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Abstract

Neuro-fuzzy approaches are developed, in the present work, to determine time-optimal, collision-free path of a car-like mobile
robot navigating in a dynamic environment. A fuzzy logic controller (FLC) is used to control the robot and the performance of the
FLC is improved by using three different neuro-fuzzy (NN-FLC) approaches. The performances of these neuro-fuzzy approaches
are compared among themselves and with those of three other approaches, such as default behavior, manually-constructed FLC
and potential field method, through computer simulations. The neuro-fuzzy approaches are found to perform better than the other
approaches, in most of the test scenarios. Moreover, the performances of both the genetic algorithm (GA)-optimized NN-FLC
(Mamdani Approach) as well as GA-optimized NN-FLC (Takagi and Sugeno Approach) are seen to be comparable. It is also
interesting to note that the CPU times of all these approaches are found to be low. Thus, they might be suitable for on-line
implementations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Current research in robotics aims to build an autonomous and intelligent robot, which can plan its motion in a dynamic
environment. A successful use of an autonomous mobile robot depends on its controller. The control action of the
manipulator robots (a priori known, carefully engineered and highly predictable workspace) is comparatively easy and
stable too. But, controlling of a car-like robot is difficult, because of the fact that an exact analytical model of such kind of
robots is highly complicated due to its complex geometry. Car-like mobile robots are subjected to non-holonomic (non-
integrable) kinematic constraints involving the time derivatives of configuration variables [21,3,14,8,25] and dynamic
constraints. The path of the robot is also constrained by the partially-unknown movement of the moving obstacles [5],
known as uncluttered environment. Thus, to generate collision-free path of a car-like robot during its navigation among
several moving obstacles, it should have proper motion planning as well as obstacle avoidance schemes [35].
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Nomenclature

�′ deviation of the robot (motion planner’s output)
�, � constants used to define the pattern of membership function distributions
�T time step, seconds
� learning rate
�att positive scaling factor for attractive potential
�rep positive scaling factor for repulsive potential
�f coefficient of sliding friction
�ij membership function distribution of the j th neuron lying in ith layer
�̇ steering angle during turning
� instantaneous radius of curvature of the CG of the robot during turning
	 angle between the x-axis and the main axis of the robot
a tangential acceleration at the present step
a1 tangential acceleration at the predicted step
an normal component of acceleration
Ak area of the kth fired rules
Bsc

ij target output at a distance step s, training case c, of the j th neuron lying in the ith layer
C total number of training cases
dgoal distance between the robot and goal
dmin minimum distance required to reach the goal with zero velocity of the robot
dobs(X) distance function between the robot and obstacles
Ess

ij mean squared error between actual output and target output at a distance step s,
of a training case c, of the j th neuron lying in the ith layer

f total number of fired rules
FR predicted position of the robot
FO predicted position of the most critical obstacle
F(X) potential force function
g acceleration due to gravity
Iij input to the j th neuron lying in ith layer
IR present position of the robot
IO present position of the most critical obstacle
I total number of distance steps
l, m, n, p, k neurons lying at different layers
M mass of the robot
Mk center of area of the kth fired rules
N rotational speed of the motor
Oij output of the j th neuron lying in ith layer’
P power of the motor
r radius of the wheels
R resultant force acting on the robot
Rb normal reaction force
Rn normal centrifugal force
Rt tangential force
T traveling time
Trem time required of the robot to travel the last distance step
U(X) artificial potential energy function

 tangential velocity at each location of the CG
V connecting weight between 1st and 2nd layers
W connecting weight between 4th and 5th layers
WRB relation of body coordinate frame with respect to world coordinate frame
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(x, y) world coordinate frame of reference
(ẋ, ẏ) components of tangential velocity
(X, Y ) body coordinate frame of reference

Abbreviations

AH ahead
AL ahead left
ANFIS adaptive network-based fuzzy inference systems
AR ahead right
BPNN back propagation neural network
CG center of gravity
CPU central processing unit
FLC fuzzy logic controller
FR far
GA genetic algorithm
GR gear ratio
H high
KB knowledge base
L low
LT left
NN neural network
NR near
RT right
VF very far
VH very high
VL very low
VN very near

Both analytical like potential field method [5,6,20] as well as graph-based techniques [32] have been used to solve
the navigation problems of robots involving static obstacles. But, all such methods may not be suitable for on-line
implementations due to their inherent computational complexity and limitations. Recently, Pratihar [33] have made
an extensive survey on the navigational schemes of mobile robots moving among static and/or moving obstacles. In a
partially-unknown environment, motion planning depends on the sensory information of the environment, which might
be associated with imprecision and uncertainty. Thus, to have a suitable motion planning scheme in an uncluttered
environment, the controller of such kind of robots must have to be adaptive in nature.

Soft computing includes fuzzy logic, genetic algorithm, neural network and their different combinations [34,2] and
it can solve such complex real-world problems within a reasonable accuracy. The computational complexity of such
methods is also expected to be low, due to their heuristic nature. Quite a few researchers [10,7,1] have used fuzzy
logic technique based on Zadeh’s fuzzy set theory [44], to develop an alternative controller to the existing highly
complex conventional mathematical controllers. It was found that the fuzzy logic controller (FLC) is robust in presence
of perturbations, easy to design and implement. Moreover, it relaxes the need of an accurate mathematical model of
the system by replacing the mathematical knowledge by human (expert) knowledge and intuitions. Although, human
knowledge-based FLCs can adequately control a given process to a reasonable accuracy, it may not necessarily be the
optimal one. It is also necessary to mention that the process of knowledge acquisition for an FLC is a challenging task.
A systematic approach for determining the knowledge base (consisting of membership function distributions of the
variables, i.e., data base and rule base) of an FLC is yet to be developed.

Several methods had been suggested by various investigators for fuzzy rule generation. In this connection, work of
Takagi and Sugeno [39], Wang and Mendel [42] are worth mentioning. Moreover, Nomura et al. [31] used a gradient
descent method for fuzzy rule generation. More recently, Fukuda et al. [9] used reinforcement-learning technique
for determining a good rule base of an FLC. Moreover, several researchers had attempted the problem of fuzzy rule
generation by using neural networks [30,38,15,13,24,17].
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Since artificial neural networks (ANN) [12] have the ability to learn the situations, many investigators have success-
fully applied the feed-forward neural network [29,43,22] to develop the model related to the navigation problem of a
car-like robot. Abdessemed et al. [1] used fuzzy-Kohonen clustering network (FKCN) in combination with heuristic
rule base of the fuzzy logic controller, to build the desired mapping between the perception of the human knowledge
and the exact motion of the robot. But, the main drawback of neural network lies in the fact that the operations cannot
be stated explicitly. A considerable amount of research is being carried out in Japan, Taiwan, China, Spain and France
[28,23,36,26] on the possibilities of combining these two techniques. In some of the cases, an NN has been utilized to
model the complex non-linear system and a fuzzy logic controller is used for controlling that process. Various kinds of
NNs are tested to extract the rules of fuzzy logic controller. In such cases, two NNs are used [37,11], one for the model
identification or the pattern recognition and the other to extract the rules for the fuzzy logic controller. Until or unless
the knowledge base of the FLC is tuned, the adaptability of the system may not be good enough. Thus, there is a need
for tuning the fuzzy variables, in order to train them to the desired situations.

Navigation problem of a car-like robot is tackled, in the present paper, by using three different neuro-fuzzy approaches.
The performances of these approaches, to generate time-optimal, collision-free path of a robot, are compared among
themselves and with those of other three approaches, namely default behavior, manually-constructed FLC and potential
field method.

The rest of the paper is organized as follows: Section 2 explains the mathematical formulation of the problem and
suggests a possible solution of the problem using an FLC. The developed approaches are described in Section 3.
Simulation results of both the approaches are shown in Section 4. Some concluding remarks are made in Section 5 and
the scope for future work is discussed in Section 6.

2. Mathematical formulation of the problem

A mobile car-like robot has to move from an initial position to a final position by avoiding collisions with a set of
moving obstacles in minimum traveling time, after satisfying the kinematic and dynamic constraints. The robot’s path
is also constrained by the partially-unknown movement of moving obstacles [34]. To generate a collision-free path, the
robot may have to move along a straight path or take a turn depending on the situations. The following assumptions
are made to simplify the problem:
• All the moving obstacles are represented by their respective bounding circles,
• At a time, only one obstacle is considered to be critical and no two obstacles are allowed to overlap,
• The wheels of the robot are subjected to pure rolling action only,
• Non-holonomy and dynamic constraints of the vehicle are considered only,
• Coriolis component of the force is not taken into account.

