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Abstract Collision-free, time-optimal navigation of a real wheeled robot in the pres-
ence of some static obstacles is undertaken in the present study. Two soft computing-
based approaches, namely genetic-fuzzy system and genetic-neural system and a
conventional potential field approach have been developed for this purpose. Training
is given to the soft computing-based navigation schemes off-line and the performance
of the optimal motion planner is tested on a real robot. A CCD camera is used
to collect information of the environment. After processing the collected data, the
communication between the robot and the host computer is obtained with the help
of a radio-frequency module. Both the soft computing-based approaches are found
to perform better than the potential field method in terms of the traveling time taken
by the robot. Moreover, the performance of fuzzy logic-based motion planner is
found to be comparable with that of neural network-based motion planner, although
the training of the former is seen to be computationally less expensive than the
latter. Sometimes the potential field method is unable to yield any feasible solution,
specifically when the obstacle is found to be just ahead of the robot, whereas soft
computing-based approaches have tackled such a situation well.
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List of symbols

μf Coefficient of sliding friction
φ̇ Rate of change of steering angle during turning, rad/s
ξatt Positive scaling factor for attractive potential
ξrep Positive scaling factor for repulsive potential
ρ Instantaneous radius of curvature of the CG of the robot during turning, mm
θ Angle between the X-axis and the main axis of the robot, degrees
θ1 Deviation of the robot, degrees
a Tangential acceleration of the robot, mm/s2

Cp Constant of the pth layer activation function
dgoal Distance between the robot and the goal, mm
dmin Minimum distance required by the robot to reach the goal with zero velocity,

mm
F(X) Potential force function
M Mass of the robot, Kg
Nm Maximum angular speed of the wheels of the robot, r.p.m.
P Power of the motor, Watt
r Radius of the wheels, mm
T Traveling time, s
�T Time step, s
U(X) Artificial potential energy function
v Tangential velocity of the CG of the robot, mm/s
vij(t) Connecting weights between ith input neuron and jth hidden neuron at

iteration t
w jk(t) Connecting weights between jth hidden neuron and kth output neuron at

iteration t
(ẋ, ẏ) Components of tangential velocity

List of abbreviations

AH Ahead
AL Ahead Left
AR Ahead Right
BPNN Back-Propagation Neural Network
CG Center of Gravity
FLC Fuzzy Logic Controller
FR Far
GA Genetic Algorithm
GR Gear Ratio
H High
KB Knowledge Base
L Low
LT Left
NN Neural Network
NR Near
PFM Potential Field Method
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RT Right
VF Very Far
VH Very High
VL Very Low
VN Very Near

1 Introduction

The field of mobile robotics is undergoing a major shift in scope and dimension.
Prime emphasis is given to increase the autonomy power of the robot. An au-
tonomous and intelligent robot should be able to react to its environment without
any human intervention. Thus, it should have a real-time sensing assembly, an
intelligent motion planner and precise actuators. Motion planning of a car-like robot
is found to be difficult, due to its kinematic and dynamic constraints [1]. Quite a
few researchers have developed some suitable methods of motion planning for this
purpose. These are working based on either algorithmic approaches or some soft
computing techniques [2]. Algorithmic methods include both graph-based as well as
analytical approaches. Latombe [1] provides an extensive survey on different algo-
rithmic methods of robot motion planning. Visibility graph [3], Voronoi diagram [4],
tangent graph [5], freeway net [6], cell decomposition [7], probabilistic road-map [8]
are the widely used graph-based methods for solving the problem of robot motion
planning among static obstacles. On the other hand, potential field method proposed
by Khatib [9], is the most popular one out of all analytical methods for solving the
similar type of problems [1, 10, 11]. But, all these algorithmic methods suffer from
the following drawbacks: (a) not all the approaches are computationally tractable
and thus, they may not be suitable for on-line implementations, (b) one method may
be suitable for solving a particular type of problem and no versatile technique is
available, (c) most of the approaches do not have any in-built optimization module
and as a result of which, the generated path may not be optimal in any sense. It is
important to mention that potential field method has got the maximum popularity
among all the algorithmic approaches. It may be due to its elegant mathematical
analysis and simplicity. However, it has the following disadvantages [12]: (a) It
may not be able to provide with a completely local minima-free information, such
problems are seen to occur, when the robot navigates among concave obstacles, (b)
It may not find any feasible path for the robot, when it is moving among the obstacles
lying just in front of it or when it is moving among some closely spaced obstacles. It
may also happen, when the attractive potential balances the repulsive potential or the
magnitude of the resultant potential comes out to be negligible. To overcome some of
these drawbacks, Borenstein and Koren [13, 14] developed two modified versions of
potential field approach, namely virtual force field and vector field histogram method
for real-time obstacle avoidance of mobile robots. Thereafter, Slack [15] developed
a navigation template method that added a circular field around any obstacle. But,
all these modified potential field methods could not adjust their parameters to keep
the robot at a safe distance from an obstacle and hence were ineffective in avoiding
collision, especially against an obstacle lying in front of the robot. Thus, it is necessary
to develop some efficient, adaptive, flexible and computationally tractable algorithm
for solving the motion planning problems of mobile robots.
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Soft computing-based approaches are becoming more and more popular, now-a-
day, for solving navigation problems of the mobile robots [2]. It is due to the fact
that the computational complexity of such methods is expected to be low, as most of
them are heuristic in nature and an exact mathematical formulation of the problem
is not required. Moreover, these methods could find some adaptive solutions to the
problem. Both fuzzy logic-based as well as neural network-based navigation schemes
are available in the literature. Some of these schemes are mentioned below.

Fraichard and Garnier [16], Abdessemed et al. [17] used a fuzzy logic controller
(FLC) for planning collision-free motion of a car-like robot. The performance of
an FLC depends on the selection of membership function distributions (known as
data base) and its rule base. But, in most of the fuzzy control systems, fuzzy if-then
rules are designed by human experts, who may sometimes find it difficult to express
his/her actions or may decide on a subconscious level. Various investigators tried
to optimize both the rule base as well as data base of the FLC, either separately
or simultaneously. Several techniques are available in the literature for the said
purpose. Some of the these works related to motion planning of car-like robots are
mentioned below. Marichal et al. [18] proposed a mobile robot guiding mechanism
based on a neuro-fuzzy approach. In their approach, a least mean squared algorithm
was applied for the learning purposes and Kohonen’s self organizing feature map
algorithm was considered to obtain the initial number of fuzzy rules and fuzzy
membership function centers. But, neither did they optimize the traveling time nor
the approach was tested in a dynamic environment. Song and Sheen [19] suggested a
pattern recognition approach based on fuzzy-neuro network for reactive navigation
of a car-like robot. Li et al. [20] developed a neuro-fuzzy architecture for behavior-
based control of a car-like robot, that navigates among static obstacles. Maaref and
Baret [21] suggested a self-tunable fuzzy inference system (STFIS) for controlling the
angular and linear speeds of a mobile robot. They followed an on-line optimization
of the fuzzy inference system (FIS) by using a back-propagation training algorithm,
which may suffer from the local-minima problem. Pratihar and Bibel [22] designed
an FLC automatically by using a GA, that was intended to solve dynamic motion
planning problem of multiple mobile robots working in the same environment. Later
on, Hui and Pratihar [23] also followed an automatic design method of FLC, in
which the whole task of designing an FLC was given to a GA. The GA evolves a
suitable knowledge base of that FLC through the interactions between the robot
and the environment. The main advantage of this method lies in the fact that the
designer may not need to have the complete knowledge of the problem to be solved.
Moreover, the entire optimization process was carried out off-line, thus once trained,
it might be suitable for solving on-line navigation problems of a real robot. However,
the performance of this method was verified through computer simulations.

