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An autonomous robot will have to detect the moving obstacles on-line, before it can plan its
collision-free path, while navigating in a dynamic environment. The robot collects information
of the environment with the help of a camera and determines the inputs for its motion planner
through image analysis. The present paper deals with the issues related to camera calibration
and on-line image processing. The problem of camera calibration is treated as an optimization
problem and solved using a Genetic Algorithm (GA), so as to achieve minimum Distorted
Image Plane Error (DIPE). The calibrated vision system is then utilized for the detection
and identification of the objects by analyzing the images collected at regular intervals. For
image processing, five different operations, such as median filtering, thresholding, perimeter
estimation, labeling and size filtering have been carried out. To show the effectiveness of the
developed camera-based vision system, inputs of the motion planner of a navigating robot
are calculated for two different cases. It is observed that on-line detection of the shapes and
postures of the obstacles is possible by using the developed vision system.
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algorithm, Image processing.
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List of symbols

s
(Ca,cy)
{C}
(o, dy)

Area of an object image

Value of size filter

Row and column numbers of the center of computer frame memory
Camera-centered coordinate system

Center to center distances of two successive pixels

Fitness of a GA-string

Lens distortion coefficients

Length of the overhang part of the camera tripod

Number of pixels in a line as scanned by the computer

Perimeter of an object image

Components of the position vector

Computer uncertainty factors

Components of translation vector

World coordinate system

Coordinates of a point P in the camera-centered coordinate system
Distorted image plane coordinates

Row and column numbers of the image pixel in computer frame memory
Undistorted image plane coordinates

Coordinates of a point P in the Global coordinate system

Time interval in seconds

Swing angle

Focal length of the lens

Pan angle

Angle of rotation about X-axis or tilt angle

List of Abbreviations

CCD
CCS
DIPE
DLT
GA
WCS

Charged Couple Device
Camera Coordinate System
Distorted Image Plane Error
Direct Linear Transformation
Genetic Algorithm

World Coordinate System



1. Introduction

Design and development of an autonomous mobile robot is the prime aim of the
current field of robotic research. A lot of work is going on throughout the world, to
make the robot more and more intelligent and autonomous. An autonomous robot
collects information of the environment through sensors and/or cameras and acts
upon that environment through actuators, after taking some decision. It involves
a number of tasks, such as sensor/camera calibration, obstacles detection, scene
modeling, path planning, obstacle avoidance, and others. The performance of a
motion planner depends on the collected information of the environment also, i.e.,
how clearly and distinctly the robot can detect the obstacles. Choice of a sensor
plays an important role in this regard. Sonar is found to be the most widely used
sensor for obstacle detection, because it is cheap and simple to operate. Borenstein
and Koren (1989) used a sonar ring around their robot for obstacle detection.
However, a key drawback of sonar lies in the fact that one sensor is required for
one distance measurement, that is, in order to obtain an adequate picture of the
environment around the vehicle, a number of sensors must be used. Moreover, to
achieve the accuracy in detection, the sonars are to be placed perpendicular to
the target. Scanning lasers are also available for the said purpose, but have their
inherent application limitations and are very costly. The cameras are also useful,
as they mimic the human eye. Stereo vision had been extensively used for obstacle
detection in a number of applications. Apostopolous et al. (1999) used cameras
to aid in navigation and obstacle detection for a robot searching for meteorites.
Shah and Aggarwal (1997) modeled the scene with the help of a stereo fish-eye
lens system. However, the cameras are passive sensors, which require ambient light
to illuminate its field of view. Moreover, the accuracy of detection depends on
some of the camera parameters. Therefore, a camera will perform well, only when
it is properly calibrated. Interested readers may refer to the survey carried out
by DeSouza and Kak (2002), on vision-based mobile robot navigation systems
developed by the researchers over the last two decades. In the present work, our
aim is to develop an efficient and fast obstacle detection technique based on the
data collected through a CCD camera, which is placed perpendicular to the field
of view. Obstacles considered in the present study are of different height and they
are allowed to move in a smooth planar terrain. Thus, the camera requires to
detect only the planar objects. However, to improve the accuracy of estimation,
calibration of some of the effective camera parameters and development of a noise
sensitive image processing technique are required.

Camera calibration is the process of determining the internal camera geometric
and optical characteristics, known as intrinsic parameters, and/or the 3-D posi-
tion and orientation of the Camera Coordinate System (CCS), with respect to a
certain World Coordinate System (WCS), which are called extrinsic parameters.
The proper choice of these parameters plays an important role in obtaining an ac-
curate relationship between the position and orientation of an object in the WCS
and those in the image coordinate system as seen through the computer screen.
The existing techniques for camera calibration can be classified into the following
categories.

