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Summary. The present chapter deals with the issues related to the evolution of
optimal fuzzy logic controllers (FLC) by proper tuning of its knowledge base (KB),
using different tools, such as least-square techniques, genetic algorithms, back-
propagation (steepest descent) algorithm, ant-colony optimization, reinforcement
learning, Tabu search, Taguchi method and simulated annealing. The selection of a
particular tool for the evolution of the FLC, generally depends on the application.
Some of the applications have also been included in this chapter.
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3.1 Introduction

Real-world problems are generally associated with different types of uncer-
tainties. In the past, considerable effort has been made to model these
uncertainties. Prior to 1965, it was considered that probability theory working
based on Aristotelian two-valued logic was the sole agent available to deal
with uncertainties. This particular logic uses the concept of the classical crisp
set. That is a set with a fixed boundary. Prof. Zadeh developed the concept
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of fuzzy sets, in the year 1965 [1]. Those are the sets having the vague bound-
aries. He argued that probability theory can handle only one out of several
different types of possible uncertainties. Thus, there are uncertainties, which
cannot be dealt with by using the probability theory. Taking an example,
in which Mr. X requests Mr. Y, to bring some red apples for him from the
market. There are two uncertainties at least, which relate to the following:
(i) the availability of the apples, and (ii) a guarantee that the apple is red.
Depending on the season, there is a probability of obtaining the apples, which
varies between 0 and 1. But, the colour – red cannot be defined by the classical
set. It is not between red (1) and not-red (0). In the fuzzy set, the colour –
red can be defined as follows (Fig. 3.1) using the concept of membership of an
element to a class. That is the function value (µ): If the colour is perfectly
red PR, then it may be said red with a membership value of 1.0; if it is R,
then it is considered to be red with a membership value of 0.65; if it is slightly
red SR, then it is red with a membership value of 0.39. If it is not red (NR),
then also it is red with a membership value of 0.0. In this way, the uncertainty
related to the colour of the apples can be handled. Thus, a fuzzy set may be
considered to be a more general concept than the classical set.

The concept of fuzzy set theory has been used in a number of applications,
such as the Fuzzy Logic Controller (FLC), fuzzy clustering, fuzzy mathemat-
ical programming, fuzzy graph theory and other examples. Out of all such
applications, FLC is the most popular application for the following reasons –
(i) ease of understanding and implementations, (ii) ability to handle uncer-
tainty etc. An exact mathematical formulation of the problem is not required
for the development of an FLC. This feature makes it a natural choice for
solving complex real-world problems. These are either difficult to model math-
ematically or the mathematical model becomes highly non-linear. It is to
be noted that a fuzzy logic controller was first developed by Mamdani and
Assilian, in the year 1975 [2]. The concept of fuzzy set was published in the
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Fig. 3.1. A schematic diagram explaining the concept of membership function
distribution.
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year 1965. Human beings have the natural ability of determining the input-
output relationships of a process. The behavior of a human being is mod-
eled artificially, when designing a suitable FLC. The performance of an FLC
depends on its knowledge base (KB), which in turn consists of both Data Base
(DB) and a Rule Base (RB). The DB consists of data related to membership
function distributions of the variables of the process to be controlled. Design-
ing a proper KB of an FLC is a difficult task, which may be implemented in
one of the following ways:

– Optimization of the data base only,
– Optimization of the rule base only,
– Optimization of the data base and rule base in stages,
– Optimization of the data base and rule base simultaneously.

The membership function distributions are assumed to be either Linear such
as, triangular, trapezoidal or Non-Linear. The Non-Linear can be Gaussian,
bell-shaped, sigmoidal in nature. To design and develop a suitable FLC for
controlling a process, its variables need to be expressed in the form of some
linguistic terms (such as VN: Very Near, VF: Very Far, A: Ahead for exam-
ple). The relationships between the input (antecedent) and output (conse-
quent) variables are expressed in the form of rules. For example, a rule can
be expressed as indicated in Fig. 3.2:

IF I1 is N AND I2 is A THEN O is AR,

The number of such rules will be present in the rule base. The number of lin-
guistic terms used to represent the variables increases in order to improve the
accuracy of the prediction. The computational complexity of the controller
will increase with a larger number of rules. For easy implementation in either
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Fig. 3.2. A diagram showing some membership function distributions of input and
output variables of the Fuzzy Logic Controller.
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the software or the hardware, the number of rules present in the Rule Base
should be as small as possible. Consequently, some investigators have tried to
design and develop a hierarchical FLC, in which the number of rules will be
kept to the minimum [3, 4]. It has been observed that the performance of an
FLC largely depends on the rule base and optimizing the data base is a fine
tuning process [5]. A fuzzy logic controller does not have an internal optimiza-
tion module. An external optimizer is used to develop an optimal Knowledge
Base through a proper tuning and this helps to improve the performance.