Neural networks (NNs) had also been used by some other researchers for solving
the said problem. In this connection, work of Yang and Meng [24], Floreano
and Mondada [25], Nolfi and Parsi [26], Yamada [27], Pal and Kar [28], Gu and
Hu [29] are important to mention. However, the performance of an NN depends
on its architecture and connecting synaptic weights, optimal selection of which is
a tedious job. A variety of tools based on supervised and reinforcement learning
algorithms had been used by a few investigators for this purpose. Back-propagation
algorithm is the most popular method to optimize the NN, but it may have the local
minimum problem. Simulated annealing (SA) [30], genetic programming (GP) [31],
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genetic algorithms (GA) [32] have also been used by some researchers for the said
purpose. It is to be noted that GAs along with NN have added a new dimension
to the field of robotic research, namely evolutionary robotics [33]. Here, a suitable
NN architecture is evolved by using a GA through proper interactions with the
environment. Pratihar [33] provided a comprehensive review on various aspects of
evolutionary robotics. After realizing the advantages of GA-NN approach, Hui and
Pratihar [34] studied its performance for solving the navigation problems of a car-like
robot through computer simulations.

Most of the above researchers tested their motion planning algorithms through
computer simulations. However, more recently, the importance of conducting exper-
iments using the real robot to test the performance of motion planner has been felt by
various investigators [35–38]. For the above purpose, the motion planner will have to
depend on the sensors and/or cameras for collecting information of the environment.
The choice of the sensors plays an important role in this regard. Sonar and laser
sensors are found to be the most widely used ones for obstacle detection. Many
works had been reported related to this, such as the CMU Navlab [39], navigation
systems developed at the University of Maryland [40], University of Bonn [41], robot
Khepara [25] and others. However, the main drawback of the sonar or laser sensors
lies in the fact that one sensor is required for one distance measurement, that is, in
order to obtain a complete picture of the environment around the vehicle, a number
of sensors must be used. Moreover, to achieve the accuracy in detection, they will
have to be placed perpendicular to the target. CCD cameras are also found to be
useful for scene modeling, obstacle detection and representation of them. Quite
a few camera-based navigation systems are available in the literature, such as the
work done by Chen and Tsai [42], Ohya et al. [43], Zhang et al. [44], Winters and
Victor [45], Choi and Lee [46]. But, in most of these approaches there is no separate
motion planning scheme of the robot. The motion of the robot is determined directly
based on the vision data. Moreover, vision system generates a substantial amount of
data and processing of which may lead to a large computational load on a mobile
robot. Thus, to build a fast and flexible mobile robot, camera-based vision system
will have to be clubbed with its navigation scheme, on-line.

Stability is one of the most important criteria to be checked of a control system.
It is, however, difficult to analyze the stability of a non-linear system like non-
holonomic system controlled by using either fuzzy logic or neural network. Recently,
there are some studies on the stability analysis of fuzzy control system [47–52] and
neural control system [53, 54]. Most of them are based on the Lyapunov’s direct
method. However, none of the above work analyzed the stability of the system, on
which the control algorithm was applied. Rather, they had considered the sensitivity
of the controller irrespective of the system equation(s). A car-like robot is a non-
holonomic system and its motion may be restricted due to its kinematic and dynamic
constraints. Thus, it is interesting to test the stability of the whole navigation system,
rather than analyzing the stability (sensitivity) of the controller only.

Our aim is to develop a suitable motion planning scheme for a car-like robot
navigating among some static obstacles. A fuzzy logic-based motion planner was
developed in our previous work [23], where the entire knowledge base of the
fuzzy logic was optimized automatically using a GA. However, in that study, the
performance of the motion planner was tested through computer simulations only.
An NN-based motion planning scheme had also been proposed by the authors in
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their earlier work [34]. However, its performance was also not tested on a real-robot.
Marichal et al. [18] and Li et al. [20] developed navigation schemes based on neuro-
fuzzy approaches. The main drawback of their methods lies in the fact that the FLCs
were optimized using the principle of steepest descent method, which may have the
local minima problem. In the present study, an attempt is made to tune the FL-based
and NN-based motion planners and verify their effectiveness on a real car-like robot,
so as to identify the better one in terms of performance, adaptability and others.
Moreover, their performances have been compared with that of the potential field
method. The stability of the developed navigation schemes have also been analyzed
in the present work, based on the Lyapunov’s theory.

The rest of the paper is structured as follows: In Section 2, motion planning
problem of a car-like robot is stated along with its mathematical formulation.
Developed navigation schemes are discussed in Section 3. Experimental set-up is
described and the methods of conducting the experiments are explained in Section 4.
Results are presented and discussed in Section 5 and stability of the developed
navigation schemes is analyzed in Section 6. Comparisons of others’ work have been
made with the present work in Section 7. Finally, some concluding remarks are made
in Section 8 and the scope for future work is indicated in Section 9.

2 Navigation Problem of a Car-Like Robot

A mobile robot will have to find its collision-free path during navigation among
some static obstacles. Depending on the position and size of the obstacles, the
robot may find a number of collision-free paths. However, our aim is to determine
that particular path, which is not only the collision-free but also time-optimal. The
performances of the developed motion planners have been tested on a real car-
like robot as shown in Fig. 1. Its kinematic and dynamic constraints may impose
some restrictions on its motion. Therefore, a particular collision-free path (may be
time-optimal also) of the robot may not be possible to achieve until or unless the
constraints are satisfied. Figure 2 shows a typical problem scenario, in which a car-
like robot is moving among five obstacles, sharing the common workspace. The robot
has to find its time-optimal and collision-free path during its movement between
a starting position S and a goal position G. Now, to reduce the complexity of the
problem, only one obstacle has been treated as the most critical one and the motion
of the robot is planned based on that particular obstacle. Moreover, the wheels of the
robot are allowed to move due to pure rolling action only and Coriolis component of
the force is neglected, in the present study. Thereafter, the total path of the robot is
assumed to be a collection of a number of small segments, each of which is traveled
during a fixed time �T. The robot negotiates its motion during those time steps,
in order to avoid collision with the most critical obstacle. The critical obstacle has
been identified depending on the relative position of the robot and the obstacles.
The obstacle physically closest to the robot, may not be treated as the most critical
one always. If any obstacle lies within an angle of 120◦ (within +/− 60◦ from the
robot’s main axis) and inside the imaginary extended bounding circle of the robot
indicating the distance step, then it might be considered as a critical obstacle. Among
all such obstacles, the physically closest one is taken as the most critical obstacle.
Thus, although the obstacle O4 (refer to Fig. 2) is the physically closest to the robot,
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Fig. 1 Photograph of the
robot used in the experiment

it is not being treated as the most critical one. Rather the obstacle O3 is considered to
be the most critical one, because it lies within the angle of search. Now, the motion of
the robot is planned based on the two inputs – distance, angle as shown in Fig. 2. The
motion planner will determine acceleration and the angle through which it should

Fig. 2 Navigation of a car-like
robot among static obstacles
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deviate with respect to the reference line, so that it can avoid collision with the
obstacle.