Category I - Direct Nonlinear Optimization: In this category, relations between
the 3D coordinates of control points and their image plane coordinates are estab-
lished. Thereafter, an iterative algorithm is used to obtain the best set of camera pa-
rameters, corresponding to which the error will be minimum. Faig’s technique (Faig
(1975)) is a good example of this category. He used a very elaborate model for imag-
ing and considered at least 17 unknowns for each photo. Although the accuracy



of his technique was excellent, 1t 1s very computer-intensive and requires a good
initial guess to start the search.

Category II - Closed-Form Solution: One example of this category is the Direct
Linear Transformation (DLT) model developed by Abdel-Aziz and Karara (1971).
The main advantage of their approach lies in the fact that only linear equations
were needed to be solved. However, they did not consider any camera refinement
parameters, like lens distortion into the camera model. Therefore, the derived model
could not be an exact one and might provide some bad solutions. Hall et al. (1982)
used a straightforward linear least square method, to solve for the elements of
perspective transformation matrix for carrying out 3D curved surface measurement.
The computer coordinates were tabulated, but no proof was given, and thus the
accuracy remained unknown.

Category III - Two-Plane Method: Tt involves a direct solution for most of the
calibration parameters and some iterative solutions for the other parameters. The
existing techniques include those presented by Tsai (1987), Lenz and Tsai (1989).
A radial alignment constraint was used to derive a closed-form solution for the
external parameters and the effective focal length of the camera. Then, an iterative
scheme was used to estimate three parameters: depth component in the translation
vector, effective focal length and a radial distortion coefficient. The closed-form
solution was obtained for a relatively small number of parameters and the effect
of lens distortion was included in the camera model. However, their method could
handle radial distortion only and was not extended to other types of distortion.
Moreover, they had not fully utilized the information of the calibration parameters,
thus the solutions might not be truly optimal. Weng et al. (1992) followed the
same procedure proposed by Tsai, and they incorporated three types of distortion
parameters, such as radial, tangential and prism distortion into the camera model.
But, their method failed to provide optimal solutions, which could be due to the
fact that they considered a steepest descent method for optimization, which might
have local minima problem. Moreover, as the limits of the parameters were not
known a priori, it was difficult to make an initial guess. Quite a few researchers
studied the method of calibration techniques developed by Tsai (1987) and Weng
et al. (1992). In this regard, work of Tapper et al. (2002) is important to mention.
Rather than modeling the resolution parameters of the camera, they used a zoom
lens for the said purpose.

Zhang (2000) proposed a new technique to calibrate a camera, in which calibra-
tion parameters, such as coordinates of the principal point (c,,c,), scale factors
(82, 5y) and tilt angle (#) were initially estimated by using the closed-form solution
technique and all those parameters including lens distortion parameters (ki,k2)
were then refined by using a non-linear search technique based on the maximum-
likelihood criterion. Although they considered the planar pattern for calibration
of the camera, accuracy was found to be comparable with that of the work de-
veloped by Tsai (1987). However, they used a steepest descent algorithm for the
nonlinear search, which might suffer from the local minima problem. Moreover,
initial estimation of all the calibration parameters was time-consuming and nu-
merical procedure might provide with a very crude initial estimation. Recently,
understanding the problem of two step camera calibration, quite a few researchers
tried to solve this problem in a single step using soft computing-based approaches.
Some of them are mentioned here. Lee and Lee (1998) developed a neural network-
based camera calibration method. But, they neglected the effect of object height
on camera calibration and as a result of which, their method failed to yield the
proper relationship among the camera coordinates and world coordinates. Ji and
Zhang (2001) tried to solve the problem of camera calibration in a single step by



using a Genetic Algorithm (GA). In their approach, multiple control points ot a
single object were considered during the calibration of the camera parameters, such
as the principal point (¢, ¢y ), scale factors due to spatial quantization (s, s ), fo-
cal length (\) and the exterior parameters (components of translation vector —
(tz,ty,t.), pan angle w, tilt angle 6, swing angle ). Thus, with a small number
of control points, calibration accuracy was found to be satisfactory. However, they
neglected the lens distortion in the camera model. It is also important to mention
that the performance of GA depends on its parameters and no study was carried
out by Ji and Zhang (2001) to determine the best set of GA parameters. Thus,
there is still a need to find a generalized camera calibration technique, which could
be used to calibrate the camera in a dynamic environment. Interested readers may
refer to the review paper of Salvi et al. (2002), for a more detailed discussion. Klan-
car et al. (2004) proposed a technique to correct distortion effect of an wide-angle
camera, which was used for mobile robot tracking. In their approach, if (x,y) and
(X,Y) be the coordinates of a pixel in the distorted image and rectified image,
respectively, the relations between (x,y) and (X,Y) were obtained as follows.