In this chapter, the focus is on the issues related to design and development
of an optimal fuzzy logic controller using different optimization tools. Some
of the applications of FLC are cited.

The remainder of the text is organized as follows. Two major forms of
FLC are discussed in Section 2. Various methods of designing optimal FLCs
are given in Section 3. A summary of this work is presented in Section 4.

3.2 Two Major Forms of Fuzzy Logic Controller

System modeling done by using the fuzzy set concept can be classified into two
groups. That is linguistic fuzzy modeling and precise fuzzy modeling. Linguistic
fuzzy modeling, such as Mamdani Approach is characterized by its high inter-
pretability and low accuracy. The aim of precise fuzzy modeling such as Takagi
and Sugeno’s Approach, is to obtain high accuracy at the cost of interpretabil-
ity. Interpretability of a fuzzy modeling is defined as a capability to express
the behavior of a system in an understandable form. This is expressed in terms
of compactness, completeness, consistency and transparency. The accuracy of
a fuzzy model indicates how closely it can represent the system modeled. The
working principles of both these approaches are briefly explained below.

3.2.1 Mamdani Approach [2]

An FLC consists of four modules namely, a fuzzy rule base, a fuzzy inference
engine, fuzzification and de-fuzzification. Fig. 3.3 shows a schematic diagram
explaining the working of an FLC.

(a) The condition known as the antecedent and the action called the conse-
quent variables needed to control a process are identified and measure-
ments are taken of all the condition variables.

(b) The measurements taken in the previous step are converted into appro-
priate fuzzy sets to express measurement uncertainties. This process is
known as fuzzification.

(c) The fuzzified measurements are then used by the inference engine to eval-
uate the control rules stored in the fuzzy rule base and a fuzzified output
is determined.
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Fig. 3.4. A schematic diagram showing the working principle of an FLC.

(d) The fuzzified output is then converted into a single crisp value. This con-
version is called de-fuzzification. The de-fuzzified values represent actions
which need to be taken by the FLC in controlling the process.

The fuzzy reasoning process is illustrated in Figure 3.4. Let us assume for
simplicity that only two fuzzy control rules (out of many rules present in the
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rule base) are being ‘FIRED’ as shown below. This is for a set of inputs –
(s1∗, s2∗).

RULE 1: IF s1 is A1 and s2 is B1 THEN f is C1
RULE 2: IF s1 is A2 and s2 is B2 THEN f is C2.

If s1∗ and s2∗ are the inputs for fuzzy variables s1 and s2. If µA1 and µB1

are the membership function values for A and B, respectively, then the grade
of membership of s1∗ in A1 and the grade of membership of s2∗ in B1 are
represented by µA1(s1∗) and µB1(s2∗), for rule 1.

Similarly, for rule 2, where µA2(s1∗) and µB2(s2∗), are used to represent
the membership function values. The firing strengths of the first and second
rules are calculated as follows:

α1 = min (µA1(s1∗), µB1(s2∗)) , (3.1)
α2 = min (µA2(s1∗), µB2(s2∗)) . (3.2)

The membership function of the combined control action C is given by

µC(f) = max (µ∗
C1(f), µ∗

C2(f)) . (3.3)

There are several methods of defuzzification (shown in Fig. 3.5). These are
explained below.

1. Center of Sums Method: According to this method of defuzzification
(refer to Fig. 3.5(a)), the crisp output can be determined by the following.
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Fig. 3.5. Different methods of defuzzification.
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Uf =

∑p
j=1 A(αj) × fj∑p

j=1 A(αj)
, (3.4)

Where Uf is the output of the controller. A(αj) represents the firing area
of the j-th rule. p is the total number of the fired rules. fj represents the
centroid of a membership function.

2. Centroid Method: The total area of the membership function distri-
bution used to represent the combined control action is divided into a
number of standard sub-areas. Their area and the center of area can be
determined easily (refer to Fig. 3.5(b)). The crisp output of the controller
can be calculated by using the expression given below.