2.1 Mathematical Formulation of the Problem

The developed motion planning scheme of the robot is explained with the help of
Fig. 3. The total path (starting from a pre-defined position to a fixed goal) of the
robot is assumed to be a collection of some small segments (either a straight one
or a combination of straight and curved paths), each of which is traversed during
a fixed time �T. If the robot finds any critical obstacle ahead of it, the motion
planner is activated. Otherwise, the robot moves toward the goal in a straight path
with a maximum possible velocity. The task of the motion planner is to determine
the acceleration (a) and deviation (θ1) of the robot based on the distance and angle
inputs, to avoid collision with it. This process will continue, until the robot reaches
its destination and total traveling time T is calculated by adding all intermediate time
steps taken by the robot to reach it. It is important to mention that the last time
step (Trem) may not be a complete one and it depends on the distance left uncovered
(dgoal) by the robot. If it (i.e., the goal distance dgoal) comes out to be less than or
equal to a predefined minimum distance (dmin), it starts decelerating and stops at
the goal. Again, sometimes the robot’s motion as provided by the motion planner
may violate its kinematic and/or dynamic constraints. In such a situation, the robot is
stopped at the present position itself. This is a dead-lock situation, where the robot
will not be able to find any feasible solution, as the obstacles are stationary. Our aim
is to design a suitable adaptive motion planner, so that the robot will be able to reach

Fig. 3 Flowchart of the
motion-planning scheme
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its destination with the lowest possible traveling time by avoiding collision with the
obstacles. Therefore, the present problem can be treated as a constrained traveling
time (T) minimization problem. Let us consider that the robot travels through U
number of complete time steps and a fractional time step Trem to reach its goal
after starting from an initial position. Thus, the optimization problem can be stated
as follows:

Minimize T = U × �T + Trem, (1)

subject to

• The path is collision-free,
• The following kinematic and dynamic constraints are satisfied.

(1) −Ẋ cos θ + Ẏ sin θ = 0,

(2) (Ẋ)2 + (Ẏ)2 − (ρminφ̇)2 ≥ 0,

(3) -
√

(μf g)2 − (vφ̇)2 ≤ a ≤
√

(μfg)2 − (vφ̇)2,

(4) a ≥ 60P
2πr×GR×M×Nm

,

where Ẋ and Ẏ are the components of tangential velocity along +ve X-axis and
+ve Y-axis, respectively and θ is the angle between the X-axis and the main
axis of the robot. The minimum radius of curvature is represented by ρmin and
φ̇ denotes the rate of steering angle during turning. Tangential velocity and
acceleration of the CG of the robot are represented by v and a, respectively and
power required by the motor to create maximum angular speed Nm is expressed
by P. Moreover, GR represents the gear ratio of the wheels, r is the radius of
the wheels of the robot and the mass of the robot is denoted by M. Again, μf

indicates the coefficient of friction between the wheels and the surface of the
terrain and the acceleration due to gravity is represented by g.

It is important to mention that both the above objective function as well as con-
straints are dependent on the variables – deviation and acceleration, the outputs of
the developed motion planner. It is also interesting to note that the traveling time will
be minimum, when the robot moves with the maximum possible acceleration, after
following the minimum deviation path. The deviation of a path is determined at each
step with respect to the corresponding reference line joining the present position of
the robot with its goal position.

3 Developed Navigation Schemes

Several methods had been tried by various investigators to solve the motion planning
problem of a robot in the presence of some static obstacles. The authors have also
developed some useful methods, some of which are discussed below, which were
found to be effective through computer simulations.

3.1 Approach 1: Genetic-fuzzy System

An FLC may provide feasible solutions to the said problem. Two condition variables,
such as (1) distance of the robot from the most critical obstacle and (2) angle between



342 J Intell Robot Syst (2008) 51:333–368

the line joining the robot and the most critical obstacle and the reference line
(joining the robot and its goal) are fed as inputs to the controller. The outputs of
the controller are considered to be deviation and acceleration required by the robot
to avoid collision with the most critical obstacle. In the present study, the range of
distance is divided into four linguistic terms: very near (VN), near (NR), far (FR),
very far (VF). Five linguistic terms have been considered for both the angle as well as
deviation: left (LT), ahead left (AL), ahead (AH), ahead right (AR) and right (RT)
and acceleration is considered to have four terms: very low (VL), low (L), high (H),
very high (VH). Therefore, there will be a maximum of twenty input combinations,
and for each input combination, there is a maximum of twenty output combinations.
Thus, there is a maximum of 400 (i.e., 20 × 20) rules present in the rule base and a
particular rule will look like the following.

IF distance is VF AND angle is LT, THEN deviation is AH and acceleration is VH.

For ease of implementations, membership function distributions of both the input
as well as output variables are assumed to be symmetric triangles (refer to Fig. 4).
Thus, the data base of the FLC may be represented by providing the four continuous
variables representing the half base-widths of the triangular membership function
distributions. The performance of an FLC depends on its both data base as well as
rule base, which are to be optimized simultaneously. Different methods are available
for the development of a suitable KB of an FLC and automatic design procedure
using a GA is found to provide the best result for solving the navigation problems
of a car-like robot, in simulation [23]. Thus, in the present work, an attempt is made
to develop a good KB of an FLC automatically by using a binary-coded GA. A GA-
string consisting of 440-bits is considered to represent the KB of the FLC as shown
below.

10 · · · 1 01 · · · 1 10 · · · 0 01 · · · 0︸ ︷︷ ︸
Data base

10 · · · 01︸ ︷︷ ︸
Input combinations

10101 . . . 0101 . . . 11001︸ ︷︷ ︸
Consequent of the rules

The first 40-bits in this string represent the half base-widths of the four triangles
(10 bits for each variable) and the next 20-bits are used to indicate the presence

Fig. 4 Membership function
distributions for input and
output variables of the FLC
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or absence of the input combinations in the rule base (1 for presence and 0 for
absence). Out of the remaining 380-bits of the string, every 19-bits will carry the
information regarding the combination of the consequents, for a particular input
condition. We count the number of 1s present in each 19-bits long sub-string. If it
comes out to be zero, it will represent the first output combination, i.e., deviation is
LT and acceleration is VL, and so on. Figure 5 shows the working principle of the
combined GA-FLC/NN approach. The GA begins its search by randomly creating a
number of solutions (equals to the population size) represented by the binary strings
and each string indicates a typical fuzzy/neural network-based motion planner. Each
solution in the population is then evaluated, to assign a fitness value. The fitness of a
GA-string is calculated by using the equation given below.