X = Rcos(¢),Y = Rsin(o), (1)

where R = Asinh(%), r = Va2 +y?, ¢ = arctan2(y/x) and X is the focal length.
Thus, the only unknown parameter is the focal length (), which was optimized by
following the steepest descent method and other all calibration parameters of the
camera were neglected.

In the present work, the problem of camera calibration is tackled using a GA.
The present experimental set-up is similar to the set-up used by Klancar et al.
(2004), whereas both extrinsic (component of translation vector along z-axis ¢)
as well as intrinsic parameters like focal length (\), distortion factors (ki, ks, k3)
and scale factors (s, s,) of the camera are optimized using a GA to get better
estimation of the postures of the robot and the moving objects.

On-line navigation haunts for a fast and noise sensitive image processing tech-
nique. Tsukiyama and Huang (1987) reported a scene interpretation approach for
navigation of autonomous vehicles. They extracted the edge lines from images
based on brightness variation of pixels and these edge lines were classified into three
categories: oblique, horizontal and vertical. However, detection of the odd-shaped
objects by following their method was found to be the worst. Lee and Shen (1994)
proposed a model-based approach to determine location of an automated guided
vehicle during navigation. They directly used templates for matching, therefore no
special image processing technique was established. However, if the shape of the
vehicle changes, their approach will demand for another template. Thus, template
formation was itself found to be cumbersome. Cokal and Erden (1997) developed
a step-wise image processing method. Initially, they sliced the randomly-captured
gray image into a binary image by using a threshold value. Thereafter, Laplacian
filters were used for edge detection. However, their method failed to yield a suit-
able value of threshold, on which the accuracy of the said technique depends and
Laplacian filters were found to be less noise sensitive. Moreover, none of the above
approaches were suitable to detect the unknown number of obstacles present in the
environment. Thus, in the present work, an attempt is made to develop an image
processing technique that provides good estimation of the postures of both the
robot as well as moving objects in a dynamic environment. The number of objects
present in the environment is not pre-assigned and it is identified automatically
through labeling of the objects.

In this connection, the authors developed a GA-based camera calibration



method Hui and Pratihar (20095), in which both camera parameters as well as
the threshold value were tuned using a GA to minimize the Distorted Image Plane
Error (DIPE). However, in that approach, only one directional computer uncer-
tainty (i.e., s;) factor was considered in the camera model and the GA was run
for a particular set of its parameters, which might not be optimal in any sense. In
the present work, both the directional uncertainty factors (i.e., sz, sy) are included
in the camera model to achieve more accuracy and a systematic study has been
carried out to obtain an optimal set of GA-parameters. Moreover, Sobel’s edge de-
tection technique has been replaced by a perimeter estimator, in the present paper,
to obtain the perimeter of the detected objects more accurately.

The remainder of the paper is organized as follows: In Section 2, the camera
model used in the experimental set-up has been explained and the image process-
ing technique is discussed in Section 3. The proposed method of tuning the camera
parameters, threshold value and value of size filter is explained in Section 4. Re-
sults are stated and discussed in Section 5. Some concluding remarks are made in
Section 6 and the scope for future work is mentioned in Section 7.

2. The Camera Model

Figure 1 shows the photograph of the experimental set-up, where a color CCD
camera, placed on a tripod is used for sensing the environment. The camera sends
continuous electrical signals to the computer through a BNC video cable. There-
after, a frame grabber board, namely vision board (placed in a PCI slot of the com-
puter hardware), is used to convert the continuous signals to 2-D digital images.
Figure 2 shows the schematic diagram indicating the camera coordinate system
and world coordinate system. Let us suppose that a visible point P is expressed
by its coordinate (X,Y,Z) and (x,y,z) in the world coordinate system (WCS) and
camera-centered coordinate system (CCS), respectively. The CCS is attached to
the center of the image plane and WCS is located at a corner point of the terrain,
as shown in the above figure. The camera is mounted on a overhang part (i.e., at
point A) of a camera tripod, which allows the camera to tilt through an angle of ¢
about X-axis. The off-set of the point A from the origin of the WCS is denoted by
a vector wy with components (Xo — L, Yy, Zp), and the off-set of the center of the
image plane with respect to point A is denoted by a vector 7 having components
(r1,r2,r3), when L indicates the length of overhang arm of the camera tripod. It is
important to mention that ro has been assumed to be equal to 0, in Figure 2.