Uf =
∑N

i=1 Aifi∑N
i=1 Ai

, (3.5)

Where N indicates the number of small areas or regions, Ai and fi rep-
resent the area and the center of area of i-th small region.

3. Mean of Maxima Method: From the membership function distribution
of the combined control action, the range of the output variable is located.
This is where the maximum value of the membership function is reached.
The mid-value of this range is considered to be the crisp output of the
controller (refer to Fig. 3.5(c)).

3.2.2 Takagi and Sugeno’s Approach [6]

Here, a rule consists of the fuzzy antecedent and the functional consequent
parts. Thus, a rule can be represented as follows:

If x1 is Ai
1 and x2 is Ai

2 ..... and xn is Ai
n

then yi = ai
0 + ai

1x1 + . . . + ai
nxn

where a0, a1, . . . , an are the coefficients. In this way, nonlinear system is con-
sidered as a combination of several linear systems. Control action of i-th rule
can be determined for a set of inputs (x1, x2, . . . , xn) as follows.

wi = µi
A1

(x1)µi
A2

(x2) . . . µi
An

(xn), (3.6)

Where A1, A2, . . . , An indicate the membership function distributions of the
linguistic terms used to represent the input variables. The membership func-
tion value is given by µ. Thus, the combined control action can be deter-
mined as

y =
∑k

i=1 wiyi

∑k
i=1 wi

, (3.7)

where k is the total number of rules.
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3.3 Methods of Designing Optimal Fuzzy Logic
Controllers

In order to establish the input-output relationships of a process, a designer
tries to design the KB of an FLC manually, based on a knowledge of the
process. In most of the cases, it is difficult to gather prior information of a
process. The manually-designed KB of the FLC may not be optimal. As an
FLC does not have a in-built optimizer, an optimization tool is used, while
tuning a KB. Several methods have been developed and some of these are
discussed below.

3.3.1 Least-square Method

Attempts were made to determine an appropriate shape of the membership
function distributions by using least-square methods. In this connection, see
Pham and Valliappan [7], Bustince et al. [8]. The membership function dis-
tribution of a fuzzy set was assumed to follow a power function such as
µA(xi) = axb

i . Here x indicates a variable represented by a fuzzy set A,
i = 1, 2, . . . , n, n is the number of training cases, µA is the membership func-
tion value of the fuzzy set A lying between 0 and 1, a (greater than zero)
and b are the constants to be determined by the least-square method. Two
equations were solved for this [8]:

nlna +

(
n∑

i=1

lnxi

)
b =

n∑
i=1

lnµA(xi) (3.8)

(
n∑

i=1

lnxi

)
lna +

(
n∑

i=1

ln2xi

)
b =

n∑
i=1

lnxilnµA(xi) (3.9)

where axb
i ≤ 1.

3.3.2 Genetic-Fuzzy System

Genetic algorithm (GA) [9] is a population-based search and optimization
technique based on the principle of natural selection and mechanics of nat-
ural genetics, was used by several researchers, for a genetic-fuzzy system.
The performance of a Fuzzy Logic Controller (FLC) is dependent on its KB.
Fig. 3.6 shows the schematic diagram of the genetic-fuzzy system. Here, a GA
is used to determine optimal KB of the FLC. Thus, the GA improves the per-
formance of the FLC. During optimization of the FLC, the feedback which
is a deviation in prediction is calculated. This is based on a set of training
cases and it is utilized as the fitness of the GA. A GA is computationally
expensive and the tuning is done off-line. Once optimized, the FLC will be
able to predict the outputs for a set of inputs, within a reasonable accuracy
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Fig. 3.6. A schematic diagram showing a genetic-fuzzy system

limit. This concept has been used to solve a number of physical problems.
See Karr [10], Thrift [11], Pham and Karaboga [14]. A detailed review on this
scheme is done by Cordon et al. [12].

There are three basic approaches of this scheme, the Pittsburgh [13, 14],
Michigan [15] and iterative rule learning [16, 17] approaches. In Pittsburgh
approach, the entire rule base of the FLC is represented by a GA-string. Thus,
the GA-population indicates the population of candidate rule sets. The genetic
operators are used to modify the rule sets and obtain the optimal rule base. In
the Michigan approach, members of the population are individual rules. Thus,
a rule set is represented by the entire population. The main drawback of these
two approaches lies in the fact that for the large number of fuzzy rules, the
GA requires a huge amount of computer memory. To overcome the problem,
using an iterative rule learning approach, chromosomes code individual rule,
a new rule is added to the rule set, in an iterative fashion, for every run
of GA. It requires a proper encoding scheme for extracting the rules from a
chromosome. In this approach, the evolved RB of the FLC may contain some
redundant rules, due to the iterative nature of the GA.

