chance of its solutions for
getting trapped into the local minima is less.

Traveling time values of three different approaches for
forty test scenarios, created at random, are shown inTa-
ble 6and Approach 2 is found to perform better than other
approaches, in most of the test scenarios. This could be
due to the fact that the solutions provided by both potential
field method and BPNN approach may be locally optimal.
Results of these approaches are shown in detail for a partic-
ular test scenario (say,4th of Table 6) inFig. 10. Although
Approach 3 has generated the shortest path (in terms of dis-
tance), it may not be the time-optimal one. It could be due
to the fact that the potential field method is unable to pro-
vide with a sufficiently large value of acceleration to the
robot. The CPU time values of all the three approaches
are found to be less and thus, these are suitable for online
implementations.

Results of all the three approaches have been compared
to solve navigation problems of a car-like robot in a dy-
namic environment. Although Approach 3 has generated
the shortest distance path in most of the scenarios, its per-
formance in terms of traveling time is seen to be the worst.
It could be due to the following reasons.

• The motion planner based on Approach 3 provides
with low values of both the acceleration and deviation
of the robot, when the most critical obstacle, in the
predicted time step, comes closer to the line joining
the robot and the goal.

• If the direction of movement of the most critical obsta-
cle is almost perpendicular to the line joining the robot
and the goal and the robot tries to deviate towards the
predicted position of the most critical obstacle, a geo-
metric correction is given to ensure a collision-free
movement of the robot. In such a situation, there is
a possibility that the traversed path may unnecessarily
be a lengthy one, which is dependent on the direction
of movement of the most critical obstacle.

• As the attractive potential force is linearly decreas-
ing, when the robot comes closer to the goal (refer
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Table 4 Comparison of three approaches in terms of traveling time in
seconds — (Case 2)

Approach 1 Approach 2 Approach 3

with without
momentum momentum

1 157.892914 284.952362 162.531097 203.579483

2 188.766449 196.521027 188.319489 199.779617

3 165.637451 187.521637 168.000000 173.367035

4 158.485672 184.000000 159.093124 189.957352

5 152.000000 231.757294 146.092575 241.238922

6 143.290436 174.537598 145.361938 162.882874

7 147.606812 179.412582 165.836731 236.976517

8 168.000000 259.632629 162.161011 173.478409

9 211.599670 245.099670 176.199188 175.036514

10 176.307892 165.103409 164.255417 204.778137

11 156.946335 205.076782 161.701904 199.237152

12 200.000000 200.000000 148.192230 161.052414

13 155.809418 295.377991 175.248550 199.831451

14 162.190140 236.847519 165.183197 238.406296

15 146.880386 173.849548 172.342392 199.878616

16 195.865067 183.758224 158.980438 226.737091

17 165.286484 293.490295 162.439362 308.092560

18 157.622467 223.836258 172.057587 237.052505

19 147.918060 174.961060 162.789490 183.599960

20 205.372238 210.784241 147.076416 161.401062

21 159.205566 207.230698 151.928879 253.271362

22 165.622375 195.524353 171.511841 215.655441

23 192.811371 193.002289 147.696457 160.232849

24 178.913452 244.769196 172.018219 252.794327

25 189.892044 171.534317 164.453400 211.038132

26 177.156967 188.773636 157.935944 210.623123

27 155.816284 155.811111 146.721817 162.530411

28 208.934158 220.654816 193.182022 220.655014

29 145.134613 173.446457 151.625595 175.004211

30 168.000000 175.360733 163.161438 175.906174

31 183.998703 164.295731 172.893967 177.974045

32 156.009918 192.230408 155.796539 204.643311

33 191.337112 194.832550 164.078369 199.695084

34 149.125092 168.000000 156.408417 173.168961

35 204.841568 173.776169 188.081970 224.593079

36 216.000000 216.000000 176.623459 199.715302

37 204.750305 223.005646 179.241913 227.459625

38 172.689072 192.667725 168.000000 191.577164

39 211.859238 221.553421 163.993881 221.600525

40 157.869400 157.261429 148.530991 157.709869

to Fig. 4(a)), the motion planner is unable to yield a
higher value of acceleration, irrespective of the obsta-
cle’s position in the environment.

• The performance of Approach 3 depends on the cho-
sen potential function.

• There is a chance of the solutions of potential field
method to get trapped into local minima.