Fitness = 1

N

N∑
n=1

1

U

U∑
s=1

2∑
v=1

(Tnsv − Onsv) + Penalty, (2)

where U denotes the total number of time steps in a planned path and the total
number of training scenarios is indicated by N. Onsv and Tnsv are representing the
values of actual output and target output, respectively, of an output variable (say,v).

Fig. 5 A schematic diagram
showing the working principle
of the genetic-fuzzy/neural
system
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The target output for deviation is considered to be equal to zero and that for
acceleration is taken as the maximum permissible acceleration of the robot. A fixed
penalty equals to 2,000 is given to the string, if the FLC represented by it, is unable
to provide any solution particularly in case of non-firing situation or the generated
motion of the robot fails to satisfy the dynamic and/or kinematic constraints.

After the fitness is assigned to each solution in the population, they are modified
by using three operators – reproduction, crossover and bit-wise mutation. One
iteration involving these three operators followed by the fitness evaluation is called
a generation. Generations proceed until a termination criterion is satisfied. In this
approach, the GA is allowed to run for a pre-specified number of generations.

During optimization, an optimal rule base of the FLC is determined by considering

the importance of each rule [55], which is calculated as Iij = pij C j, where pij denotes
the probability of occurrence of jth output combination corresponding to ith input

condition of the rule, where i, j = 1, 2, · · · , 20 and C j = 1
2 (Cq + Cr), where Cq and

Cr are the average worth of qth linguistic term of the first output (i.e., deviation)
and rth term of acceleration output, respectively. It is important to note that the
worth, corresponding to a linguistic term of an output, is determined by following
the Gaussian distribution pattern, maximum being occurred for deviation output AH
and acceleration output VH. It is also to be noted that during optimization, half-base
width of four triangular membership function distributions are varied in the ranges
of (40, 60), (20, 40), (20, 40) and (5, 15), respectively.

3.2 Approach 2: Genetic-neural (GA-NN) System

Neural network has the capability of solving different complex real-world problems
and it may also provide a feasible solution to the present problem. However, the
performance of an NN-controller depends on its topology, connecting (synaptic)
weights and biases. Quite a few researchers tried to develop a suitable NN controller
using a back-propagation algorithm. But, optimal design procedure of an NN ar-
chitecture using a GA, resulted better solution for solving the similar problem, in
simulation [34]. Thus, in the present study, simultaneous optimization of weights and
the architecture of a neural network using a GA is followed. A three-layered fully-
connected neural network architecture is considered in the present study. The first
layer contains two neurons representing the two different inputs (i.e., distance and
angle) of the controller. In the hidden layer, a maximum of twenty neurons have been
assumed and the optimal number of neurons present in this layer is varied between
2 to 20, during optimization. In the output layer, two neurons have been considered,
which represent the two different outputs (i.e., deviation and acceleration) of the
motion planner. It is to be noted that the activation functions at each layer are
assumed to be tan-hyperbolic in nature and bias values of all the neurons are kept
constant through out the study. Now, to select proper magnitudes of the constant
of activation functions (C1, C2, C3) and to optimize the weights of the network,
a binary-coded GA with 850-bits long string has been utilized. The first 30 bits
will carry information of three continuous variables – C1, C2, C3 (10 bits for each
variable), representing the constants of hyperbolic functions at three different layers.
Out of the remaining 820 bits, every 41 bits (starting from 31st bit location of 850-bits
long string) are used to indicate the existence of a hidden neuron (1 for presence and
0 for absence) and its corresponding four synaptic weights (10 bits for each weight).
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Therefore, a GA-string will look as follows (in which 41-bits are shown to indicate
the presence of jth neuron and its connecting weights, such as v1 j, v2 j, w j1, w j2):

1 · · · 1︸ ︷︷ ︸
C1

0 · · · 1︸ ︷︷ ︸
C2

1 · · · 0︸ ︷︷ ︸
C3

. . . . . . 1︸︷︷︸
jth hidden neuron

1 · · · 1︸ ︷︷ ︸
v1 j

0 · · · 1︸ ︷︷ ︸
v2 j

1 · · · 0︸ ︷︷ ︸
w j1

0 · · · 0︸ ︷︷ ︸
w j2

. . .

︸ ︷︷ ︸
Architecture of NN

It is important to mention that we have restricted our search up to a maximum
of twenty neurons lying in the hidden layer. During optimization, the constants of
activation function for three layers are varied in a range of (0.1 to 15.0) and the
weights are allowed to vary from 0.0 to 1.0. The ranges of variation of different
variables are selected after a careful study. The working principle of the combined
GA-NN approach is almost similar to the combined GA-fuzzy approach (refer to
Fig. 5). The fitness of the GA-string has been calculated in the same way, as it has
been done in case of the GA-fuzzy approach (refer to Eq. 2).

3.3 Approach 3: Potential Field Method

Potential field method, introduced by Khatib [9], is widely used for real time
collision-free path planning of both manipulators as well as mobile robots. In this
approach, the robot is modeled as a particle moving under the influence of an
artificial potential field, which is determined by the set of obstacles and the target
destination. The target is assumed to have an attractive potential and the obstacles
generate the repulsive potentials. The movement of the robot is then achieved by
determining the resultant of the above attractive and repulsive forces. However, the
performance of the potential field method depends on the chosen artificial potential
function. Several potential functions, such as parabolic-well, conic-well, hyperbolic
function, rotational field function, quadratic, exponential function, had been tried
by various investigators [1, 10], out of which, parabolic and hyperbolic functions
had been widely used for solving the similar problem [56], due to their nonlinear
approximation capability about the system. The attractive potential field Uatt(X)

can be defined as a parabolic-well as follows.The attractive Uatt(X) and repulsive
Urep(X) potential fields, used in this study, can be expressed as follows.

Uatt(X) = 1

2
ξ att d2

goal(X), (3)

where ξ att is a positive scaling factor of attractive potential and dgoal(X) denotes the
Euclidean distance of the robot from its goal.

Urep(X) = 1

2
ξ rep

[
1

dobs(X)
− 1

dobs(0)

]2

, (4)

where ξ rep is a positive scaling factor of repulsive potential, dobs(X) indicates the
Euclidean distance of the robot from the obstacle, dobs(0) represents the distance
of influence of the obstacle and it is made equal to the center distance between the
robot’s bounding circle and that of the obstacle.
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Attractive potential force is then determined by differentiating the attractive
potential with respect to dgoal(X), as given below.