A considerable amount of work has been carried out in this field of research.
Some of these attempts are mentioned below. Furuhashi et al. [18] developed a
variable length decoding method, known as the Nagoya Approach. Using this
approach, as the lengths of the chromosomes are not fixed, it is difficult to
implement the necessary crossover operation in GA. Again the simultaneous
design of the data base and rule base requires a proper optimization procedure.
This can tackle both continuous as well as integer variables. Wang and Yen [19]
proposed a method, in which a GA was used to extract the rule base, and the
data base of an FLC was optimized using a Kalman filtering technique. Farag
et al. [20] developed a new multi-resolutional dynamic GA for this purpose.
In this, the initial parameters of the data base of an FLC were determined by
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using Kohonen’s self-organizing feature map algorithm and optimization was
done by using a GA. Fuzzy rule generation and tuning using a GA was also
tried by Ishibuchi et al. [21]. Recently, Abdessemed et al. [22] proposed a GA-
based procedure for designing an FLC, to control the end effector’s motion of
a planar manipulator. Yupu et al. [23] used a GA to search for appropriate
fuzzy rules. The membership function distributions were optimized by using
a neural network. The FLC is becoming more popular nowadays, developing
a suitable knowledge base for it, is not easy. The designer requires much
time, to initially design the knowledge base (KB). It is further improved by
using GA-based tuning. Thus, the designer must have a knowledge of the
process to be controlled by the FLC. To overcome this requirement, a few
investigators [24, 25] tried to automatically design the FLC by using a GA.
Using search, the GA will develop the optimized data base and rule base for
the FLC.

A GA is basically a fitness function-driven search method, therefore, it is
blind for any other aspect that is not explicitly considered on fitness function.
Hence, a GA might evolve some redundant rules, that have limited influence
on the process to be controlled. Redundant rules are to be removed to make
the rule base compact. This makes the implementation of the controller easier,
particularly when it is done by hard-ware. Thus, there is a need to determine
the contribution of each rule. In this context, the work of Nawa et al. [26],
Ishibuchi and Nakashima [27], Ghosh and Nath [28], Hui and Pratihar [35]
are important. Nawa et al. [26] measured the quality of a rule by determining
its accumulated truth value. The accumulated truth value was considered to
be the sum of probability of occurrences of a rule in the training data. A
rule is said to be good, if its accumulated truth value is high. Ishibuchi and
Nakashima [27] made an attempt to assign an importance factor to each rule.
They calculated the importance factor of a rule, by considering the way it
interacts with the neighbors. An evolutionary technique was utilized to find
the interaction effect. Ghosh and Nath [28] investigated the effectiveness of a
rule by measuring three parameters, namely support count, comprehensibility
and interestingness. Support count of an item set is defined by the number
of records in the data base that contains all the items of that set. Compre-
hensibility is used to justify the understandability of a rule. A rule is said
to be more comprehensive, if the number of attributes associated with the
antecedent part of the rule is less and interestingness is represented by the
probability of generating a rule during the learning process. It was a theo-
retical approach of finding interesting rules in the rule base and is unable
to predict the importance of a rule for a fixed number of attributes in both
antecedent as well as in the consequent parts. The above methods considered
the probability of occurrence of a rule only, for the determination of a good
rule base. No attention was paid to calculate the contribution effect of a rule
with respect to a specific objective. Hui and Pratihar [35] proposed a method
of determining importance factor for each rule contained in the RB of an FLC,
to check the redundancy, if any. The importance factor of a rule is calculated
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by considering its probability of occurrence and worth (goodness). A rule is
said to be redundant and thus may be eliminated, if its importance factor
comes out to be smaller than a pre-specified value and the removal of which
does not lead to any non-firing situation.

The genetic-fuzzy system has been developed by the authors also, following
the two different approaches discussed below.

Approach 1: GA-based tuning of the manually-constructed KB
of the FLC. The KB of the FLC is designed manually and is based
on the designer’s experience of the problem to be solved. But, it may not
be optimal in any sense. GA-based tuning is adopted, to further optimize
the KB, to improve the performance. As a GA is found to be computa-
tionally expensive, the GA-based tuning is carried out, off-line. During
optimization, the GA-string will carry information for both the data base
as well as the rule base. The GA-search will find the optimal KB of the
FLC. Once optimized, the FLC is able to determine its outputs in the
optimal sense.