Fig. 1 shows a typical problem scenario, in which a car-like robot is moving among five moving obstacles, in the same
workspace. The robot has to find its time-optimal and collision-free path. S and G are the starting and goal positions
of the robot, respectively. The relative velocity of the robot plays an important role for determining the most critical
obstacle. The obstacle physically closest to the robot, may not be treated as the most critical one always. If any obstacle
lies within an angle of 120◦ (within ±60◦ from the robot’s main axis and inside the imaginary extended bounding circle
of the robot) and is directed towards the robot, then it might be considered as the critical one. Among all such obstacles
lying within the angle of search, the physically closest one is taken as the most critical obstacle. Thus, although the
obstacle O4 is the physically closest to the robot, it is not being treated as the most critical one. Rather the obstacle O3
is considered to be the critical one, because it lies within the angle of search and is directed towards the robot also. The
radius of the imaginary extended boundary circle of the robot is taken equal to the distance that the robot can travel
in one distance step. The angle of search is decided based on the fundamentals of human vision. Moreover, there is
a possibility that the obstacles may hit the boundary of the environment and in such incidences, they are supposed to
be bouncing back from the boundary by following the laws of reflection. The aim of the present work is to develop a
suitable adaptive and robust controller for the robot.

Two reference frames, namely world coordinate frame {W} and body coordinate frame {B} have been considered for
the purpose of analysis. The origin of the body coordinate frame is fixed at the CG of the robot. These two coordinate
frames are related to each other (refer to Fig. 2(a)) in the following manner.

{X′} = {x} − WRB{X}, where {X} denotes the column vector of the coordinate matrix with respect to the body-
coordinate frame, {x} denotes column vector of the coordinate matrix with respect to the world-coordinate frame and
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Fig. 1. Robot motion among moving obstacles.

WRB is the rotation matrix.
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where {X′} indicates the coordinates of the origin of body-coordinate frame {X} with respect to the world-coordinate
frame {x}.

The turning at a particular time step is obtained in ten steps as shown in Fig. 2(b), to get the accuracy in motion and
at the same time, for easy steering of the robot.

In the next two sub-sections, the kinematic and dynamic constraints of the car-like robot have been explained, in
detail.

2.1. Kinematics of the car-like robot

The car-like robot is modeled as a rigid body, which is moving on a plane surface and is supported by two wheels
making point contact with the ground. A rigid body moving on a plane has only one center of rotation under the perfect
rolling condition, and a wheel must move along the normal direction to its axle. Let us consider that in a particular
small time duration �T , the CG of the robot moves from C to C1 by following the curved path (refer to Fig. 3), with
the tangential velocity � and O is the instantaneous center of rotation.

The configuration of the robot moving on a plane surface at every time instant is defined by a triple (x, y, 	). The
following equations are to be satisfied by the car-like robot:

− ẋ sin 	 + ẏ cos 	 = 0, (1)

(ẋ)2 + (ẏ)2 − (�min�̇)2 �0, (2)

where ẋ and ẏ are the component of tangential velocity along + ve x-axis and + ve y-axis, respectively,
	: Angle between the x-axis and the main axis of the robot,
�: Instantaneous radius of curvature of the CG of the robot during turning,
�: Steering angle during turning,

For any real value of the velocity, � must be real, to get a real curved path.
Thus, �� has to lie within 0◦ and 90◦, i.e., 0◦ < �� < 90◦.
Eqs. (1) and (2) are non-holonomic [21] and 	 can be derived in a unique and straightforward manner from (ẋ, ẏ).
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Fig. 2. (a) A schematic diagram to show the relation between two coordinate frames. (b) Rotation of the robot.

2.2. Dynamics of the car-like robot

The robot is subjected to various dynamic constraints [25,5,6] (i.e., sliding constraint, motor torque constraint,
curvature constraint, etc.). Each constraint can be transformed into the constraints related to the velocity and acceleration
of the robot as explained below:

2.2.1. Sliding constraints
The wheels of the robot should not have any sliding movement, i.e., they have rolling motions only. The forces acting

on the center of gravity (CG) of the robot are as follows:
• Tangential force along the direction t̂ to create tangential acceleration is given by Rt = Mat = Ma, where M is

the mass of the robot, a is the tangential acceleration.
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Fig. 4. Free body diagram of the robot in 3-D space.

• Normal centrifugal force along the normal direction (n̂) to prevent the centripetal action is expressed by Rn =
Man = M(v2/�), where v is the tangential velocity of the robot

• Normal reaction force along b̂ to prevent the gravitational action is given by Rb = Mg, where g is the acceleration
due to gravity.

Resultant force in the plane (t̂ , n̂) (refer to Fig. 4) will be

R =
√

R2
t + R2

n =
√

(M × a)2 +
(

Mv2

�

)2

.

Now, to prevent the slippage during turning, sliding frictional force should be greater than the resultant force of the

tangential force and normal centrifugal force acting in the plane (t̂ , n̂), i.e.,
√

(M × a)2 + (Mv2

� )2 ��f Mg, where �f

is the coefficient of sliding friction.
The expression for acceleration a can be written as

−
√

(�f g)2 +
(

v2

�

)2

�a�

√
(�f g)2 −

(
v2

�

)2

. (3)
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Substituting � = v
�̇ , in Eq. (3), we get

−
√

(�f g)2 − (v�̇)2 �a�
√

(�f g)2 − (v�̇)2. (4)

Now, a will be real only when discriminate of the equation (4) is positive,

i.e., −�f g

�̇
�v�

�f g

�̇
. (5)

Thus, a feasible range of velocity v and acceleration a can be determined to prevent sliding movement.

2.2.2. Motor torque constraint
Each wheel of the robot is driven by an individual motor connected through one gearbox and it rotates along the

normal direction to its axle. DC motors are used to control the wheels. Thus, tangential velocity of the car body is
restricted, due to the motor constraint condition related to angular speed. Let us assume that P is the power of the
motor, Nmax is the maximum rotational speed of the motor in r.p.m, r is the radius of the wheels and GR indicates the
gear ratio. Thus, tangential acceleration may follow the following approximate relation:

a� 60P

2�r × GR × M × Nmax
. (6)

2.2.3. Curvature constraint
The turning movement of the robot is planned along a circular path. The radius of the curvature is lower bounded

by the robot’s geometry. Thus, the tangential velocity of the robot must maintain the equation given below.

v��min�̇, (7)

where �min is the minimum radius of curvature.

2.3. A possible solution of the problem using FLC

The aim of this research is to develop a suitable adaptive controller, which can be implemented on-line. In actual
navigation, information of the input variables collected by using the camera or sensor might be imprecise in nature.
Thus, fuzzy logic controller could be a potential candidate for solving this problem. Two condition variables—distance
and angles are fed as inputs to the controller. Distance (C1O3, refer to Fig. 1) is the Euclidian distance between the
robot and the most critical-obstacle forward to it. Angle (� GC1O3 refer to Fig. 1) is the relative angle between the path
joining the robot and the goal and the path to the nearest obstacle forward. The relative velocity between the robot
and obstacle is not explicitly considered as fuzzy variable. Instead, an incremental approach is adopted to eliminate
its explicit consideration. There are two outputs of the FLC, i.e., action variables, such as deviation and acceleration.
Deviation is the angle through which the robot has to move to avoid the collision and is measured with respect to the
line joining the robot and its goal point. Acceleration is the acceleration with which the robot will move along a distance
step. Two major approaches of developing FLC, namely Mamdani Approach [27] and Takagi and Sugeno Approach
[40], have been tried in the present work.

In Mamdani Approach [27], the condition and action variables of the FLC are expressed in terms of membership
function distributions. Fig. 5 shows the author-defined membership function distributions of both the input as well as
output variables. For simplicity, the shape of the membership function is assumed to be triangular in nature. Four grades
of distance are considered: very near (VN), near (NR), far (FR), very far (VF). The membership function distributions
of both angle and deviation are assumed to be similar and their total range is divided into five terms: left (LT), ahead
left (AL), ahead (AH), ahead right (AR) and right (RT). The range of acceleration is divided into four linguistic terms,
namely very low (VL), low (L), high (H) and very high (VH).

The rule base is set manually based on intuition. With four choices for distance and five choices for angle, there could
be 4 × 5 or 20 possible combinations of two different condition variables. For each of these 20 combinations, there
could be two values of the action variables, one for deviation and another for acceleration. Thus, there is a maximum
of 20 rules present in the rule base. All 20 rules that are used in this study, are shown in Table 1.
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Fig. 5. Membership function distributions for input and output variables of the FLC.