Fatt(X) = ξ att dgoal(X) (5)

Similarly, the repulsive potential force Frep(X) can be determined as follows.

Frep(X) = −ξ rep
1

d2
obs(X)

[
1

dobs(X)
− 1

dobs(0)

]
(6)

The resultant potential force F(X) is then calculated by adding Fatt(X) with Frep(X)

vectorially. In this approach, the acceleration output is taken to be proportional to
the magnitude of the resultant force F(X) and deviation output is considered as
the angle made between the direction of the resultant potential force and the new
reference line joining the CG of the robot at the present time step and the goal
position.

4 Description of the Experimental Set-up

A full package related to a soccer playing robot system has been purchased from
Microrobot NA, South Korea, for the experimental verification of the developed
motion planning schemes. The package consists of a robot, a CCD camera along
with a frame grabber board and a radio-frequency module to ensure wireless
communication between the robot and the host PC. Figure 6 shows the photograph
of the experimental set-up. The robot and the obstacles are allowed to move over
the field. A CCD camera mounted on a tripod is used for sensing the environment.
The camera sends continuous electrical signals to the computer through a BNC video
cable. Thereafter, a frame grabber board, namely vision board is used to convert the
continuous signal to 2-D digital images. Once the images are captured and stored
into the computer frame memory, these are analyzed to obtain the position and size
of both the obstacles as well as the robot. Developed motion planning schemes are
then utilized to find the safe path of the robot. Thereafter, controlled information is
communicated to the robot by means of a radio-frequency module, which transmits
data through a communication protocol.

4.1 Methods of Conducting the Experiments

The experiments are carried out by following the steps mentioned below.

1. Camera Calibration: A CCD camera is used for collecting information of the
dynamic environment. However, the performance of the camera depends on
some of its internal/geometric and external parameters. An optimal set of those
parameters has been determined by using a binary-coded genetic algorithm, in
the present study.

2. On-line Image Processing: The images captured with the help of the camera
and its accessories are analyzed by developing a fast and noise insensitive image
processing method. It includes the following modules:

– Noise removal using median filtering,
– Binarization of the images by means of a threshold value,
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Fig. 6 The photograph of the
experimental set-up

– Estimation of the perimeters, area of the objects by using the perimeter
descriptor,

– Labeling of the objects,
– Removal of extraneous components by using a size filter.

3. Control of the robot: The inputs of the motion planner are obtained by analyzing
the images captured using the camera. The motion planner’s outputs are then
utilized to determine the angular speed of two wheels of the robot and these
are implemented by following PD control law. Thereafter, speed information of
the wheels are communicated to the robot by means of a radio-frequency (RF)
module. Thus, it is possible to achieve a wireless communication between the
robot and the host computer. Finally, actuation of the robot takes place with the
help of two separately controlled differential drive DC motors.

5 Results and Discussion

Attempts have been made to solve the navigation problems of a real car-like robot
moving among some static obstacles, in the present work. Three different motion
planners have been developed as explained earlier for the said purpose. Since the
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Fig. 7 Results of the parametric study to obtain the optimal GA-parameters for determining a good
KB of an FLC: a fitness vs. crossover probability, b fitness vs. mutation probability, c fitness vs.
population size, d fitness vs. maximum no. of generations

design of both the fuzzy logic-based as well as neural network-based motion planners
is a tedious job and requires training and/or learning to improve their performances,
an off-line training procedure has been adopted by using a GA for the development
of a suitable adaptive motion planner. A set of two hundred training scenarios
consisting of the information of the starting position of the robot, positions of the
obstacles and size of all the objects have been considered for this purpose. The
time interval (�T) is taken to be equal to 0.033 s. The robot is assumed to have a
maximum and minimum acceleration of 50 and 5 mm/s2, respectively. It is to be noted
that during training the obstacles are assumed to be circular and the radii of their
boundaries are varied between 10 to 30 mm, the maximum and minimum velocities
of the robot are considered to be equal to 200 and 2 mm/s, respectively. Collision-free
movements of the robot are presented for two different cases. In Case 1, the robot is
allowed to navigate among two static obstacles, whereas more complex environment
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Table 1 Importance factor of
each rule of the optimized
RB – Case 1

Rule no. Dist. Ang. Dev. Accn. Imp. factor

1 VN LT LT VH 0.0000408
2 VN AL AL VH 0.0013100
3 VN AH AH VH 0.0004950
4 NR AL AH H 0.0020800
5 NR AH AR VH 0.0052500
6 NR RT AH VH 0.0024400
7 FR LT AH VH 0.0005380
8 FR AL AH VH 0.0009450
9 FR AH RT VH 0.0002980
10 FR RT AH H 0.0046500
11 VF AL AL VH 0.0000023
12 VF AR AH H 0.0004480
13 VF RT AH VL 0.0000119

having three obstacles are considered in Case 2. The performances of the FL-based
and NN-based motion planners are compared among themselves and to that of a
conventional potential field method for solving the same problem.

5.1 Case-1: Navigation Among Two Obstacles

The navigation problem of the robot among two stationary objects is studied in
a grid of 1.3 × 1.1 m. Since the performance of a GA depends on its parameter
setting, experiments are carried out with different sets of parameters, to find the most
suitable one. Results of the parametric study are shown in Fig. 7. The best results
are obtained with the following GA-parameters: crossover probability pc = 0.96,
mutation probability pm = 0.0022, population size Y = 120, maximum number of
generation Maxgen = 105. After the training of FL-based motion planner is over, the
GA has selected thirteen good rules from a total of twenty, as shown in Table 1 and
the optimized membership function distribution is shown in Fig. 8. It is interesting to

Fig. 8 Optimized membership
function distributions of the
FLC – Case 1
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note that in the rules involving VN distance (the first three rules of Table 1), linguistic
terms for the input – angle and the output – deviation are coming to be the same. It
may be due to the fact that the numerical values of the half base widths of the GA-
optimized membership function distributions for angle input and deviation output
are not the same. Moreover, the second output – acceleration has appeared to be
VH. Thus, if the robot finds any obstacle in its close vicinity, it will try to come out of
this situation with a very high velocity.