Approach 2: Automatic design of KB using a GA. In Approach 1,
much time is spent on manual design of the KB of an FLC. It might
be difficult beforehand to foresee the characteristics of the process to be
controlled. Thus, designing a proper KB might be a difficult task. To
overcome this, a method for automatic design of the KB is developed by
using a GA. Here the task of designing a suitable KB is given to the GA.
The GA through its exhaustive search will try to determine the optimal
KB of the FLC.

The above concept has been used by the authors, to solve a number of
physical problems. One of them is explained below.

Optimal Path and Gait Planning of a Six-legged Robot A six-legged
robot will have to plan its time-optimal, collision-free path as well as the opti-
mal gait, setting simultaneously the minimum number of ground-legs having
the maximum average kinematic margin. This is while moving on a flat ter-
rain with occasional hurdles, such as ditches and some moving obstacles. Its
stability margin should always be positive to ensure static stability. This is a
complicated task because the path planning and gait planning must be done
simultaneously [29]. Fig. 3.7 shows the optimal path and gait for a six-legged
robot. It has planned its optimal path and gait, after starting from an initial
position S to reach the final position G. It faces three moving obstacles and
a ditch on the way to-wards its goal. The total movement of the robot has
been achieved through a number of segments called motion segments. The
robot plans its optimal path and gait on-line, for each motion segment. The
robot shown in Fig. 3.7, is found to reach its goal in the time-optimal sense at
79-th motion segment, after avoiding collision with the moving obstacles and
generating its optimal gaits.
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Fig. 3.7. Optimal path and gaits of a six-legged robot obtained using the genetic-
fuzzy system [29]
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3.3.3 Neural-Fuzzy System

The purpose of developing a neural-fuzzy system is to improve the perfor-
mance of an FLC by using neural network-based learning. It had been utilized
by a number of researchers to solve a variety of problems. Some of these are
mentioned below. Marichal et al. [30] proposed a neuro-fuzzy approach to gen-
erate the motion of a car-like robot navigating among static obstacles. In their
approach, a least mean squared algorithm was used for the learning purposes
and Kohonen’s self organizing feature map algorithm was considered to obtain
the initial number of fuzzy rules and fuzzy membership function centers. They
did not optimize the traveling time nor the approach was tested in a dynamic
environment. Song and Sheen [31] suggested a pattern recognition approach
based on a fuzzy-neuro network for the reactive navigation of a car-like robot.
Li et al. [32] developed a neuro-fuzzy architecture for behavior-based control
of a car-like robot, that navigates among static obstacles.

The present chapter includes two schemes of neural-fuzzy system developed
by the authors. These are discussed below [33].

Scheme 1: Neural-fuzzy system based on Mamdani Approach. In the
developed neural-fuzzy system, a fuzzy logic controller using Mamdani
Approach is expressed by utilizing the structure of a Neural Network
(NN) and a back-propagation algorithm is utilized to optimize the KB
of the FLC. The back-propagation algorithm is a steepest descent algo-
rithm. Fig. 3.8 shows the schematic diagram of the five layer neural-fuzzy
system– Layer 1 is the input layer, fuzzification is done in Layer 2, Layer 3
indicates the AND operation. The OR operation is carried out in Layer 4,
and Layer 5 is the output layer. The training cases are passed through
the network and the total error is calculated. The average error is propa-
gated in the backward direction, to determine the updated weights. The
network will try to find an optimal set of weights, corresponding to which
the error is minimum.
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Fig. 3.8. A schematic diagram of the neural network-structured FLC



60 D.K. Pratihar and N.B. Hui

Three different approaches to Scheme 1 are developed. These are discussed
in brief below.
Approach 1: NN-tuned FLC. The initial weights of the neural net-

work representing the FLC are generated, at random. A batch mode
of training is adopted. Training cases are passed through the NN (i.e.,
forward propagation) and average error is determined. As this error
depends on the weights, it can be minimized by updating the weight
values. A back-propagation algorithm is used to minimize the error.

Approach 2: Genetic-Neural-Fuzzy system. In Approach 1, the
error is minimized using a steepest descent method. This may have
the local minima problems. To overcome this problem, the back-
propagation algorithm is replaced by a GA. As GA is a population-
based search and optimization method, the chance of its solutions for
getting trapped into the local minima is less. Thus, Approach 2 may
be expected to perform better than Approach 1.