Table 1
Rule base of the FLC for determining deviation and acceleration

             Angle           Angle 

           Deviation      Acceleration 

 LT AL AH AR RT

VN AH AR LT AL AH

NR AH AR RT AL AH

FR AH AH AR AH AH

VF AH AH AL AH AH

 LT AL AH AR RT 

VN H H VH H H 

NR L H VH H L 

FR VL L H L VL 

VF VH VH VH VH VH

D
is

ta
nc

e

D
is

ta
nc

e

A robot uses all these rules during its navigation. The fuzzy rules for determining the acceleration of the robot have
been designed based on the principle that when it finds the most critical obstacle at a distance very far (VF) irrespective
of the angular position of the obstacle, it will try to move faster to cover maximum distance, i.e., with maximum
acceleration and minimum deviation. Moreover when the most critical obstacles is seen to move towards the robot
from a distance very near (VN), the robot will again try to move faster but with greater deviation to avoid collision.
Thus, a typical rule of the FLC (refer to 1st rule of Table 1) will look as follows:

IF distance is VN AND angle is LT, THEN deviation is AH, acceleration is H.
In Takagi and Sugeno Approach [40], the membership function distributions of the input variables have been assumed

to be the same as shown in Fig. 5, whereas the outputs (i.e., consequents) are determined by using the first-order model
(i.e., each output is expressed as a linear function of the input variables). Thus, a particular rule may be expressed like
the following.

IF distance (d) is VN AND angle (	) is LT, THEN deviation = a1d + b1	 + c1, acceleration = a2d + b2	 + c2,

where a1, b1, a2, b2 are the coefficients of the input variables and c1, c2 are the constants.
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The performance of an FLC is influenced by its knowledge base (KB). Thus, it is essential to tune the KB of the
fuzzy logic controller to get a better performance. Since the tuning can be viewed as an optimization process, either a
neural network (NN) or a genetic algorithm (GA) offers a possibility to solve this problem.

To control the robot, an incremental approach is adopted, where the robot’s movement is a collection of small steps
combining both straight as well as curved paths. The axis of the robot, at the starting position, may not be aligned
towards the direction of the goal. Thus, to solve this problem, the wheels are rotated to align the robot’s main axis
towards the goal direction in �T/4 seconds by maintaining all the constraints as discussed in Section 2 and making
the assumption that the CG of the robot does not move forward or backward. The curved path is considered to be a
circular path and its instantaneous radius of curvature is determined using the above-mentioned both kinematics as
well as dynamic constraints. The velocity of the CG of the robot is kept constant during this turning movement. Each
small distance step is traveled during a fixed time interval �T . Fig. 6 shows the velocity and acceleration distributions
of the CG and wheels of the robot. For the first quarter of time cycle (A–B), when the robot starts from the predefined
starting position, it travels with an acceleration (a) and then maintains a constant linear velocity a�T/4 for half of
the time cycle (B–C). At the point (C), the robot determines its path for the next time step, i.e., the robot will find
deviation and acceleration (a1) for the next cycle. If the robot has to change its path in the next distance step, then it
travels with a deceleration (a) for the next 1/8th of cycle time (C–D) and then takes the turn with a constant velocity
for the 1/4th of cycle time (D–F). Otherwise, the robot does not decelerate and continues in the same direction with the
same velocity a �T/4 from point C. During straight movement, the angular speeds of both the wheels are the same but
during the turning movement of the robot, they alter according to the necessary conditions. It is possible to maintain
two different speeds at the two wheels, if and only if individual motor separately controls each wheel. If the robot has
to take a left turn, then the speed of the right wheel must be higher compared to that of the left wheel, and vice versa.
It is important to mention that tangential speed of the CG of the robot is kept fixed, during the turning movement. The
robot is assumed to have acceleration or deceleration lying within a fixed range. The range of the acceleration is set
after a careful study considering the physical dimensions of the robot and its constraints.

2.3.1. Determination of the traveling time
The aim of this work is to generate a time-optimal/near-optimal collision-free path of a robot navigating among

various moving obstacles present in the workspace. At the end of a constant velocity straight travel in a distance step, as
discussed in the velocity diagram (refer to point C of Fig. 6), the robot senses the position of all obstacles and determine
the most critical obstacle based on the distance and relative angle. Acceleration (a1) and deviation of the robot for
the next time step are determined using the motion planner. If the robot needs to deviate from its current direction
of movement in the next step, then it starts decelerating for �T/8 seconds to achieve the turning velocity of the CG
of the robot. Otherwise, it will continue moving in the same direction (following a straight path) with the velocity
(a + a1)�T/8 (the maximum velocity of the robot), where a symbolizes the acceleration of the present step and a1
indicates the acceleration of the next distance step. It is important to mention that when the robot does not find any
change in the direction of movement in two successive distance steps, there is a saving of time by (7a − a1)�T/(32a)

seconds (obtained by a trivial calculation) and the present step acceleration (a1) is assumed to be equal to the previous
step acceleration (a). Continuing in this fashion, when the robot comes closer to its destination and does not find any
critical obstacles ahead of its movement, it starts decelerating from a distance (dmin) of (a + a1)

2�T 2/(128a1), so as
to reach the goal with zero velocity. It is important to mention that the last time step (Trem) may not be a complete one;
it depends on the distance left uncovered (dgoal) by the robot. If distance between the robot and goal (dgoal) comes to
be less than the predefined minimum distance (dmin), then it starts decelerating and stops at the goal. Moreover, at the
start of navigation, the robot’s main axis may not be directed towards the goal, thus, the robot requires an additional
�T/4 seconds time to align it’s main axis towards the goal. Total traveling time (T ) is then calculated by summing up
the time steps needed to reach its predefined destination, starting from a fixed initial position as

T =
∑

�T + �T

4
−

∑ 7a − a1

32a
�T + Trem.

2.3.2. Collision avoidance
The robot’s path is planned based on the predicted positions of the obstacles in the environment. Thus, the predicted

position of the robot at the end of a time step may be absolutely collision-free but it may not be so, during its movement
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Fig. 6. Velocity and acceleration distributions (for taking the left turn) of: (a) CG of the robot; (b) right wheel of the robot; (c) left wheel of
the robot.

from the current position to the predicted position. It depends on the duration of a time step. If the duration is more,
the probability of collision between the planning robot and the moving obstacles inside the distance step is more, and
vice-versa. It is to be noted that the back hitting of the robot by the obstacles is neglected, in the present work. This
critical problem is solved with the help of relative velocity principle. Let us assume that the present and predicted
positions of the robot are IR and FR (refer to Fig. 7) and those for the obstacle are IO and FO , respectively. During
their navigation, it may happen that both the robot and the obstacle have reached the same point (C) at the same instant
of time. Then, there will be a collision between the robot and the obstacle. In that case, one correction is to be made
to the robot’s future direction of movement to avoid the collision, otherwise the robot continues to move with the
same angle as predicted by the motion planner. In Fig. 7, � is the angle made by the direction of movement of the
robot with respect to the x-axis, in the previous step, whereas the angles �′ and �′′ indicate the directions of movement
of the robot with respect to the x-axis, as planned by the motion planner and as corrected by the obstacle avoidance
scheme, respectively. Thus, it can be treated as a traveling time minimization problem, subjected to several kinematic
and dynamic constraints and unknown, uncertain and a little predictable environment.
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Fig. 7. Collision avoidance of the robot.

The objective function can be expressed as follows:

Minimize,

Total traveling time, T =
∑

�T + �T

4
−

∑ 7a − a1

32a
�T + Trem, (8)

Subjected to:
• path is collision-free;
• kinematic and dynamic constraints are not violated.

The developed motion planning scheme of the robot is explained with the help of Figs. 8 and 9 as follows. At the
beginning of navigation, the axis correction module is to be activated, if the robot’s main axis does not coincide with
the goal direction. After that, the robot finds whether there exists any critical obstacle ahead of it, in the predicted
distance step. If it finds any critical obstacle, the motion planner is to be activated. Otherwise, the robot moves with the
maximum possible acceleration and zero deviation in the next step. The outputs of the motion planner are nothing but
the acceleration of the robot and the deviation necessary to avoid collision with the most critical obstacle. Moreover,
if required, the motion planner’s deviation output is to be corrected by using the collision avoidance scheme. If the
robot’s future direction of movement differs from the present one, then all the constraints are to be satisfied. It is to
be noted that if there is no change of direction in two consecutive time steps, there will be a saving in traveling time,
as discussed earlier. This process will continue, until the robot reaches its destination. The total traveling time is then
calculated by summing up all the small time steps.

3. Developed algorithms

Navigation problem of the mobile robot has been solved by using six different approaches. Initially, it has been
tackled by utilizing an approach, which works based on default behavior. A fuzzy logic controller has been designed in
Approach 2, to solve the said problem. Moreover, three neuro-fuzzy approaches (i.e., Approaches 3, 4, 5) and potential
field method (i.e., Approach 6) have been implemented to solve the above problem. All the six approaches are discussed
below, in detail.