Due to the iterative nature of the GA, some redundant rules might be developed
in the rule base. To identify them, an importance factor [55] of each rule appeared in
the optimized rule base, is determined by multiplying its probability of occurrence
with the worth. Table 1 shows the importance factor of each rule present in the
optimized rule base. An experiment is also carried out to check whether the GA-
designed rule base contain any redundant rule. When the FLC is run with the eleven
optimal rules after removing the rule numbers 11 and 13 of Table 1 (based on the
lowest importance factor), no incidence of non-firing is reported. But, whenever one
more rule is removed from the rule base, non-firing situations are found to occur
for 2,645 times for the training scenarios. It is also observed (as expected) that the
number of non-firing cases increases with the reduction of number of rules present
in the rule base (refer to Table 2). From this experiment, it has been concluded
that the further reduction of the size of the GA-optimized rule base is possible and
optimal rule base of the FLC will contain only eleven rules. In Approach 2 also, the
parameters of GA are varied in their respective suitable ranges and the following
GA-parameters have yielded the best result during training: uniform crossover
with probability pc = 0.5, pm = 0.00124, Y = 190, Maxgen = 80. The GA-optimized
NN is seen to contain only six neurons in the hidden layer and the constants of
activation function for three layers are found to be equal to 14.836, 14.617 and 4.339,
respectively. It is interesting to note that the synaptic weights between the hidden
neurons and the neuron corresponding to the deviation output of the optimized
network are found to lie on the lower side of their individual ranges. On the other
hand, those between the hidden neurons and the neuron related to the acceleration
output are seen to have the higher values. It may be due to the fact that the target
value of the deviation output is assumed to be equal to zero and that for the
acceleration output is considered to be its maximum value, in the present study.
Moreover, the effect of distance input on the output values is found to be more
than that of the angle input. It may happen due to the fact that the obstacles are
stationary, and as a result of which, as the distance input decreases and the angle
input will increase, when the robot approaches towards the obstacle.

After the GA-based off-line training is over, the effectiveness of the soft
computing-based approaches are compared among themselves and with that of the
potential field approach, for five random test scenarios (refer to Table 3), which are
not included among the training scenarios. Table 4 compares the performances of
three approaches for five test scenarios (refer to Table 3) in terms of deviation and
acceleration errors. Approach 3 is found to be the best in terms of deviation error,
whereas it has been defeated by other approaches in terms of acceleration error.
The average error has been determined of the said two errors considering all the
scenarios. Approaches 1 and 3 are found to be the best and worst, respectively, in



J Intell Robot Syst (2008) 51:333–368 351

Table 2 Number of rules
present in RB vs. number of
non-firing incidences

No. of rules Rule no. No. of non-firing Traveling
present in RB made absent incidences time (s)

13 – 0 13.8519
12 11 0 13.8717
11 11, 13 0 13.9404
10 11, 13, 1 2,645 18.5963
09 11, 13, 1, 9 2,795 19.1397
08 11, 13, 1, 9, 12 4,195 19.8977
07 11, 13, 1, 9, 12, 3 4,214 19.9797
06 11, 13, 1, 9, 12, 3, 7 5,641 20.6383

Table 3 Five different test scenarios – 2-obstacles case

Scenario Starting point Goal point Posn. of Posn. of
number of the robot of the robot first obs. second obs.

(mm, mm) (mm, mm) (mm, mm) (mm, mm)

1 (284, 128) (1,300, 1,100) (641, 115) (546, 595)
2 (286, 124) (1,300, 1,100) (379, 820) (613, 719)
3 (112, 201) (1,300, 1,100) (499, 320) (903, 211)
4 (420, 160) (1,300, 1,100) (613, 595) (304, 1,008)
5 (282, 224) (1,300, 1,100) (824, 861) (455, 692)

Table 4 Comparison of three approaches in terms of accuracies – 2-obstacles case

Scenario Deviation error Acceleration error
number Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3

1 0.168017 0.203950 0.184260 0.243792 0.139887 0.225970
2 0.134834 0.010620 0.143550 0.043509 0.016944 0.452600
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
4 0.098037 0.333708 0.000000 0.217256 0.379009 0.580060
5 0.040557 0.213684 0.000000 0.269234 0.291645 0.399390

Avg. Approach 1 Approach 2 Approach 3
Error 0.121524 0.158945 0.198583

Table 5 Comparison of three
approaches in terms of
traveling time (seconds) –
2-obstacles case

Scenario FLC NN PFM
number (s) (s) (s)

1 21.1 21.7 23.7
2 16.1 14.5 18.4
3 13.2 13.2 13.2
4 15.5 16.1 16.8
5 13.5 13.2 14.1
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terms of average error. Table 5 shows the traveling time taken by the robot following
three approaches. The performance of Approach 1 is found to be better than
that of Approach 2 in two test scenarios. Moreover, in four out of five scenarios,
Approaches 1 and 2 have performed better than Approach 3. It may be due to
the fact that there is no in-built optimization module in Approach 3. The values of
traveling time taken by the robot after following all the approaches have come out
to be the same in case of third scenario (refer to Table 5). It may happen due to the
fact that the robot has never faced any critical obstacle ahead of it, during its motion.
For a particular test scenario (i.e., 1st test scenario of Table 3), positions of the robot
and the obstacles at eight different instants of time are shown in Figs. 9, 10 and 11
for Approaches 1, 2 and 3, respectively. Moreover, Fig. 12 shows the paths planned
by the robot using all three approaches for the first test scenario of Table 3. The
robot has taken left turn to avoid the second obstacle by following Approaches 1
and 3, whereas it takes right turn in Approach 2. A special situation as shown in
Fig. 13 may also occur, where both the obstacles are residing very close to each other
and the absolute values of their included angle with respect to the robot are coming
out to be very low. In such cases, none of the motion planners is able to provide the
feasible solution. It is solved by giving a geometric correction to the motion planner’s
deviation output. Out of these two obstacles, the one which is nearer to the robot is
treated as the most critical one. Now, the movement of the robot is planned on the
side opposite to that of the second obstacle with respect to the robot. In the present
case, the second obstacle is residing on the left side of the critical obstacle. So, the
movement of the robot is planned towards the right side of the critical obstacle (refer
to Fig. 14).

5.2 Case-2: Navigation Among Three Obstacles

Collision-free navigation of a car-like robot in the presence of three stationary
obstacles have been considered in the present case. The following GA-parame-
ters have provided the best result in Approach 1: pc =0.8, pm =0.0058, Y =180,

Maxgen=190. During optimization, the GA has selected eight good rules from a to-
tal of 20 possible rules through search. It is also interesting to note that only one rule
(i.e., rule no. 20) has been identified as the redundant, out of eight good rules found
by the GA. Redundancy of a rule is checked by using the concept of importance
factor, as discussed earlier. The optimized membership function distributions are
shown in Fig. 15 and the optimized rule base of the FLC consisting of seven rules is
shown in Table 6 along with the importance factor of each rule. During the evolution
of a suitable NN-based motion planner using a GA, the best result is obtained with
the following GA parameters: pc = 0.5, pm = 0.00108, Y = 200, Maxgen = 120. The
optimal number of neurons lying in the hidden layer comes out to be equal to three
only and the constants of activation functions at three layers, for which the best result
is obtained, are seen to be equal to 12.441, 10.566 and 5.817, respectively.