Table 5 Optimized parameters related to the architecture of NN ob-
tained by two approaches for sixteen obstacles case — (Case 3)

Approach 1 Approach 2

with without
momentum momentum

Number of 6 5 8
hidden neurons (J)

Constant of
activation function

Layer 1 (C1) 3.5 9.5 13.823

Layer 2 (C2) 3.5 9.5 11.729

Layer 3 (C3) 3.5 9.5 8.650

Training error 0.093850 0.136371 0.001369

Training time (sec.) 7.160 7.310 4.728
required to converge

to an error of 0.136371

Test error 0.156841 0.220330 0.117518

The effectiveness of the GA-NN approach is found to be
better than that of other approaches. The potential field
method is seen to be the fastest of all the approaches but
it lacks adaptability. On the other hand, both BPNN and
GA-NN approaches are able to provide with more adaptive
solutions compared to those of Approach 3.

5. Comparison of the Developed Approaches with
Some Other Approaches

The prime aim of this research is to design and develop
an adaptive robot controller that can plan and control the
motion of a car-like mobile robot, navigating among sev-
eral moving obstacles. In the past, several attempts were
made by various investigators to develop an adaptive NN-
based controller. Some of these are mentioned below for
the purpose of comparison with the present approaches.

Son et al. [43] used a GA to determine the optimal
number of hidden neurons and the number of epochs up
to which the learning of the network by following the
Levenberg-Marquardt BP algorithm is to be continued. In
the similar manner, Kimet al. [44] applied GAs to obtain
the BPNN’s parameters, such as number of neurons in the
hidden layers, momentum constant, and learning rate. But,
the main drawback of these two approaches lies in the fact
that the actual optimization of the network parameters was
performed with the help of a BP algorithm, which may suf-
fer from so-called local minima problem and thus, resulting
into a slow convergence rate. Sexton and Gupta [49] made
a comparison of the potential of GA with that of the BP
algorithm for NN learning. However, they restricted their
search only with three NN-structures having two, four and
six neurons in the hidden layer, separately. Again, none of
the above mentioned approaches tried to evolve the NN-
controller completely.

Yang and Meng [11] proposed an approach for dynamic
robot motion planning, based on NN. But, their approach
suffers from the following drawbacks. The structure of the
NN was not optimized. Moreover, the performance of the
controller was tested only on a point robot and a manip-
ulator, whereas the motion planning of a car-like robot is
much more difficult, as it is subjected to both nonholo-
nomic and dynamic constraints. Gu and Hu [12] developed
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a path tracking scheme for a car-like robot based on an NN.
However, their model may fail to perform well in a situa-
tion, where the robot is subjected to some dynamic con-
straints, as it was not taken into account in their model.

In the present study, a suitable controller based on a feed-
forward NN is designed to solve navigation problems of
a car-like robot in a dynamic environment. Two separate
approaches based on NN are developed for this purpose.
In Approach 1, connecting weights of a fixed architecture
NN are updated by using a BP learning algorithm and a
parametric study is carried out, to determine the optimal
parameters of the network. In the next approach, both the
topology and connecting weights are evolved by using an
evolutionary technique, such as GA. The main advantage
of this approach lies in the fact that the designer plays a
passive role and the desired behaviors emerge automati-
cally through evolution. It is interesting to note that the
developed NN-based controller is capable of tackling both
kinematic and dynamic constraints of the robot.

6. Concluding Remarks

The approach of evolutionary robotics appears to be
promising for the development of intelligent and au-
tonomous robots. Evolution of a suitable NN-based con-
troller has become a thrust area in robotic research, due
to its important characteristics, such as generalizability,
adaptability and learning capability. The performance of
an NN depends on its both architecture and the free pa-
rameters like, synaptic weights, biases values and others.
Several methods are developed by various investigators to
optimize all such parameters as well as the topology of the
NN, but each of these methods has its inherent limitations
and/or application restrictions.

In the present study, an attempt is made to update the
connecting weights and the structure of the NN by follow-
ing two different approaches. In Approach 1, the weights
are optimized by following a BP algorithm and some ex-
periments are carried out to select the best set of learn-
ing parameters. The optimal values related to the num-
ber of neurons in the hidden layer and the constants of
activation functions are obtained through conducting ex-
periments with different sets of parameters, to get the best
accuracy. In Approach 2, the whole task of designing an
NN, is given to a binary-coded GA. Through search, it has
developed a suitable topology of the network along with
its synaptic weights, due to the interactions between the
robot and its environment. The performances of these two
NN-based approaches are compared to those of a potential
field-based approach (i.e., Approach 3), through computer
simulations.