3.1. Approach 1: based on default behavior

In this approach, no motion planner is used for the robot. The robot maintains a default rule (i.e., move with the
maximum acceleration and zero deviation) at each time step and the collision between the robot and the most critical
obstacle is avoided with the help of a collision avoidance scheme explained in Section 2.3.2.
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Fig. 8. A schematic diagram showing flowchart of the motion planning scheme.

3.2. Approach 2: manually-constructed fuzzy logic controller (FLC)

A feed-forward NN consisting of five layers is developed, in this approach, to design a fuzzy logic controller. The
schematic diagram of this approach is shown in Fig. 10. The first layer transmits input values to the next layer using
linear transfer function. The next layer is the fuzzification layer, in which the membership function values of the input
variables are determined corresponding to input conditions. The third layer indicates all the possible rules and performs
the logical ‘AND’ operation and the next layer identify all the fired rules. The inputs of the neurons lying on the fifth
layer are calculated by using logical ‘OR’ operation. The fifth or last layer is the de-fuzzification layer, which converts
the fuzzified output to its corresponding crisp value. There are two neurons in the first layer corresponding to two
different input variables of the FLC (distance, angle). In the second layer, corresponding to the distance input, there
exist four different neurons, which represent four different grades of the distance, namely very near (VN), near (NR),
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Fig. 9. A schematic diagram showing Block-A of Fig. 8.

far (FR) and very far (VF). Similarly, corresponding to the angle input, five neurons are considered in the second
layer, which represent the five different grades of the angle input of the FLC. It is important to mention that in both
these two cases, the weights [V ] of the second layer are taken equal to the half base-width of the fuzzy membership
function distributions. Since there are twenty possible rules for these two input variables, twenty different neurons are
considered in the third layer. Every neuron, in this layer, represents a corresponding fuzzy rule. In the fourth layer, nine
neurons are considered, out of which five are used for representing the deviation output and the rest four neurons are
utilized for indicating four different grades of the acceleration output. The connectivity between a neuron lying in the
third layer and a neuron lying in the fourth layer represents the output of a particular rule. In the last layer, there exist
only two neurons representing the two different outputs. The weights between the fourth and fifth layers, i.e., [W ] are
also taken to be equal to the half base-width of the membership function distributions of the output.

The formulation of the developed neuro-fuzzy system is explained layer-by-layer as shown in Fig. 10. The following
notations are used in this system: Iij and Oij represent the input and output, respectively of the j th neuron lying in
ith layer, �ij indicates membership function value of the j th neuron lying in the ith layer. Let us assume that lth, mth,
nth, pth and kth neurons are lying in the first, second, third, fourth and fifth layers, respectively, of the network.

Layer 1. Two variables, namely distance and angle are fed as inputs to the network. The output will be the same as
the input, as a linear transfer function has been considered in this layer.

Layer 2. The inputs of this layer are taken to be equal to the outputs of the first layer. Thereafter, these crisp values of
the inputs are converted into the fuzzy membership function values, with the help of membership function distributions.
For both the inputs, the membership function distributions are taken to be triangular, for simplicity. Fig. 11 shows the
triangular membership function distributions for different grades of input. I2m and O2m denote the input and output,



N.B. Hui et al. / Fuzzy Sets and Systems 157 (2006) 2171 –2204 2185

DISTANCE

ANGLE 

VN 
NR 
FR

VF 

LT

AL 

AH 

AR 

RT 

[V]

DEVIATION 

ACCELERATION 

[W]

LT 

AL 

AH 

AR 

RT 

VL 

L 

H 

VH 

Layer 1 Layer 5 Layer 3 Layer 4 Layer 2 

l m n p k
I1l O1l  [V]  I2m O2m I3n O3n I4p O4p  [W]  I5k O5k

     Layer 1 Layer 2 Layer 3        Layer 4                  Layer 5 
 Linear T.F         Fuzzification      AND Operation         Fuzzy Inference          Defuzzification 

Fig. 10. A schematic diagram of the neuro-fuzzy approach.

respectively, of the mth neuron lying in the 2nd layer. S2m indicates the starting point of the crisp value corresponding
to a membership function distribution of mth neuron lying in the 2nd layer, Vlm represents the link weight between lth
neuron of 1st layer and mth neuron of the 2nd layer. Three different possibilities may occur, for which the input–output
relationships can be expressed as follows.

First possibility: the membership function distribution is a right-angled triangle (representing the left-most triangle
for each variable of Fig. 5), as shown in Fig. 11(a).

O2m = �2m(I2m, S2m, Vlm)

= 1.0, if I2m �S2m;
= (S2m − I2m)

Vlm

+ 1, if 2m�I2m �(S2m + Vlm);
= 0.0, if I2m �(S2m + Vlm). (9)

Second possibility: the membership function distribution is a right-angled triangle (representing the right-most triangle
for each variable of Fig. 5) as shown in Fig. 11(b).

O2m = �2m(I2m, S2m, Vlm)

= 0.0, if I2m �(S2m + �Vlm);
= (I2m − S2m)

Vlm

− �, if (S2m + �Vlm)�I2m �(S2m + (� + 1)Vlm);
= 1.0, if I2m �(S2m + (� + 1)Vlm), (10)
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Fig. 11. Triangular membership function distributions for different grades of input: (a) first grade; (b) last grade; (c) intermediate grades.

Third possibility: the membership function distribution is a triangle as shown in Fig. 11(c).

O2m = �2m(I2m, S2m, Vlm)

= 0.0, if I2m �(S2m + �Vlm) or I2m �(S2m + (� + 2)Vlm);
= (I2m − S2m)

Vlm

− �, if (S2m + �Vlm)�I2m �(S2m + (� + 1)Vlm);

= (S2m − I2m)

Vlm

+ (� + 2), if (S2m + (� + 1)Vlm)�I2m �(S2m + (� + 2)Vlm), (11)

where � and � are two constant quantities that define the pattern of fuzzy membership function distribution for the
inputs. For the distance input, � takes the value of either 0 (i.e., near) or 1 (i.e., far) and � is set equal to 2 (i.e., very
far). Similarly, for the angle input, � varies from 0 to 2 (0 for ahead left, 1 for ahead, 2 for ahead right) and � takes the
value of 3 (i.e., right).

Let us take an example, in which one of the inputs, say distance has come out to be equal to 0.7m. It may be considered
either VN or NR with different membership function values (refer to Fig. 5). Now, we will have to determine those
membership function values. Using equation (9) (corresponding to VN distance), the output of 2nd layer, o2mcan be
obtained as follows:

o2m = 0.1 − 0.7

0.7
+ 1.0 = 1

7
.

Similarly, corresponding to NR distance, o2m can be calculated using Eq. (11) as follows:

o2m = 0.7 − 0.1

0.7
− 0.0 = 6

7
.

Layer 3. This layer performs the task of logical AND operation. Each neuron lying in this layer is connected to two
neurons of the previous layer, as shown in Fig. 10. Membership function values calculated in the previous layer are
considered as the inputs of a particular neuron (say nth) lying in this layer. These two membership function values are
compared and the minimum of these two values is taken as the output of that nth neuron [27].

Layer 4. This layer is the fuzzy inference layer, which identifies the fired rules for a set of inputs.
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Layer 5. The connecting weights between the 4th and 5th layers indicate the membership function distributions of
the output variables. Once the membership function distributions are known, this layer calculates the output of all the
fired rules (in terms of area of membership function distributions). After the outputs of all the fired rules have been
determined, they are superimposed to get the fuzzified output, considering all the fired rules together. As the fuzzified
output (nothing but an area) is not suitable for implementation as a control action, a crisp value corresponding to
this fuzzified output is calculated. This process is known as de-fuzzification. A center of sums method is adopted for
de-fuzzification. The final output O5k of the kth neuron lying in this layer can be expressed as follows.

O5k =
∑f

k=1 AkMk∑f

k=1 Ak

, (12)

where Ak and Mk are the area and center of area, respectively, for kth fired rule and f is the total number of fired rules.
Thus, in the present work, an FLC has been developed based on Mamdani Approach [27].

Let us take an example, in which we will have to determine the outputs (such as deviation and acceleration) of the
FLC, for a set of inputs—distance = 0.05 m and angle = −40.0◦. Let us also assume that the above distance can be
expressed by using only one linguistic term, say VN and the said angle may be called either LT or AL. Under these
circumstances, only two rules will be getting fired as given below.