Approach 3: Automatic design of neural-fuzzy system. To incre-
ase the search space of the GA, a method for automatic design of
neural-fuzzy system is proposed. In this approach, the outputs of dif-
ferent rules are evolved solely by the GA itself. The GA through its
exhaustive search, determines a good rule base for the FLC. There
might be some redundant rules present in the GA-designed rule base.
It may happen due to the iterative nature of the GA. To identify the
redundant rules, a method is proposed, in which importance of a rule
is decided by considering its frequency of occurrence and its worth with
respect to the objective function of the optimization problem. Based
on the value of this importance factor, a decision is taken whether a
particular rule will be declared as redundant.

Scheme 2: Neural-fuzzy system based on Takagi and Sugeno
Approach. A neural-fuzzy system has been developed based on the
Takagi and Sugeno Approach. This is known as the ANFIS (i.e., Adaptive
Neuro-Fuzzy Inference Systems) [34]. An ANFIS is a multi-layered feed
forward network, in which each layer performs a particular task. The
layers are characterized by the fuzzy operations they perform. Fig. 3.9
shows the schematic diagram of the ANFIS structure, which consists of
six layers – Layer 1 (input layer), Layer 2 (condition layer), Layer 3 (rule
base layer), Layer 4 (normalization layer), Layer 5 (consequence layer)
and Layer 6 (output layer). Let us assume that there are two inputs –
I1 and I2 and one output O of the network. The first two layers perform
similar tasks to those done by Layers 1 and 2 of the neuro-fuzzy system
developed in Scheme 1. The functions of other layers are explained below.
Layer 3: This layer defines the rules of the fuzzy inference system. As
three linguistic terms are used to represent each of the two inputs, there
is a maximum of 3 × 3 = 9 rules present in the rule base. Each neuron
in this layer represents a fuzzy rule and is termed as a rule node. The
output of each neuron lying in this layer is the multiplication of their
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Fig. 3.9. A schematic diagram of the ANFIS architecture

respective two membership values. It is to be noted that each node output
represents the firing strength of a rule.
Layer 4: This layer has the same number of nodes as the previous layer.
It calculates the normalized firing strength of each node.
Layer 5: The output of a particular neuron (say, the q-th) lying on this
layer is determined by

O5q = (aqI1 + bqI2 + cq) (3.10)

where (aq, bq, cq) represents one set of coefficients associated with the q-th
node.
Layer 6: The output of the node lying on Layer 6, can be determined by
summing up all incoming signals.

O61 =
R∑

q=1

O5q, (3.11)

where R indicates the total number of rules. A maximum of four rules (out
of nine) will be fired, for one set of input variables. The performance of an
ANFIS depends on the selection of consequence parameters and premise
parameters. That is the half base-widths of the input membership function
distributions. For the selection of optimal parameters, a GA might be used
together with the ANFIS.

The developed neural-fuzzy systems have been used to plan collision-free,
time-optimal paths of a car-like robot. This is explained below.

3.3.3.1 Collision-free, Time-optimal Path Planning for a Car-like
Robot [33,35]

A car-like mobile robot needs to find its time-optimal and collision-free path
while navigating among some moving obstacles, and satisfy its kinematic (non-
holonomic) constraints and dynamic constraints (such as sliding constraint,
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motor torque constraint, curvature constraint). A detailed discussion on these
constraints is beyond the scope of this chapter. Interested readers may refer
to [33], for the same. The total path of the robot is divided into a number
of distance steps having varying lengths, each of which is traveled during a
time step. To calculate total traveling time of a robot to reach its destination,
the time steps are summed and the time required to align its main axis to-
wards the goal is added. There can be a saving in traveling time, particularly
if the robot does not change its direction in two successive distance steps.
It is subtracted from the total traveling time. The aim is to minimize the
traveling time after ensuring a collision-free movement of the robot. A high
positive value penalty is added to the total traveling time, if the robot collides
with any one of the obstacles. Fig. 3.10 shows the near-optimal, collision-free
paths of a robot in the presence of 16 moving obstacles. This is as obtained
by using the three approaches of Scheme 1, Scheme 2 (explained above) and a

Fig. 3.10. Navigation of a robot among 16 moving obstacles
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traditional motion planning scheme (potential field method) [36]. The initial
position, size, velocity and direction of movement of the obstacles are created
at random. The planning robot starts from the point S and reaches the goal
G, by avoiding collisions with the obstacles. Soft computing-based approaches
have proved their supremacy over the potential field method. It could be due
to the reason that there is a chance that the solutions of the potential field
method will get trapped at the local minima. On the other hand, the chance
of the solutions of GA-tuned fuzzy logic controller for getting trapped into the
local minima is less and it could be due to an exhaustive search carried out
by the GA. Moreover, the GA is able to inject adaptability to the FLC, which
has been observed from the performances of Approaches 2 and 3 of Scheme 1.
Approach 3 of Scheme 1 is found to be the best of all approaches. It could be
due to the fact that using this approach, a good KB of the FLC is evolved by
the GA, after carrying the search in a wider space.