Once NN-based controller is optimized, it can be used to
solve the navigation problems of a car-like robot. The per-
formance of all the approaches is compared for forty ran-
domly generated test scenarios. In most of the scenarios,
Approach 2 is found to perform better than Approaches 1
and 3. It could be due to the fact that the potential field
method (i.e., Approach 3) does not have any in-built op-
timization module and in Approach 1, optimization of the
NN is carried out by using a BP algorithm, which may have
the local minima problem. The supremacy of Approach 2
over Approach 1 could be due to the fact that a GA has a

Table 6 Comparison of three approaches in terms of traveling time in
seconds — (Case 3)

Approach 1 Approach 2 Approach 3

with without
momentum momentum

1 163.341782 188.071014 171.554153 197.110733

2 161.304855 211.339539 175.014465 177.132309

3 167.997696 196.672714 161.692078 188.237930

4 226.383804 268.111298 189.368195 240.551376

5 178.026932 204.123886 181.034958 226.416428

6 205.177536 268.625305 199.817917 269.983582

7 240.712158 164.335464 157.133667 188.798767

8 148.731491 177.649124 159.946655 173.117950

9 200.165787 231.925690 179.818863 255.768692

10 180.635849 188.171219 175.021042 309.344269

11 178.281082 268.079529 157.933731 222.356277

12 155.678619 164.714600 172.410095 188.612152

13 197.509872 258.555695 205.939774 284.528534

14 196.360428 206.361374 198.719345 331.945282

15 235.943085 161.401688 161.616028 283.958923

16 242.037170 247.981537 208.894714 317.982727

17 234.919418 236.205399 196.219070 261.396179

18 208.846039 221.679184 204.030457 252.236649

19 210.784866 237.188995 172.259628 222.016479

20 211.734558 223.036972 208.850037 235.736603

21 152.000000 149.066010 148.281784 215.753647

22 173.227646 204.195328 163.642578 208.244797

23 212.352478 180.289124 158.908966 191.382004

24 245.694885 340.608582 176.271820 342.417969

25 181.428558 190.504181 167.863159 190.119141

26 165.421600 165.701263 162.287842 183.400391

27 205.916870 222.703369 179.912155 260.493011

28 268.862152 268.775360 200.000000 302.918793

29 152.000000 179.431900 184.000000 206.895340

30 156.217514 204.372940 151.655670 209.636627

31 156.752350 190.393906 159.843781 212.924362

32 188.619858 199.146484 188.056213 204.380264

33 172.829163 237.693588 172.376266 240.304871

34 141.425659 141.425659 141.425659 141.425659

35 190.089096 209.220108 193.235748 255.053772

36 237.669479 190.280869 189.019592 160.811920

37 189.629410 193.022324 167.918121 199.867569

38 195.674774 218.199936 167.896637 204.271500

39 223.440338 179.302765 152.000000 236.599747

40 162.642838 161.155991 155.699799 160.941269

wider search space compared to that of a steepest descent
method.

The entire optimization/evolution of an NN is conducted
offline. Once the best controller is obtained, it is used to
solve the test scenarios. As the values of CPU time of all
the approaches are seen to lie within an acceptable limit,
these algorithms might be suitable for online implementa-
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tions.
It has been observed through computer simulations that

the shortest distance path determined by the potential field
approach might not be always the time-optimal path. On
the other hand, the developed NN-based approaches have
the tendency to find time-optimal, collision-free path of
the robot. Moreover, potential field approach has failed
to yield feasible solutions in a number of occasions but
those have been effectively tackled by using the NN-based
approaches. Thus, NN-approaches are found to be more
adaptive to the environment compared to the potential field
approach.

7. Scope for Future Work

The present work can be extended in a number of ways.
Some of these are mentioned below, on which the authors
are working at present.

• Designing a suitable NN architecture needs to deal
with a number of parameters, selection of which plays
an important role on its effectiveness. An attempt will
be made to model the fuzziness that exists in the NN-
parameters, to get the best accuracy during training.

• The effectiveness of the developed NN controller is
tested on computer simulations. It will be interesting
to download the optimal algorithm on a real robot and
examine its performance.

• In the present work, navigation problems of a single
robot have been tackled, in the presence of some mov-
ing objects. However, it will be more interesting to
replace the moving objects by some mobile robots.
Thus, it will constitute a more complex problem in-
volving coordination, cooperation and communication
of multiple robots navigating in a common dynamic
environment.
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