Rule 1: IF distance is VN AND angle is LT, THEN deviation is AH, acceleration is H,
Rule 2: IF distance is VN AND angle is AL, THEN deviation is AR, acceleration is H.
Let us try to calculate the crisp value of only one output, say deviation, corresponding to the above two fired

rules. We assume that the membership value corresponding to VN distance is coming out to be equal to 1.0 and that
corresponding to LT and AL angle is 1/7 and 6/7, respectively. Thus, the firing strength of Rules 1 and 2 will be equal
to min(1.0, 1/7) = 1/7 and min(1.0, 6/7) = 6/7, respectively, as per Mamdani Approach [27]. Let us also assume
that after considering the connecting weights between Layers 4 and 5, the membership function distributions of the
output—deviation will take the form as shown in Fig. 12. Now, we calculate the area of the fuzzified output (say A1)
corresponding to Rule 1, like the following:

A1 = 1

2
(p1p2 + p3p4) × 1

7
= 1

2

(
2 × 40 × 6

7
+ 2 × 40

)
× 1

7
= 520

49
.

Similarly, the fuzzified output of Rule 2 (i.e., A2) is found to be equal to 1920
49 . Now, we determine the centers (M1

and M2) of the areas—A1 and A2, respectively, which are coming out to be as follows: M1 = 0.0◦ and M2 = 40.0◦.
Thus, the output—deviation can be obtained by using Eq. (12) like the following.

Deviation =

(
520

49
× 0.0

)
+

(
1920

49
× 40.0

)
(

520

49
+ 1920

49

) = 31.475◦.



2188 N.B. Hui et al. / Fuzzy Sets and Systems 157 (2006) 2171 –2204

3.3. Approach 3: neuro-fuzzy approach

The performance of Approach 2 depends on both the rule base as well as database (i.e., [V ] and [W ] values). In the
present approach, a back-propagation algorithm is adopted to find the optimal set of membership function distributions.
During training, the weights between the 1st and 2nd layers, i.e., [V ] and those between the 4th and 5th layers, i.e.,
[W ] are to be updated to reduce the error in prediction. The batch mode of training is used to update the weights.
In robot motion planning, a robot has to follow a few steps of movement consisting of both linear as well as curved
paths, to reach the goal after starting from an initial position. Let us consider that there are C training scenarios and in
a particular training scenario, there is a maximum of J distance steps. In a particular distance step, the mean squared
error is given by Esc

5k = 1
2 (Bsc

5k −Osc
5k)

2, where Osc
5k indicates actual output from the controller at a distance step s of the

cth training scenario and Bsc
5k indicates the target output at a distance step s. The target output has been set as follows.

For acceleration output, the target is kept fixed to the maximum allowable acceleration and for deviation output, it is
the zero deviation with respect to the new reference line joining the present position of the robot and its goal. Then for
the cth training scenario, the average error can be expressed as follows:

Ēc
5k = 1

2J
[(B1c

5k − O1c
5k )

2 + · · · + (Bsc
5k − Osc

5k)
2 + · · · + (BJc

5k − OJc
5k )2]

= 1

2J

J∑
s=1

(Bsc
5k − Osc

5k)
2. (13)

Thus, average error during the training is calculated as follows:

Ē5k = 1

C

C∑
c=1

Ēc
5k = 1

C
[Ē1

5k + Ē2
5k + · · · + Ēc

k + · · · + ĒC
5k]. (14)

Therefore, change in [W ] weights is determined as follows.

�Wpk = −� × �Ē5k

�Wpk

. (15)

Since the inputs of the fifth layer is independent of the [W ] weights at that layer, �Ē5k/�Wpk can be expressed as
follows:

�Ē5k

�Wpk

= �Ē5k

�Ēc
5k

× �Ēc
5k

�Osc
5k

× �Osc
5k

�Wpk

. (16)

The updated weight is then calculated by using the following expression:

Wpk(t + 1) = Wpk(t) − � × �Ē5k

�Wpk

, (17)

where � is the learning rate.
To calculate the change in [V ] weights, the contributions of both the outputs are taken into account, i.e., errors due

to the individual outputs are combined and the average value is considered. Thus, it is essential to find out the effect
of individual output on the change in error and to do so, four possible combinations are to be dealt with, as discussed
below.
• Change in distance weight due to deviation output,
• Change in distance weight due to acceleration output,
• Change in angle weight due to deviation output,
• Change in angle weight due to acceleration output.

Then, the average error after the whole training can be expressed as follows:

¯̄E = 1

2
(Ē51 + Ē52) = 1

2

2∑
k=1

Ē5k. (18)
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The change in [V ] values can be determined as given below.

�Vlm = −� × � ¯̄E
�Vlm

,

where

� ¯̄E
�Vlm

= 1

2

(
�Ē51

�Vlm

+ �Ē52

�Vlm

)
,

where

�Ē5k

�Vlm

= �Ē5k

�Ēc
5k

× �Ēc
5k

�Ēsc
5k

× �Ēsc
5k

�Osc
5k

× �Osc
5k

�Osc
4p

× �Osc
4p

�I sc
4p

× �I sc
4p

�Osc
3n

× �Osc
3n

�I sc
3n

× �I sc
3n

�Osc
2m

× �Osc
2m

�Vlm

,

where k = 1 or 2.
Then the weights [V ] will be updated as per the following expression:

Vlm(t + 1) = Vlm(t) − � × � ¯̄E
�Vlm

, (19)

where � is the learning rate.

3.4. Approach 4: genetic-neuro-fuzzy approach

In the previous approach (i.e., Approach 3), a back-propagation algorithm is used to optimize the membership function
distributions (i.e., the data base) of the FLC. However, the solutions provided by the back-propagation algorithm may
be trapped into the local minima. To overcome this difficulty, the performance of the NN-structured FLC is improved
by using a GA, in the present approach. For this purpose, a binary-coded GA with 60-bits long string (the first 20 bits
indicate the rule base—1 for presence and 0 for absence and 10 bits are utilized to represent the membership function
distributions for each of the four variables) has been used to represent the knowledge base of the FLC. Thus, a particular
GA-string will look as follows.

10 · · · 01 · · · 10︸ ︷︷ ︸
rule base

10 · · · 01︸ ︷︷ ︸
V1

01 · · · 10︸ ︷︷ ︸
V2

10 · · · 10︸ ︷︷ ︸
W1

11 · · · 10︸ ︷︷ ︸
W2

.

The GA begins its search by randomly creating a number of solutions (equals to the population size) represented
in binary-coded strings. Each solution in the population is then evaluated to assign a fitness value. In this study, the
fitness of a GA-string is considered to be the cumulative average of acceleration and deviation error considering all the
training scenarios. Since the objective is to minimize the average error, the GA will find a string that corresponds to the
minimum fitness value. It is important to mention that the error in deviation output may be either positive or negative.
Thus, absolute value of the error has been considered in the fitness calculation. Moreover, if the output of the FLC
in the predicted distance step is such, that the robot may collide with the most critical obstacle during its movement
from the present position to predicted position, a fixed penalty equal to 200 is added to the fitness. Again, sometimes
the motion of the robot as suggested by the FLC, is not possible to implement, due to its kinematic and/or dynamic
constraints. In such a situation, the robot is stopped for that particular time step and a fixed penalty equal to 2000 is
added to the fitness, to avoid such incidences. Therefore, the fitness of a GA-string is calculated as follows:

Fitness = 1

N

N∑
n=1

[
1

U

U∑
u=1

{
2∑

i=1

(Tnui − Onui)

}]
+ Penalty, (20)

where U denotes the total number of completed time steps and N indicates the maximum number of training scenarios.
Tnui and Onui represent the target and calculated outputs of the FLC, respectively.

After each solution in the population is evaluated and fitness is assigned, the population is modified by using three
operators-reproduction, single-point crossover and bit-wise mutation. The tournament selection compares two solutions
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Fig. 13. A schematic diagram of the ANFIS structure.

at a time from the population and chooses the solution having the smaller fitness value. Crossover operator exchanges
bits information between two such strings forming a mating pair and creates two new strings. The mutation operator
alters a string locally to create a new string. After a new population of solutions is created, each of them is evaluated
again to find its fitness value and all three operators are applied again. One iteration of these three operators followed
by the evaluation procedure is called a generation. Generations proceed until a termination criterion is satisfied. In this
study, the GA is allowed to run for a pre-specified number of generations. For a more detailed study of this approach,
interested readers may refer to [16].

3.5. Approach 5: GA-tuned ANFIS

In this approach, a binary-coded GA is used to design an adaptive network-based fuzzy inference system (ANFIS)
[18,19,41] for solving the navigation problems of a car-like robot among several moving obstacles. An ANFIS is a
multilayer feed-forward network, in which each layer performs a particular function. The layers are characterized by
the fuzzy operations they perform. Fig. 13 shows the schematic diagram of the ANFIS structure, which consists of
six layers, such as Layer 1 (Input layer), Layer 2 (condition layer), Layer 3 (rule base layer), Layer 4 (normalization
layer), Layer 5 (consequence layer) and Layer 6 (output layer). The first two layers perform the similar task as done
by Layers 1 and 2 of Approach 2. The functions of rest of the layers are explained below.