Our aim is to obtain a camera model based on the geometrical arrangement of
Figure 2. It is to be noted that the camera coordinate system can be expressed in
terms of world coordinate system and vice-versa, through a set of frame transforma-
tions. A perspective transformation will then be applied to obtain the image plane
coordinates of any given world point. Thereafter, we consider the radial distortion
parameters of the lens to get a more accurate model of the same.

Now, Camera Coordinate System (CCS) can be expressed with respect to the
World Coordinate System (WCS) as follows (refer to Figure 2):

(1) Translation to reach origin of the CCS from the origin of the WCS,
(2) Rotation about X-axis by an angle 6.

The origin of CCS may be expressed with respect to the WCS using the following



Figure 1. The photograph of the experimental set-up.

transformation matrix.

100Xg—L+nr

W o100 Yo+
Transc = 001 Zy+rs (2)
000 1

We then give rotation about X-axis by an angle 8, which is given below.

1 0 0 O
0 cosf) —sinb 0

Rot(z,0) = 0 sinf cosf 0 (3)
0 0 0 1

It is important to mention that counter clockwise rotation has been considered as
the positive one.

Thus, a point P having coordinate (X,Y,Z) in the WCS, can be expressed in the
CCS (i. e., x,y,2z) using the following relationship:

xT X+X0 —L-|-T‘1
y| = | +Yo+ra)cosd — (Z + Zy + r3)sind (4)
z (Y + Yy +r2)sinb + (Z + Zy + r3)cosb
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Figure 2. A schematic diagram showing the camera coordinate system and world coordinate system

2.1. Perspective Transformation

A perspective transformation projects 3D points onto a plane. A model of the
image formation is shown in Figure 3. It is assumed that x-y plane of the camera

3D point

P(x,y,2)
or
X,Y,2)

Image plane

A —— Focal length

Figure 3. A schematic figure showing the perspective transformation

coordinate system is coincident with the x-y image plane and optical axis of the
camera is considered to be along the z-axis of the CCS. Thus, center of the image
plane is at origin, and the center of the lens is at coordinate (0,0,A), where A
indicates the focal length of the lens. Let (x,y,z) be the camera coordinates of any
point (P) in a 3-D scene, as shown in Figure 3, and (z,,y,) be the projection
of the point P(x,y,z) on to the image plane for a perfect pinhole camera model.
However, (x4,yq) is the actual image coordinate, which may differ from (x,,vy)
due to lens distortion. Now, transformation from 3D camera coordinate (x,y,z) to



1deal (undistorted) image coordinate (x,,y,) using perspective projection (with a
pinhole camera geometry) may be obtained using the principles of similar triangles
(refer to Figure 3) like the following.

T T @
A z=A A—2 (5)
Yu Yy Y

5~ =- = (6)

A z=)\ A=z

where the negative signs with x and y indicate that image points are actually
inverted (refer to Figure 3) and it is assumed that all points of interest lie in front
of the lens, i.e., z > .

2.2. Lens Distortion

It is important to note that the actual cameras may not be perfect and sustain
a variety of aberrations. For geometrical measurements, the main concern is lens
distortion, which is related to the position of image points in the image plane but
not directly to the image quality. It occurs due to several types of imperfections
in the design and assembly of lenses composing the camera. There are mainly two
types of distortion — radial and tangential (refer to Figure 4). However, most of the
researchers Tsai (1987), Zhang (2000) have considered only the radial distortion
in their model, as it is found to be the most effective for industrial machine vision
applications Weng et al. (1992). Radial distortion causes an inward or outward

v~ -1
Ideal position VS~ __- -7
p. \ 1
[ETSIN) 2p At \ S 1
\ ye - = ~ I
N\~ Position with [ vt
distortion (Xg:Yq) Vo uE
| R
P 11 !
X 1 ]!
R !
o R ;|
center of the Ap - radial distortion | N a // \
image plane At — tangential distortion [ S~ -7 ‘\
I
1 =TT TL T - '
L7 b <)
Figure 4. Radial and tangen- Figure 5. Effect of radial dis-
tial distortions. tortion, solid lines: no distor-

tion, dashed lines: with radial
distortion (a - negative, b - pos-
itive).

displacement of a given image point from its ideal location (refer to Figure 5). This
type of distortion is mainly caused by flawed radial curvature of the lens elements. A
negative radial displacement of the image points is referred to as barrel distortion.
It causes outer points to crowd increasingly together and the scale to decrease.
A positive radial displacement is referred to as pincushion distortion. It causes
outer points to spread and the scale to increase. This type of distortion is strictly
symmetric about the optical axis of the camera. Radial distortion is governed by
an expression of the following forms.