Table 7 shows five different test scenarios. Comparisons have been made of the
three approaches in terms of their deviation error, acceleration error in Table 8
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g h

Fig. 9 Positions of the robot among two static obstacles at eight instants of time – Approach 1
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Fig. 10 Positions of the robot among two static obstacles at eight instants of time – Approach 2
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Fig. 11 Positions of the robot among two static obstacles at eight instants of time – Approach 3
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Fig. 12 Movement of the robot among two static obstacles in Scenario 1 of Table 3

for all the five test scenarios shown in Table 7. The average values of the errors
obtained by different approaches have been calculated considering all the scenarios.
It is interesting to note that both Approaches 1 and 2 have outperformed Approach 3,
in terms of average error. Moreover, the performance of Approaches 1 and 2 are
found to be comparable.

a b

Fig. 13 A typical scenario showing the position of the robot among two closely spaced static
obstacles
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a b

d e

Fig. 14 A possible solution of the typical scenario shown in Fig. 13

Traveling time values of three different approaches for five test scenarios, are
shown in Table 9 and Approach 2 is found to perform better than other approaches,
in most of the test scenarios. Moreover, traveling time taken by the robot while
following Approach 3 is found to be the maximum. It could be due to the fact that

Fig. 15 Optimized
membership function
distributions of the FLC for
three obstacles case (Case 2)

LT     AL     AH    AR     RT

M
em

be
rs

hi
p 

V
al

ue

1.0

 0.0

Deviation (deg)
W

1.0

 0.0M
em

be
rs

hi
p 

V
al

ue

V1

1

VN          NR          FR          VF

Distance (mm)

–40.0  –20.0      0.0     20.0      40.0

10              60             110            160

LT     AL     AH    AR     RT

M
em

be
rs

hi
p 

V
al

ue

V2

1.0

 0.0

Angle (deg)

1.0

 0.0M
em

be
rs

hi
p 

V
al

ue

W2

VL            L           H           VH

Acceleration (mm /s  )2

–78.0  –39.0     0.0    39.0       78.0

   5           19.8            34.6            49.4



358 J Intell Robot Syst (2008) 51:333–368

Table 6 Importance factor of
each rule of the optimized rule
base for three obstacles case

Rule no. Dist. Ang. Dev. Accn. Imp. factor

1 VN AL LT VH 0.000027907
2 VN AH AH VH 0.003069424
3 VN RT AH VH 0.000558174
4 NR RT AH VH 0.007500713
5 FR AL AH VH 0.013002920
6 FR AH AL VH 0.020882550
7 VF AR AH VH 0.001008886

Table 7 Five different test scenarios – 3-obstacles case

Scenario Starting point Goal point Posn. of Posn. of Posn. of
number of the robot of the robot first obs. second obs. third obs.

(mm, mm) (mm, mm) (mm, mm) (mm, mm) (mm, mm)

1 (282, 279) (1,300, 1,100) (247, 870) (544, 1,182) (186, 971)
2 (276, 256) (1,300, 1,100) (227, 893) (455, 742) (187, 971)
3 (365, 160) (1,300, 1,100) (142, 1,255) (841, 586) (239, 623)
4 (806, 188) (1,300, 1,100) (166, 1,072) (540, 348) (140, 921)
5 (331, 481) (1,300, 1,100) (426, 206) (290, 1,063) (802, 825)

Table 8 Comparison of three approaches in terms of accuracies – 3-obstacles case

Scenario Deviation error Acceleration error
number Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3

1 0.076962 0.259627 0.000000 0.116307 0.197070 0.341300
2 0.062872 0.131874 0.119649 0.120476 0.208765 0.281140
3 0.010022 0.103031 0.031064 0.121000 0.107023 0.333333
4 0.001018 0.090203 0.000000 0.102008 0.070707 0.261917
5 0.143000 0.020560 0.095155 0.471910 0.032635 0.813076

Avg. Approach 1 Approach 2 Approach 3
Error 0.122558 0.122150 0.227663

Table 9 Comparison of three
approaches in terms of
traveling time (seconds) –
3-obstacles case

Scenario number FLC (s) NN (s) PFM (s)

1 24.4 23.1 27.0
2 25.0 25.7 29.0
3 26.4 25.7 31.6
4 25.0 22.4 27.0
5 20.4 19.8 21.7
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Fig. 16 Positions of the robot among three static obstacles at eight instants of time – Approach 1



360 J Intell Robot Syst (2008) 51:333–368

Fig. 17 Positions of the robot among three static obstacles at eight instants of time – Approach 2
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a b

c d

e f

g h

Fig. 18 Positions of the robot among three static obstacles at eight instants of time – Approach 3



362 J Intell Robot Syst (2008) 51:333–368

Fig. 19 Movement of the robot among three static obstacles in Scenario 1 of Table 7

Approach 3 does not have any in-built optimization module and the robot may
also get trapped into the dead-lock situation. The positions of the robot among
the obstacles for eight successive instants of time are shown in Figs. 16, 17 and 18,
respectively, as obtained by the three approaches.The paths planned by the robot
among three static obstacles by following all three approaches are shown in Fig. 19
for the first test scenario of Table 7.

It is to be noted that although the robot travels the maximum path by following
Approach 2, it moves with the reasonably high velocity. On the other hand, the robot
moves very slowly in Approach 3, while avoiding any critical obstacles. Thus, the
traveling time taken by the robot in Approach 3 is found to be more compared to that
in Approaches 1 and 2. Moreover, in Approach 3, the speed of the robot decreases,
as it comes nearer to the goal. It is interesting to note that some actuation error of
the motors has been noticed, while performing the experiment. It may happen due to
the following reasons: (a) time lag between the consecutive communication signals,
(b) fluctuations in the supplied voltage of the battery.

In the present study, only one obstacle has been treated as the most critical one
during a time step and the robot plans its collision-free path accordingly. Thus, the
developed motion planners will be able to tackle the problems involving different
number of obstacles present in the environment.
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6 Stability Analysis

In the present study, an attempt is made to test the stability of the navigation system
based on the Lyapunov’s stability theory, which is explained below.

Lyapunov theory: Assume that there exist a scalar function V of the state q =
[x, y, θ ]T , with continuous first order derivatives such that

1. V(q) is a positive definite,
2. V̇(q) is a negative definite,
3. V(q) → ∞ as ‖ q ‖→ ∞.

If the above conditions are satisfied, then the equilibrium point at the origin is
globally asymptotically stable.

Let us consider a Lyapunov function as mentioned below.

V(q) = 1

2
qAqT = 1

2
[h(x2 + y2) + θ2] (7)

Now, to satisfy the first criterion of the Lyapunov stability, the value of h will have to
be positive. Thereafter, differentiating the above equation with respect to the time,
we get,

V̇(q) = h(xẋ + yẏ) + θ θ̇ = hvt(x cos θ + y sin θ) + θω, (8)

where q̇ = [ẋ, ẏ, θ̇ ]T = [vtx cos θ, vt y sin θ, ω]T Thus, the point q will be globally
asymptotically stable, if and only if V̇(q) < 0, i.e.,

hvt(x cos θ + y sin θ) + θω < 0

or, ω < −hvt(x cos θ + y sin θ)

θ
. (9)

To equalize the above in-equation, we consider that there is some noise in the system,
which forces the system towards the unstable zone. Let us assume that the above in-
equation (9) can be converted into an equation as follows.