Layer 3: Rule base layer.This layer defines the fuzzy rules. Each neuron in this layer represents a fuzzy rule and is
termed as a rule node. The output of every neuron lying in this layer is the multiplication of their two incoming signals.
For example, the output of a neuron, say n lying in this layer can be calculated as follows:

O3n = O2i × O2j , (21)
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where O2i and O2j are the outputs of the neurons i and j lying on Layer 2. It is to be noted that each node output
represents the firing strength of a rule.

Layer 4: Normalization layer. This layer has the same number of nodes as in the previous layer. It calculates the
normalized firing strength of each node, as shown below.

O4p = O3n∑20
n=1 O3n

, (22)

where O4p indicates the output of pth node lying on this layer.
Layer 5: Consequence layer. The output of a particular neuron (say, qth) lying on this layer is determined as given

below.

O5q = O4p(aqI11 + bqI12 + cq), (23)

where I11 and I12 represent the two inputs of Layer 1, namely distance and angle, respectively, and {aq, bq, cq}
represents one set of consequent parameters associated with the qth node.

Layer 6: Output layer. A node (say, r) corresponding to this layer computes the overall output as the sum of all
incoming signals, as indicated below.

O6r =
20∑

q=1

O5q . (24)

It is important to mention that the performance of an ANFIS depends on optimal selection of the consequence
parameters and the premise parameters (i.e., half base-widths of the input membership function distributions). For
this purpose, a binary-coded GA with 610-bits long string is used. The first ten bits (five bits per variable) will carry
information about the half base-widths of the two input variables (i.e., V1 and V2). Out of the remaining 600-bits, every
15-bits are used to represent a set of consequent parameters (i.e., aq, bq, cq ), corresponding to a node lying in the fifth
layer, for a particular output. Thus, a GA-string will look as follows.

1 · · · 0︸ ︷︷ ︸
V1

0 · · · 1︸ ︷︷ ︸
V2

· · · · · · 1 · · · 1︸ ︷︷ ︸
aq

0 · · · 0︸ ︷︷ ︸
bq

1 · · · 0︸ ︷︷ ︸
cq︸ ︷︷ ︸

consequent parameter of qth node

· · · · · ·

The fitness of the GA-string is calculated following Eq. (20) used in Approach 4.

3.6. Approach 6: potential field method

Potential field method is one of the most popular conventional techniques for solving the motion planning problems
of mobile robot [5,32,34,1]. In this approach, the robot in the configuration space is represented as a particle under the
influence of an artificial potential field U . The potential field function can be defined over free surface as the sum of an
attractive potential, pulling the robot towards the goal configuration and a repulsive potential pushing the robot away
from the obstacle [6]. The artificial potential field function defined at the robot position X is of the form,

U(X) = Uatt(X) + Urep(X), (25)

where Uatt(X) is the attractive potential produced by the goal at X and Urep(X) indicates the repulsive potential exerted
by the obstacle at X.

The performance of the potential field method depends on the chosen artificial potential function. Several potential
functions, such as parabolic well, conic well, hyperbolic function, rotational field functions, quadratic potential field
function, exponential potential field function, are tried by various investigators [4]. Parabolic and hyperbolic functions
have been used for attractive and repulsive potential fields, respectively, as those are found to perform in the optimal
sense for solving the similar problem [4]. The attractive potential field Uatt(X) can be defined as a parabolic-well
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Fig. 14. Fatt(X) vs. dgoal(X).

as follows.

Uatt(X) = 1
2 × �att × d2

goal(X), (26)

where �att is a positive scaling factor of attractive potential and dgoal(X) denotes the Euclidean distance of the robot
from its current position to the goal.

The repulsive potential field Urep(X) can be expressed as follows:

Urep(X) = − 1
2 × �rep ×

[
1

dobs(X)
− 1

dobs(0)

]2

, (27)

where �rep is a positive scaling factor of repulsive potential and dobs(X) is the distance of the robot from the obstacle
and dobs(0) is the distance of influence of the obstacle, which is made equal to the center distance between the robot’s
bounding circle to that of the obstacle.

Attractive potential force can be determined by differentiating the attractive potential with respect to dgoal(X), as
given below.

Fatt(X) = �att × dgoal(X). (28)

Fig. 14 shows a graph between attractive force (Fatt(X)) and distance (dgoal(X)), from which, it can be observed that
when the distance between the robot and goal becomes equal to zero, there will not be any attractive force. Moreover,
attractive force increases with the distance dgoal(X) in a linear fashion.

Similarly, the repulsive potential force Frep(X) can be determined as follows:

Frep(X) = �rep × [1/dobs(X) − 1/dobs(0)]
d2

obs(X)
. (29)

A graph between repulsive force (Frep(X)) and obstacle distance (dobs(X)) is shown in Fig. 15, from which, it is
observed that when the robot is far away from the obstacle, the repulsive force will be less and in such a condition, the
robot’s motion will not be affected due to the presence of obstacle, whereas if the obstacle is found nearer to the robot,
it exerts a repulsive force. The magnitude of the repulsive force will increase, as the distance between the robot and
the obstacle decreases. Then, the resultant force F(X) can be calculated by adding Fatt(X) withFrep(X) vectorically.
In this approach, the acceleration output (a) is considered to be proportional to the magnitude of the resultant potential
force F(X) and the deviation output is considered as the angle made between the direction of the resultant potential
force and the new reference line joining the CG of the robot and the goal position of the present distance step.
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4. Results of computer simulation and discussion

The performances of the developed approaches have been compared among themselves as explained below. The
physical parameters of the robot are considered to be as follows:

Size of the robot: 63 mm × 78 mm × 65 mm
Mass of the robot: 0.5 kg
Number of motors: 2
Maximum RPM of the motor: 7200 r.p.m
Power of the motor: 4.55 W
Number of wheels: 2
Diameter and thickness of the wheels: 43 mm
Thickness of the wheels: 7.36 mm
Transmission ratio of the gearbox: 7.5

The cycle time (�T ) is assumed to be equal to 16 s for the computer simulations. The limits of acceleration (a),
velocity (v), steering rate (�) and the minimum radius of curvature (�min) of the robot are set, utilizing the physical
parameters mentioned above and the constraints discussed in the Section 2, which are given below:

�min �0.063 m,

0.005�a�0.05 m/s2,

0.007�v�1 m/s,
−30◦ ��̇�30◦

(30)

In the developed neuro-fuzzy approaches, the FLC is trained off-line, with the help of either a BPNN or a GA, as
explained in the last section. The computer simulation is carried out for four different cases. In the first case, four
moving obstacles are considered, whereas eight, 12 and 16 moving obstacles are taken into consideration in the 2nd,
3rd and 4th cases, respectively. A field of size of 20 m × 20 m is considered in computer simulations. Considering
the physical dimensions of the robot, a hypothetical field of size of 19.95 m × 19.95 m is used to prevent hitting of
the robot with the boundary of the field. For tuning of the FLC, a set of 100 training data is created at random, in
which initial position, size, velocity and direction of movement of the moving obstacles have been varied. With all
such randomly-generated training data, the robot starts moving towards the goal and in a distance step, the amount of
corrections necessary in the weight values are calculated. It is to be noted that a batch mode of training has been adopted
in this paper. After the tuning of the FLC is over, the performances of the FLCs are compared among themselves and
to those of Approaches 1 and 6, in terms of traveling time and their CPU times, for a set of 20 randomly-generated test
scenarios. In the proceeding sub-sections, results of both the training as well as test scenarios are explained in detail,
for all the four cases.
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4.1. Navigation of the robot among 4 moving obstacles

Figs. 16 and 17 show the variation of average deviation error and average acceleration error, respectively with epochs
for four obstacles case, during training using Approach 3. Both the deviation error as well as acceleration error are
found to decrease with the epochs. The average deviation error reduces continuously, whereas the acceleration error
becomes saturated after a particular epoch. This is because of the fact that for acceleration output, the target value is
considered to be the maximum acceleration (a fixed value) and once this value has been reached, a further improvement
is not possible. The variation of average traveling time is shown in Fig. 18, epoch-wise. The average traveling time is
found to be minimum (147.578873 s) at 21st epoch and corresponding to this epoch, the set of updated weight values
are considered to be the near-optimal one. The slight fluctuation of average traveling time may be due to the fact that the
deviation is a relative quantity and each time it is measured with respect to a new moving reference line, but not a fixed
one. It is important to note that average traveling time depends on both average acceleration error as well as deviation
error (which is calculated based on a moving reference line). The average traveling time is found to be minimum at
21st epoch, although average deviation error is found not to be the least at that epoch. On the other hand, the average
deviation error is seen to be the least at 50th epoch but at this epoch, the traveling time is not found to be the minimum.
It happens due to the moving reference line used for calculating the average deviation error. To investigate the nature of
randomly-generated 100 training scenarios, the minimum, maximum and mean values of traveling time are recorded,
at a particular epoch (say, 20th) and those are found to be equal to 134.9257, 164.89358 and 147.90962 s, respectively.
Thus, the standard deviation of traveling time for 100 training scenarios is seen to be equal to 20.348728 s. It indicates
that the training scenarios, selected at random, are widely distributed.