Td =+ Apx = Ty, (7)
Yd + Apy = Yu, (8)

where (z4,yq) is the distorted image coordinate on the image plane and



Apy = xq (k1p” + kop™ + k3p® +...),
Apy = ya (k1p* + kap + ksp® +...),

where ki, ko, k3 ... are constants of the infinite series, known as distortion coeffi-

cients and p = \/3%21 + yg. It is important to note that we have considered up to
the third order term of the expansion series, to simplify the model.

2.3. Computer Coordinate Frame

The final step of the camera model is the conversion of real image coordinate
(%4,vya), to computer image coordinate (zf,ys). This can be accomplished using
the expression given below.

Ny,

Tfp=Sp——Tq+ Cqg, 9)
dz
N

vy = sy—ya+ oy, (10)
Yy

where (x¢,y¢) is the row and column numbers, respectively, of the image pixel in
computer frame memory and (cz, ¢,) indicates the row and column numbers of the
center of computer frame memory, respectively. Moreover, uncertainty image scale
factors, number of pixels in a line as sampled by the computer and the center to
center distances between two adjacent pixels in the x and y directions are denoted
by (5z,5y), (Nfz, Nyy) and (dg,dy), respectively. It is important to mention that
uncertainty image scale factors have been introduced to consider the hardware
timing mismatch between image acquisition and camera scanning.
Therefore, the final computer image coordinate may be expressed as follows:

o $e N MX + Xo — L+71)

F= dp(1+ k1p? + kop*) (A + (Y + Yo + r2)sinb + (Z + Zo + r3)cosb)
. SyNpyAM(Y + Yo + r2)cos — (Z + Zy + 13)sinb)

f dy(1 + k1p? + kop?) A+ (Y + Yo + 72)sind + (Z + Zo + 13)cosh)

+ ¢ (11)

+ ¢, (12)

3. Image Processing

The image captured by a CCD camera is stored in the computer memory (in bitmap
format) with the help of a vision board/frame grabber placed inside the computer.
The following operations are performed on the raw data collected above.

e Histogramming and Smoothing: The raw image may contain some noise due to
unequal luminance and/or reflection. Thus, a median filter is applied to smoothen
the raw image. The main advantage of using the median filter lies in the fact
that it can preserve the edge sharpness and produce regions of constant/near
constant intensity. For this purpose, a 3x3 window is used. The median of all
the pixels lying inside the window is determined. The pixels having intensity
below the median value are identified and their intensity values are replaced by
the median value.

e Binarization of the Image: The smoothed image is binarized with the help
of a threshold value. The pixels having intensity below the threshold value are
converted into black and the remaining pixels are made white. In the present
study, an optimal value of threshold is obtained using a GA.



4.

o Perimeter Estimation: Measurement ol perimeters, areas and other shape
related parameters of the planar digitized objects is an important task in com-
puter vision systems. A large number of techniques are available in the literature.
However, counting the number of pixel edges is not the best method, due to the
presence of corners and diagonal edges along the perimeter. To eliminate this,
a 3x3 perimeter estimator developed by Koplowitz and Bruckstein (1989) has
been used, in the present study.

e Labeling of the Objects: All spatially close pixels of a binary image having
value 1 are grouped into connected components that distinctly represent the dif-
ferent objects. This has been implemented using a component labeling algorithm
proposed by Kim et al. (2004). It finds all connected components in the image
and assigns a unique label, usually an integer to all pixels lying in the same com-
ponent. Thereafter, area and perimeter of each object have been computed and
compactness of each object image is calculated by following the formula given
below.

4ma

Compactness = R (13)

where a refers to the object image area and p is obtained using the perimeter
estimator as explained earlier. It is obvious that determination of compactness
and perimeter helps in finding and recognizing the known shaped objects very
easily. It is also important to note that a compactness has been defined in such
a manner, so as to have unity value for circular objects. For a more detailed
information of the labeling algorithm, interested readers may refer to the book
on soccer robotics, written by Kim et al. (2004).

e Size Filtering: Noise is inherent in computer vision. Some extraneous compo-
nents could appear in an image, due to noise arising from the unstable resolution
of the camera and uneven illumination in environmental lighting. However, these
components are usually found to be small in size and ragged contours. Thus, size
filtering might remove such noise after the component labeling is over. This in-
volves changing all the pixel values of a component binary image from 1 to 0, if
its area is found to be less than an appropriately selected size filter (Af ). In the
present study, an optimal value of A7 has been obtained using a GA.