3.3.4 Optimization of FLC Using Ant Colony Optimization [37]

In Ant Colony Optimization (ACO) algorithm, an optimization problem is
represented in the form of a graph – G = (C,L). Here, C is the set of com-
ponents of the problem and L indicates the possible connection or transition
among the elements C. The solutions are expressed in terms of feasible paths
on the graph G, after satisfying a set of constraints. Thus, the Fuzzy Rule
Learning Problem (FRLP) using the ACO, is formulated as a combinatorial
optimization problem. Its operational mode is composed of two stages: in the
first stage, the number and antecedents of the linguistic rules are defined, and
a set of consequent candidates is assigned to each rule. In the second stage,
a combinatorial search is carried out to find the best consequent of each rule,
according to a global error measure over the training set.

The fitness of a solution consists of two parts, namely the functional fitness
and the objective fitness. The functional fitness deals with the functionality
of the solutions. That is how good is the solution. The objective fitness is the
measure of the quality of the solution, in terms of optimization objectives,
such as area, delay, gate count, power consumption, and others.

To apply ACO algorithm to a specific problem, the following steps need
to be followed:

– Represent the problem in the form of a graph or a similar easily covered
structure,

– Define the way of assigning a heuristic preference to each choice that needs
to be taken in each step in order to generate the solution,

– Establish an appropriate way of initializing the pheromone,
– Define the fitness function to be optimized,
– Select an ACO algorithm to determine the optimal solutions.

The Fuzzy Rule Learning Problem (FRLP) aims to obtain the rules com-
bining the labels of the antecedents and to assign a specific consequent to
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each antecedent combination. This problem is interpreted as a way of assign-
ing consequents to the rules with respect to an optimality criterion. An ant
iteratively goes over each rule and chooses a consequent with a probability
that depends on the pheromone trail τij and the heuristic information ηij .

3.3.5 Tuning of FLC Using Reinforcement Learning

Fuzzy rules for control can be effectively tuned by means of reinforcement
learning. In this approach, the rules with their associated antecedent and con-
sequent fuzzy sets are represented with the help of a fuzzy-neural network.
For this an action selection network (ASN) is used. This network provides
continuous action value and records the state of the environment and also
determines the next action required. Thereafter, the actions are evaluated by
means of a critic element (CE), which is a two-layer feed forward action evalu-
ation network (AEN). It predicts the reinforcements associated with different
input states and whether or not a failure has occurred. If a failure occurs, it
identifies the steps leading to the failure and modifies the fuzzy sets associated
with the rules. A gradient descent technique in conjunction with an average
reward is used to train both the action selection network (ASN) and the action
evaluation network (AEN) over a set of trials. During training, a reward is
provided until a failure occurs and then a high value penalty is given.

This approach had been used by Berenji and Khedkar [38], to solve the
problem of a cart-pole balancing system.

3.3.6 Optimization of FLC Using Tabu Search

Denna et al. [39] presented an approach for automatic definition of the fuzzy
rules based on the Tabu Search (TS) algorithm. To determine the most appro-
priate rule base for solving the problem, they employed the reactive form of
TS algorithm. To apply the Reactive Tabu Search (RTS) algorithm in deter-
mining the rules of a fuzzy controller, the consequent of each rule is expressed
with a binary string. The learning procedure is shown in Figure 3.11. The
learning begins with an initial rule base, chosen randomly at each iteration.
Initial states can also be selected by following a uniform distribution over the
entire state space. In such conditions, regions of interest are assigned a higher
probability during the learning procedure. Performance of the rule base is
then evaluated by using an error function E(•), over a set of typical control
rules. It is important to mention that during the evaluation of E(•), some
rules, with a smaller contribution to the system are not used. This procedure
continues until a termination criterion is reached. The termination condition
for each execution may be based on the following parameters:

– The number of iterations carried out,
– The Current State of the error function,
– The properties of the solution found.
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Fig. 3.11. A schematic diagram showing the learning of fuzzy rules using Tabu
search [39]

Bagis [40] described a method for the determination of optimum fuzzy
membership function distribution used for controlling a reservoir system of
dams during floods.