In approaches 4 and 5, a GA has been used to improve the performance of the FLC designed based on the Mamdani
Approach and Takagi and Sugeno Approach, respectively. As the performance of a GA depends on its parameters, a
detailed study is carried out separately for the above approaches. In Approach 4, the best performance is found with
the following GA-parameters: crossover probability = 0.74, Mutation probability = 0.008, population size = 60,
maximum number of generations = 90. On the other hand, in Approach 5, the GA shows the best performance with
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Fig. 16. Average deviation error vs. generation no. (4 obstacles case).
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the parameters as follows: crossover probability = 0.76, Mutation probability = 0.001, population size = 180,
maximum number of generations = 190.

The performances of Approaches 1, 2, 3, 4, 5 and 6 are compared among themselves in terms of traveling time and
CPU time, for 20 randomly-generated test scenarios. Fig. 19 shows a plot of traveling time obtained using all the above
approaches for 20 test scenarios. The traveling time taken by the robot in Approach 1 is found to be the worst and the
robot could not reach the goal in 14th scenario. It may be due to the fact that there is no motion planner in this approach.
Thus, Approach 1 is unable to provide feasible solutions in some of the scenarios, particularly when the robot faces any
critical obstacle ahead of it. It is also to be noted that the performance of Approach 2 is found to be worse compared to
that of the Approaches 3, 4, 5 and 6, in most of the test scenarios. It could be due to the fact that the manually-constructed
FLC used in Approach 2 is not optimal in any sense. Moreover, in most of the cases, the time taken by the robot using
different neuro-fuzzy approaches (i.e., Approaches 3, 4, 5) is found to be less compared to that of Approach 6. This
may be due to the fact that the performance of Approach 6 deteriorates, when the robot comes closer to the goal, and
if a particular obstacle is treated as the critical one in two consecutive distance steps. Again, when the robot faces any
obstacle just ahead of it, in Approach 6, it is not changing its direction but reduces the acceleration to a great extent and
thus increases the traveling time. Even in such scenarios, it may so happen that the robot is getting zero deviation and
zero acceleration (i.e., dead-lock situation). In some of the scenarios, the traveling time values are found to be the same
in all the approaches. This may be due to the fact that the robot has not faced any critical obstacle ahead, in any of the
distance steps. Approach 4 is found to perform better than Approach 3 in almost all the test scenarios. It could be due to
the reason that the gradient-based optimization used in Approach 3 has been replaced by a GA-based optimization in
Approach 4. As GA is a population-based search and optimization tool, the chance of its solutions for getting trapped
into the local minima is less. Moreover, the performances of Approaches 4 and 5 are found to be comparable. However,
Approach 5 has shown a slightly better performance compared to Approach 4. Mean and standard deviation values of
traveling time taken by the robot over twenty test scenarios have been calculated and those are found to be equal to
(193.015 and 71.205), (165.206 and 39.056), (143.391 and 15.271), (141.113 and 12.412), (140.605 and 13.586) and
(145.799 and 16.191) seconds for the Approaches 1, 2, 3, 4, 5 and 6, respectively. Thus, the best and worst performance
is recorded by Approaches 5 and 1, respectively. Moreover, Approaches 3–5 have outperformed Approaches 1 and 2
in most of the scenarios. It indicates that a fuzzy logic-based motion planner with an optimal knowledge base might
be required to tackle the above problem.

A particular test scenario (say, 7th) is shown in Fig. 20, where the movements of both the robot as well as obstacles
are shown. It is to be noted that the chances of collision might be more, when the robot moves with a fixed acceleration
in every time step. Thus, the robot in Approach 1 is stopped at a particular position for 2nd to 12th time steps. Moreover,
it is noticed that the robot gets less acceleration in Approach 6 (which depends on the nature of potential function),
compared to that in Approaches 3–5, when it reaches near to the goal. It is also interesting to note that Approach 5
has identified a time-optimal, collision-free path lying on a separate route compared to that of the other approaches.
It could be due to the reasons that the way the rules are represented in Approach 5 is different from the way it is done
in Approaches 3 and 4. In this case involving four moving obstacles, CPU time values for Approaches 2, 3, 4, 5 and 6
are found to be equal to 0.0064, 0.0065, 0.002, 0.006 and 0.0006 seconds, respectively.
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Fig. 21. Traveling time for 8 obstacles case.

4.2. Navigation of the robot among eight moving obstacles

The planning robot tries to find its collision-free path while navigating among eight moving obstacles. The trends
of variation of average deviation error and average acceleration error with the epochs are found to be similar to those
of four obstacles case. Traveling time values for 20 different test scenarios obtained using the Approaches 1, 2, 3, 4,
5 and 6 are shown in Fig. 21. Table 2 shows the mean and standard deviation values of traveling time calculated over
20 test scenarios, each involving eight moving obstacles. Performances of both the Approaches 1 and 2 are found to
be worse compared to those of other approaches, in most of the test scenarios and Approaches 3, 4 and 5 are found
to perform better than Approach 6. Moreover, both Approaches 4 and 5 have yielded slightly better results compared
to those obtained by Approach 3, and Approach 5 is seen to perform slightly better than Approach 4. Approach 1 is
found to fail in three scenarios (out of twenty), in which the robot could not reach the goal in pre-specified twenty time
steps. Results of a particular test scenario (say, 4th) are shown in Fig. 22. It is observed that at the 2nd step, the robot
considers 1st obstacle to be critical, which is just ahead of itself. Thus, the robot takes left turn in Approaches 2, 3,
4; right turn in Approach 5, but in Approach 6, it moves almost straight with a small acceleration, which forces it to
move slowly. Thus, it takes more time to reach the goal in Approach 6. Moreover, in Approach 1, the robot is unable
to reach its goal in twenty time steps and it is found to be stationary during the 2nd to 6th, 9th to 11th and 13th to 19th
time steps. The CPU time values of Approaches 2, 3, 4, 5 and 6 are seen to be equal to 0.0070, 0.0071, 0.0045, 0.0060
and 0.0017 s, respectively.

4.3. Navigation of the robot among 12 moving obstacles

Twelve obstacles are moving in a 2D plane and the robot will have to find its collision-free, time-optimal path
starting from an initial position to reach a fixed destination. After the training of the neuro-fuzzy approaches is over,
the performances of all the approaches are compared for twenty randomly-generated test scenarios. It is noticed that
the performances of all the optimized FLC-based approaches (i.e., Approaches 3, 4, 5) are better than that of the other
approaches (i.e., Approaches 1, 2, 6, refer to Fig. 23). The similar observations have also been made from Table 2.
It is to be noted that Approach 1 is found to fail to reach the goal in seven scenarios out of a total of twenty, in this case.
It is also interesting to note that Approach 4 has shown a slightly better performance compared to that of Approach
5. The complete paths of the robot obtained by using all these approaches, for a particular test scenario (say, 3rd), are
shown in Fig. 24. The robot in Approach 1, is seen to move up to the point (18.369, 18.369), instead of reaching the
goal, in twenty time steps. The CPU times of all these approaches are also determined and those are found to be equal
to 0.0075, 0.0081, 0.0091, 0.0070 and 0.0018 s for the Approaches 2, 3, 4, 5 and 6, respectively.
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Table 2
Mean and standard deviation of traveling time (s) values for different obstacles cases

Obs. case Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

8 206.432 80.654 174.652 42.518 148.936 18.932 147.047 16.765 145.598 16.017 159.328 26.249
12 242.688 58.168 197.122 28.676 174.915 24.173 166.259 22.706 169.275 29.027 183.615 25.849
16 249.029 68.089 190.951 26.656 179.178 21.865 171.861 21.835 171.016 21.520 182.328 35.047
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Fig. 24. Movement of the robot among 12 obstacles.