Tuning of Camera Calibration and Image Processing Parameters Using a
Genetic Algorithm

In Section 2, we have obtained explicit equations for the computer image coor-
dinates (xf,ys) of a world point (X,Y,Z). However, it requires knowledge of the
following parameters:

Effective focal length A,

Camera off-sets Xy, Yo, Zp,

Angle of rotation 6,

Radial distortion coefficients k1, ks, k3,
Uncertainty image scale factor s, s,.

Moreover, binarization of the images depends on the selection of a threshold value
and for removing the noises in the form of small, ragged components, a proper
choice of size filter (A7) is necessary. In the present study, X, Yy and @ are kept
constant and all other parameters are varied in a range to minimize the DIPE,



which may be obtained as tollows:

DIPE = \/(:r’f — )2 + (¢ — yp)?, (14)

where (:U’f, y}) is the actual position of the target point on image plane and (z ¢, y¢)
is the estimated position of the target point (obtained through the calibration
parameters). Our aim is to obtain the best set of camera parameters for which DIPE
will be minimum. Thus, the present problem can be treated as an optimization
problem, which can be stated as follows:

Minimize DIPE, (15)

subject to

Al < AS < Al

>\mz’n § A § )\maxa

ZOmin < ZO < ZOmaz>

klmz‘n § k'l § klmaz»

k2mz‘n § k'2 § k2maz>

ksz‘n < k’?; < k?;maz»

Semin < Sz < Szmazs

SYmin < Sy < SYmaz?

and it should be able to detect exact number of objects.

A binary-coded GA Goldberg (1989) having string length equals to ninety bits

(ten for each variable) is used for this purpose. The fitness of a GA-string is made
equal to the DIPE, that is,

Threshold,,;, < Threshold < Threshold,q.,

f=DIPE. (16)

After the fitness value is assigned to each GA-string, they are modified using three
operators, namely reproduction, crossover and mutation. In the present study, tour-
nament selection-based reproduction scheme is adopted and a two-point crossover
of probability p. is used. Finally, a bit-wise mutation of probability p,, is utilized
after the crossover. The whole process continues until a termination criterion is
reached. In this work, a prespecified number of generation is considered to be the
termination criterion.

5. Results and Discussion

The purpose of the present study is to detect the moving obstacles on-line using
a camera and image processing algorithm, during navigation of a car-like robot. It
is to be noted that the over-head camera is to be calibrated first, before it is used
for collecting the image, on-line. The present section is subdivided into two, in the
first subsection, results related to the camera calibration are depicted and in the
next subsection, results related to positions and sizes of the robot and obstacles
are stated, from which two inputs of the robot motion planner, namely distance
and angle are determined. Distance is the Euclidean distance between the robot
and the obstacles and angle is nothing but the angle between the line joining the
robot and its goal and the line joining the robot and the obstacles.



5.1. Calibration of the vision system

The following parameters are used to predict the image plane coordinates:

dy = dy = 0.264 mm per pixel
Ny, = 192
Ny, = 256

Cy = 96

Cy = 128

T =73 =2cm
T9 =0cm

L = 113 cm
X = 170 cm
Yo =70 cm
0 = 180°

Figure 6. The photograph showing the four objects

A photograph (refer to Figure 6) of the objects is taken with the help of an experi-
mental set-up shown in Figure 1. There are four different objects in the image and
the centers of areas of the top surface of the objects represented in the WCS are
considered as the four control points during calibration of the vision system and
these are measured to be R (31 cm, 21 cm, 5 cm), O1 (95 cm, 24 cm, 7 cm), Oy
(39 cm, 71 cm, 8 cm) and O3 (102 c¢cm, 77 c¢cm, 6.5 cm), respectively. During opti-
mization, the variables like threshold, size filter (Af), Zy, A, ki, ko, k3, s, and Sy
are varied in the ranges of (100, 230), (20 cm?2,50 em?), (125 cm, 150 cm), (3.5 mm,
8 mm), (—1x1076,1x1079), (=1x107%,1x1079), (-=1x107¢,1x 1079), (0.1, 1.0)
and (0.1, 1.0), respectively. As the performance of a GA depends on its parameter
setting, experiments are carried out with different sets of parameters to find the
most suitable set of parameters. Results of parametric study are shown in Fig-
ure 7. The best results are obtained with the following GA-parameters: Crossover
probability p. = 0.90, mutation probability p,, = 0.005, population size ¥ = 100,
maximum number of generation Mazxgen = 90. The shape of the objects obtained
after image processing is shown in Figure 8. The minimum value of DIPE is found
to be equal to 0.735214 mm with the following calibration parameters:

Threshold = 168

Af = 38

2o = 149.56 cm
A = 3.6 mm

k1 = -0.000000957
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Figure 8. The images showing the shape of the objects obtained after considering: (a) area, (b) perimeter

of the objects.
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The main advantage ot this calibration method lies in the fact that only with the
four control points, all the calibration parameters of the vision system have been
possible to obtain, efficiently.