ω = −kθ − hvt(x cos θ + y sin θ)

θ
, (10)

where both k and h are positive quantity.
Now, to study the present stability condition in a more deeper sense, two assump-

tions are made as below.

Assumption 1 The robot is allowed to navigate in the first quadrant only, i.e., both
the initial position (xinit, yinit) as well as the goal position (xgoal, ygoal) are assumed to
be lying in the first quadrant. Therefore, xinit, yinit, xgoal, ygoal ≥ 0.

Assumption 2 The robot is allowed to move in the forward direction only, i.e.,
tangential velocity (vt) is always positive (0 ≤ vt ≤ vmax).
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In the present study, the main aim of a navigation scheme is to determine
acceleration (a) and deviation (θ1) of the CG of the robot, necessary to avoid collision
with the obstacles as discussed earlier. Now, from the values of a and θ1, tangential
velocity (vt) and steering rate (ω) of the CG of the robot are calculated. Moreover,
the direction (θ) along which the robot is moving can also be obtained from the
previous time step calculation. Thus, by knowing vt, ω and θ , it is possible to calculate
the value of k by following the Eq. 10. Now, if k comes out to be positive, then the
system at that point will be stable. On the other hand, if it is found to be negative,
then the system at that particular point will not be stable.

Let us take an example, in which the robot’s present position is at (958, 703 mm)
and present direction of movement is seen to be 2.7 radian with the positive X-axis
of the global coordinate system. At this position, the motion planner’s output, i.e.,
acceleration and deviation are found to be equal to 124.15 mm/s2 and 1.22 radian,
respectively. The velocity and steering rate of the CG of the robot before turning are
calculated and those are found to be equal to 29.7 mm/s and 0.019 rad/s, respectively.
The value of k is then calculated by following Eq. 10 and it is found to be equal to
77.588. Thus, the robot is found to be stable at the above point.

In the developed motion planning schemes, the above mentioned stability analysis
of the robot has been carried out at each time step before the execution of its
movement. If the robot is found to be unstable during a time step, it has been stopped
during the said step but it will continue its planning for the next time step.

7 Comparisons with Others’ Work

The prime aim of this study is to design and develop an adaptive robot motion plan-
ner that can plan and control the motion of a wheeled robot, navigating among some
static obstacles. In the past, several attempts were made by various investigators to
develop motion planners for the said purpose. Some of those are mentioned below
for the purpose of comparison with the approaches developed in the present work.

Marichal et al. [18] proposed a neuro-fuzzy approach to guide a mobile ro-
bot. They considered the least mean squared algorithm for the learning purposes
and Kohonen’s self-organizing feature map algorithm had been applied to obtain
the initial number of fuzzy rules and membership function centers. However, in
their approach, they did not optimize the traveling time. Moreover, their method
was tested among two kinds of static obstacles (rectangular and corner shaped).
Li et al. [20] developed a neuro-fuzzy system architecture for behavior-based control
of a mobile robot. In their approach, an NN was used to understand the environments
and behavior fusion was done using a fuzzy logic algorithm. However, the perfor-
mance of their technique was not tested on a real robot. Gu and Hu [29] developed a
path tracking scheme for a car-like robot based on a neural network. However, their
model may fail to perform well in a situation, where the robot is subjected to some
dynamic constraints, as those were not taken into account.

In the present work, both FL-based as well as NN-based motion planners have
been developed to generate time-optimal, collision-free path of a real mobile robot
navigating in the presence of some static obstacles. Both kinematic as well as
dynamic constraints of the robot have been considered. GA-based optimization has
been attempted to eliminate the local minima problem associated with the back-
propagation algorithm.
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8 Concluding Remarks

The prime aim of this study is to develop an adaptive navigation schemes for a
real car-like robot moving among some static obstacles. A fuzzy logic-based and a
neural network-based motion planner had been developed by the authors in the past
(refer to the references [34, 55]). However, performances of those developed motion
planners were tested through computer simulations only. In the present study, an
attempt is made to test the effectiveness of both the fuzzy logic as well as neural
network-based motion planners on a real robot to identify the best one in terms
of traveling time and adaptability. Training to both the FL and NN-based motion
planner is given off-line using a GA. During training, computational complexity
involved to converge to a fixed accuracy level for the FL-based approach is seen to be
low compared to that of the NN-based motion planner. It may be due to the fact that
a longer binary string is required to represent an NN compared to that necessary
for indicating an FLC. Once the optimization is over, performances of both these
soft computing-based approaches are compared among themselves and with that of
a conventional potential field method (i.e., Approach 3) for solving the navigation
problems of a real wheeled robot. The performances of both the soft computing-
based approaches are found to be comparable. The traveling time taken by the robot
by following Approach 3 has come out to be the maximum in most of the cases. It
may be due to the reason that there is no in-built optimization module. Moreover,
some cases have been noticed, where the robot in Approach 3, has failed to find
any feasible solution. This may happen when the repulsive potential balances the
attractive potential. Some other important features have been revealed during the
experimentation, which are mentioned below.

– Performances of the soft computing-based approaches are found to be better
than the conventional potential field method in terms of traveling time taken by
the robot to reach the goal.

– If at any instant of time, motion of the robot is restricted due to its kinematic
and/or dynamic constraints, the motion planner is unable to provide with any
other feasible solution. This is commonly known as the dead-lock situation. It has
happened due to the fact that the positions of the obstacles are fixed. It is to be
noted that Approach 3 has yielded a maximum number of dead-lock situations.

– As the attractive potential force decreases linearly, when the robot comes closer
to the goal, the motion planner in Approach 3 is unable to yield a high value of
acceleration, irrespective of the obstacle’s position in the environment.

– Although Approach 2 sometimes has generated the longest distance path, its
performance in terms of traveling time is not found to be the worst, due to the
relatively higher speed of the robot during its movement.

The soft computing-based navigation schemes have come out to be promising
for the development of intelligent and autonomous robots. However, design and
development of a suitable soft computing-based motion planner is not an easy task.
Once optimized, they will perform in an optimal sense and provide with some feasible
solutions in an adaptive manner, so that it will be able to tackle some unknown
situations effectively.
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9 Scope for Future Work

Motion planning problems of a mobile robot among a few static obstacles have been
considered in the present study. It will be more interesting and difficult too, to tackle
the motion planning problems of a mobile robot moving in the presence of some
moving obstacles. The modified versions of the developed algorithms may provide
with some feasible solutions to the said problem. However, the soft computing-based
approaches are expected to be more adaptive compared to the conventional potential
field approach. Moreover, it will be more interesting to study the coordination
issues of multiple mobile robots working in a common environment. In a dynamic
environment, the robot plans its motion based on the collected information with the
help of a vision system, on-line. Thus, any delay in processing the vision algorithm
may deteriorate the performance of the robot significantly. The authors are working
on these issues currently.
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