4.4. Navigation of the robot among 16 moving obstacles

Collision-free, time-optimal path generation problems of a car-like robot moving among sixteen obstacles have been
considered in this case. Traveling time values of the robot obtained by using six different approaches, for solving twenty
randomly-generated test scenarios, are shown in Fig. 25. It is noticed that in most of the test scenarios, the GA-based
neuro-fuzzy approaches (i.e., Approaches 4 and 5) perform better than the Approaches 1, 2, 3 and 6. The similar
information has been obtained from Table 2 also. In nine different scenarios, the robot is found not to be reaching the
goal point. A typical test scenario (say, 4th) is shown in Fig. 26, in which the robot’s path obtained by using all the
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Fig. 25. Traveling time for 16 obstacles case.
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approaches and the obstacles’ movements are shown. It is important to note that in Approach 1, the robot is forced to
be stationary during the 2nd to 5th and 10th to 13th time steps. The CPU time values of the Approaches 2, 3, 4, 5 and
6 are found to be equal to 0.0083, 0.0090, 0.0098, 0.0086 and 0.0029 s, respectively.

In the present work, navigation schemes of a car-like robot have been developed based on a few important assumptions,
one of which is such that only one obstacle is considered to be critical in a time step and no two obstacles are allowed to
overlap. Moreover, time step is assumed to be a fixed quantity, whereas the distance traversed by the robot in a time step
may vary depending on its acceleration. In Approach 1, since the robot moves with the maximum possible acceleration,
it will reach its hypothetical boundary in every time step. Under these circumstances, the robot might have to face a
number of critical obstacles in a particular time step, and finding a collision-free path could be difficult in Approach
1, as there is no motion planning scheme (due to which the distance steps could be different in different time steps)
but a collision-avoidance scheme only. As a result, the robot may not be able to find collision-free path in a number of
consecutive time steps and will be stopped at that position. Therefore, the robot in Approach 1 is unable to reach its
goal within the pre-specified maximum number of time steps and the number of such incidences is found to increase
with the scenarios involving more number of moving obstacles. Thus, the motion planning schemes, particularly
those developed based on the neuro-fuzzy approaches, might be necessary for solving the navigation problems of
a robot.

4.5. CPU time comparison

The CPU time values for all the four above-mentioned cases, as obtained by using Approaches 2, 3, 4, 5 and 6,
are noted and the best-fit line is drawn for each approach based on the least square error method (refer to Fig. 27).
It is important to mention that the experiments are conducted on a Pentium - IV PC. The potential field method is
found to be the fastest of all. However, the slope of the best-fit line for Approach 4 has appeared to be a slightly
higher compared to that of the other three approaches. It indicates that with an increase in environmental complex-
ity, computational complexity of Approach 4 will increase at a faster rate than that of the other three approaches.
However, Approach 4 is found to be faster than Approach 5, for particularly the cases involving the less number of
obstacles.

4.6. Comparison of the present work with others work

In this work, some neuro-fuzzy systems have been developed to fine tune the performance of an FLC and their
performances are tested for solving navigation problems of a car-like mobile robot. Fraichard et al. [7] successfully
developed a fuzzy control mechanism known as execution monitor (EM), for a car-like vehicle. They had implemented
and tested their approach, on a real computer-controlled car. But, they did not use the optimized FLC. Marichal et al.
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[28] proposed a neuro-fuzzy approach to guide a mobile robot. They considered the least mean squared algorithm
for the learning purposes and Kohonen’s self-organizing feature map algorithm had been applied to obtain the ini-
tial number of fuzzy rules and membership function centers. But, in their approach, they did not optimize the trav-
eling time. Moreover, they considered only two kinds of static obstacles (rectangular and corner shaped), but not
the moving obstacles. Li et al. [24] developed a neuro-fuzzy system architecture for behavior-based control of a
mobile robot. In their approach, an NN was used to understand the environments and behavior fusion was done
by a fuzzy logic algorithm. But, the performance of their technique was tested for static obstacles only. Song and
Sheen [36] suggested a heuristic fuzzy-neuro network for pattern mapping between quantized sensory data and
velocity commands of a mobile robot. In their approach, fuzzy Kohonen clustering network was used to build
the desired mapping between perception and motion of the robot. But, the developed method might not give the
time-optimal path of the robot. In the present work, some neuro-fuzzy approaches have been developed, to gener-
ate time-optimal, collision-free path of a car-like mobile robot while navigating in the presence of some moving
obstacles.

5. Concluding remarks

In order to navigate a car-like robot, in a dynamic environment (among moving obstacles), a time-optimal (at
least near-optimal), collision-free path is to be determined on-line, after satisfying both the static as well as dynamic
constraints. Six different approaches, namely Approach 1 (default behavior), Approach 2 (manually-constructed FLC),
Approach 3 (NN-tuned FLC), Approach 4 (GANNFLC), Approach 5 (GA-tuned ANFIS) and Approach 6 (conventional
potential field method) have been developed to solve the above problem. In Approaches 2, 3 and 4, a Mamdani type
fuzzy logic controller is developed and the FLC in Approaches 3 and 4 have been optimized using a back-propagation
algorithm and a GA, respectively. On the other hand, in Approach 5, a Takagi and Sugeno-type neuro-fuzzy approach
optimized by a GA, has been developed. Once the tuning of the FLC is done either by using a BPNN or a GA off-line,
it can be utilized to solve the navigation problems on-line.

The performance of Approach 1 is found to be the worst and in some of the scenarios, the robot has failed to reach
the goal. Moreover, the number of failures is found to increase with the scenarios involving more number of moving
obstacles. It could be due to the fact that there is no motion planner or decision maker in Approach 1. Thus, the robot
in Approach 1 is unable to provide feasible solution, in most of the scenarios. Moreover, the performance of the FLC
used in Approach 2 is appeared to be worse compared to the optimized FLC-based approaches (i.e., Approaches 3–5).
It also indicates that optimization of the knowledge base of the FLC is really necessary. Approaches 3, 4 and 5 are
found to perform better than the conventional potential field method (i.e., Approach 6) in most of the test scenarios. It
may happen because in Approach 6, there is no optimization module in-built and there is a chance of its solution for
getting trapped into local minima. Moreover, in Approach 6, there is a possibility that the same obstacle will be treated
as the most critical one, more than once in successive steps. In Approach 3, the knowledge base of the FLC has been
optimized by using a steepest descent method, in which a penalty has been given to ensure collision-free movement
after satisfying the kinematic and dynamic constraints of the robot. The difference in performance of this approach from
that of Approaches 4 and 5 might have been noticed due to the following reasons: (i) penalty added in Approach 3 is not
the same with that considered in Approaches 4 and 5, due to its difficulty in implementation, (ii) gradient-based search
used in Approach 3 has been replaced by a GA-based search. It is to be noted that Approach 4 has performed better
than Approach 3, in most of the test scenarios. Moreover, the performances of both the GA-optimized neuro-fuzzy
approaches are found to be comparable, but a slightly better performance is observed in Approach 5 compared to that of
Approach 4. Computational complexities of all the approaches have also been compared, in the present work. Potential
field method is found to be the fastest of all approaches, computationally. However, all the neuro-fuzzy approaches
have provided adaptive solutions to the present problem. Moreover, for the cases involving less number of moving
obstacles, Approach 4 is found to be slightly computational faster compared to Approach 5. But, as the number of
obstacles increases, the CPU time of Approach 5 is seen to be less compared to that of Approach 4. It indicates that
Approach 4 might not be suitable for a highly cluttered environment, as the defuzzification module of Approach 4 is
computationally expensive.

As the performance of the neuro-fuzzy approaches depends on the training data, it may not work well, particularly
when the test scenarios are widely different from the training scenarios.
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6. Scope for future work

The present work can be extended in a number of ways and some of these are as follows:
• The performance of an FLC depends on the rule base and it has been designed manually based on the authors’

knowledge of the problem in Approaches 3 and 4. But, it may not be the optimal one. In the present work, an
attempt has been made to select the good rules during optimization from a set of pre-defined rules. However, the
membership function distributions of the variables have been determined automatically in the present paper. Thus, a
method for automatic design of the KB of an FLC will be developed, in which the whole responsibility of designing
a good KB will be given to the GA, which could be philosophically similar to the work of Marichal et al. [28].

• The developed neuro-fuzzy approaches are tested on computer simulations. It will be interesting to test their
performances on a real robot.

• In the present work, the membership function distributions are assumed to be triangular. Other smoother distribution
patterns like Gaussian or exponential may be used to have smooth control of the robot. In such cases, computational
complexity is supposed to be higher.

• In the present work, a fuzzy logic-based controller has been developed, but in future, an NN-based controller can
be designed to solve the similar problems. Moreover, the performance of both the controllers may be compared in
terms of traveling time and their CPU times.

• The neuro-fuzzy controllers are developed and tested for a single robot navigating in dynamic environments. It will
be more interesting, if they can be used to solve coordination problems of multiple robots working in the same
workspace. Since all the robots will try to find optimal/near-optimal collision-free path, the coordination effect
among the robots will be a great issue in this context.
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