5.2. Determination of the inputs of robot motion planner

Once the camera and/or the developed vision system is properly calibrated, it is
used to compute two inputs, namely distance and angle of the motion planner, on-
line, through a proper processing of the collected images. To test the performance
of the developed system, two different cases are considered. In the first case, the
robot is allowed to move in the presence of two moving obstacles, whereas four
moving obstacles have been considered in the next case.

5.2.1. Case 1: Two moving obstacles

Figure 9 shows the images of the environment at four different instants of time,
say t1, t1 + At, t1 + 2At¢ and ¢ + 3At. The time interval At is considered to be

Figure 9. Images showing the movement of both the robot as well as the obstacles at four instants of
time: (a) t =t1, (b) t =1 + At, (¢c) t =t1 + 2At and (d) t = t1 + 3A¢ — Case 1.

equal to one second. Inputs of the motion planner are calculated based on the fixed
goal point (65 cm, 105 cm) and goal reference line making an angle of 116° with
positive X-axis of the global coordinate frame shown in Figure 2. Table 1 shows the
positions of both the robot as well as the obstacles in the global coordinate frame.
Moreover, the distance between the robot and the obstacles, the angle between the
line joining the robot and obstacles and the goal reference line as obtained above are
shown in Table 1. The radii of the robot (R) and two obstacles (O1, O3) are found
to be equal to 5.428 cm, 4.884 cm, 5.272 cm, respectively. An attempt is also made
to measure the CPU time of the developed system. The experiment is carried out
in a P-IV PC and the CPU time is found to be equal to 0.040 seconds. It indicates
that the present vision system might be suitable for on-line implementations.



lable 1. Iositions or botn the goal as well as two moving obstacles at diiferent
instants of time and the calculated inputs of the motion planner based on the
goal point (65 cm, 105 cm), goal reference angle = 116° and At = 1s — Case 1.

Time (t)  Object X Y Inputs of motion planner
(cm) (cm) Distance (cm)  Angle (degree)
t1 Robot  98.241 30.626
Obs 1 28.715 26.300 64.776 54.339
Obs 2 96.862  132.382 96.493 -32.616
t1 + At Robot  88.829 50.936
Obs 1 40.496 60.470 44.380 68.373
Obs 2 85.215  108.946 52.580 -53.568
t1 +2At  Robot 79.721 70.979
Obs 1 50.221 95.894 33.730 -5.947
Obs 2 74.491 85.831 10.474 -36.331
t1 + 3At  Robot 70.892 92.205
Obs 1 60.948  127.329 31.621 -142.541
Obs 2 63.028 62.831 25.136 21.780

5.2.2. Case 2: Four moving obstacles

To test the effectiveness of the developed image processing system, experiments
are also carried out with four moving obstacles along with the planning robot as
shown in Figure 10. The goal point is assumed to be at (5 cm, 180 cm) with

Figure 10. Images showing the movement of both the robot as well as the obstacles at four instants of
time: (a) t =t1, (b) t =¢1 + At, (¢c) t =t1 + 2At and (d) t = t1 + 3A¢ — Case 2.

respect to the global coordinate frame and the goal reference line makes an angle
of 117.772° with the +ve X-axis of the global coordinate frame. Positions of both
the robot as well as four moving obstacles are shown for different instants of time
in Table 2. The inputs to the motion planner are also calculated and presented in
Table 2. The radii of the robot (R) and the obstacles O1, 02,003,004 are seen to
be equal to 5.658 cm, 4.765 cm, 2.858 cm, 5.050 cm, 5.200 cm, respectively. The
CPU time is coming out to be equal to 0.058 seconds, which makes the developed
vision system a perfect choice for computing the inputs of the motion planner, in



a highly complex and changeable environment. 1t is interesting to note that the
developed vision system is very much sensitive to the value of threshold, which has
been optimized above by using a GA.

Table 2. Positions of both the goal as well as four moving obstacles at different
instants of time and the calculated inputs of the motion planner based on the goal
point (5 cm ,180 cm), goal reference angle = 117.772° and At = 1s — Case 2.