3.3.7 Design of a Fuzzy Controller using the Taguchi Method

The Taguchi Method determines the parameter settings, which maximize the
signal to noise (S/N) ratio in each problem by systematically performing the
designed experiment. The designed experiment is composed of an inner array
and an outer array. The inner array is a designed experiment using the control
factors and the outer array consists of the noise factors. To design an FLC
using the Taguchi method, control factors are considered as the membership
parameters and different system conditions are assumed to be the noise fac-
tors. If the inner array is made up of m rows and the outer array contains n
rows, then each of the m rows can obtain n performance characteristics. These
n data are used to calculate the S/N ratio, for each row of the inner array.
The optimal parameter settings are determined by analyzing the S/N ratio
data. To check the adequacy of the model, Analysis of Mean (ANOM) and
Analysis of Variance (ANOVA) are carried out. Later, a verification experi-
ment is conducted to test the performance of the model. Kim and Rhee [41]
utilized the Taguchi method, to design a suitable fuzzy logic controller, in
which the following steps were used:

– Identify the performance characteristic to be observed,
– Identify important noise factors and their ranges,
– Identify the control factors and their levels,
– Construct the inner array and the outer array,
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– Conduct the designed experiment,
– Analyze the data and determine optimal levels for the control factors,
– Conduct the verification experiment.

3.3.8 Fuzzy Logic Controller Tuned by Simulated Annealing

Simulated Annealing (SA) is one of the most popular non-traditional meth-
ods of optimization, in which the cooling process of a molten metal has been
artificially modeled. Alfaro and Garcia [42] described a method for develop-
ment of a fuzzy logic controller applied to path planning and navigation of
mobile robots, by using a simulated annealing. Most of the researchers tried
to optimize the membership function distributions of the FLC by utilizing the
SA. In this approach,the cost function was defined as follows:

F =
1
N

N∑
k

(yk − ŷk)2 , (3.12)

where k = 1, 2, . . . , N . N is the number of learning samples, (xk, yk) is the
kth learning sample and ŷk is the output of the fuzzy system corresponding to
the input vector xk. The optimization algorithm tunes the parameters (spread
and shape) of membership function distributions. This is in order to minimize
the cost function.

Consider the membership functions of the input variables to be Gaussian
in nature, as shown below.

Gaussian(x;σ; c) = e−( x−c
σ )2 (3.13)

where c and σ indicate the Center and Width, respectively, of the membership
function distribution. In SA, the following steps are to be considered in order
to optimize the Gaussian membership function distribution:

1. Set an Initial Temperature T to a high value and generate initial parame-
ters ci

j and σi
j , randomly and compute the cost function (Fold).

2. Generate a set of new parameters ci
j and σi

j and compute the new cost
function (Fnew). Obtain the change in the cost function δ = Fnew − Fold.
If δ < 0, memorize the new set of membership functions and proceed until
the termination criterion is reached. Otherwise, go to Step 3.

3. If δ > 0 and probability of accepting the new set of membership functions
P (δ) = exp(−δ/T ) ≤ random[0, 1]), the center and width values are not
changed. Now, go to Step 2 by reducing the temperature T to the half of
its previous value.

4. Repeat Steps 2 and 3 until an acceptable solution has been found or until
a specified number of iterations has been reached.
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3.4 Summary

Fuzzy logic controllers have proved their worth and are popular nowadays to
solve real-world complex problems. As the performance of an FLC depends
on its KB, several attempts had been made to design a suitable KB. Several
methods had been tried by various investigators, to solve the problem. There
is a chance of further improvement and much further work is necessary.

Both the Linguistic as well as Precise Fuzzy Modeling have been used
separately, to solve a variety of problems and some satisfactory results have
been obtained. Linguistic fuzzy modeling ensures better interpretability, but
precise fuzzy modeling aims to achieve higher accuracy. It is obvious that as
interpretability of the fuzzy model increases, its accuracy will decrease and
vice-versa. Thus, depending on the physical problem, a particular type of fuzzy
modeling is chosen. It is challenging to obtain a proper balance between inter-
pretability and accuracy of a fuzzy model. These two properties are inversely
related and it is important to investigate as to whether a pareto-optimal front
exists.
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