Time (t) Object X Y Inputs of motion planner
(cm) (cm) Distance (cm)  Angle (degree)
t1 Robot 83.431 49.727
Obs 1 50.115 22.452 37.587 -19.915
Obs 2 10.816 69.900 72.507 -74.087
Obs 3 57.643 144.217 92.896 46.070
Obs 4 100.903  139.383 86.578 70.097
t1 + At Robot 63.111 82.242
Obs 1 42.964 50.603 32.309 -88.050
Obs 2 28.711 77.254 31.902 -141.258
Obs 3 56.652 122.043 35.272 50.194
Obs 4 86.324 115.052 35.426 94.838
t1 +2At  Robot 43.585 114.600
Obs 1 34.308 81.666 29.016 165.305
Obs 2 69.238 90.381 32.421 -102.984
Obs 3 56.349 97.437 16.339 102.982
Obs 4 71.204 88.860 32.989 112.625
t1 +3At  Robot 24.959 150.135
Obs 1 28.809 113.609 31.528 140.369
Obs 2 81.011 102.472 70.719 -96.808
Obs 3 55.615 68.807 81.864 -125.748
Obs 4 56.619 59.500 91.241 127.145

5.3. Comparison of the Present Work with Others’ Work

A vision system is developed to detect and recognize the moving objects for the
purpose of mobile robot navigation. The vision system consists of a camera placed
perpendicular to the field of view, frame grabber inserted on the PC and a image
analyzing procedure. However, to get accurate and precise estimation of object
positions, parameters of the vision system are to be calibrated. In the past, several
attempts were made by various investigators to calibrate the camera parameters.
Some of these are mentioned below for the purpose of comparison with the present
work.

Zhang (2000) proposed a two-step method of camera calibration. In the first step,
some of the camera parameters were estimated through direct transformation of
the matrix and in the next step, all those parameters were refined by following
Levenberg-Marquardt algorithm. But, the two-step method might be computa-
tionally expensive and initial estimation may provide with some crude results.
Moreover, the solution provided by the Levenberg-Marquardt algorithm may get
trapped into local minima, as it works based on the principle of steepest descent.
Later on, after understanding the problem of two-step method, Ji and Zhang (2001)
calibrated some of the intrinsic and all the extrinsic parameters of the camera with
the help of a GA. However, their method may not provide accurate estimation of
the postures of the objects, as they have neglected the distortion effects in the
camera model. Klancar et al. (2004) et al. made an attempt to correct the effect
of distortion of lens in vision system design for mobile robot tracking. They have
corrected the radial distortion effects by varying the focal length of the camera
only, rather than establishing a relationship between the global and camera coor-
dinate systems. Thus, accuracy in calibration may not be so much good in this
case. Although Cokal and Erden (1997) developed a step-wise image processing



technique for detecting the objects, they have not made any attempt to label the
objects. Thus, the identities of the objects may get lost with the change in time.

In the present work, both extrinsic as well as intrinsic parameters of the camera
are calibrated using a GA, in a single step. Radial distortion factors are included in
the camera model and a proper relationship between the global and local coordinate
frames is established based on the camera set-up. Labeling of the objects are done
to recognize the objects and a small number of control points are considered during
calibration. It is important to mention that the developed vision system is able to
detect the varying number of objects, which need to be known a-priori.

6. Concluding Remarks

Computer vision and image processing plays an important role in real-time mobile
robot navigation. Cameras may replace the sensors, but they require proper cali-
bration to yield the reasonably good results. Moreover, to understand the dynamic
environment properly, we need to have a fast and noise sensitive image process-
ing technique in order to compute the postures and geometric properties of the
objects present in an image. By keeping these facts in mind, in the present study,
a method of calibration and image processing has been developed. The developed
vision system is calibrated first and then its effectiveness is tested on two different
cases involving two and four moving obstacles, separately. The developed system
is able to identify and compute the shapes and positions of the objects through
the processing of images taken at different instants of time. Some of the important
findings are mentioned below.

(1) The problem of camera calibration could be solved effectively in a single
step, even with a less number of control points, if it is posed as an optimization
problem and solved using a GA.

(2) The concept of labeling helped us to identify different components present
in an image.

(3) Estimation of compactness and perimeter values are helpful in finding and
recognizing the different-shaped objects.

(4) The use of size filter can remove the scattered noise components in the
labeled binary image.

(5) The CPU time of the developed vision system is found to be reasonably
low. Thus, it can be used as a real-time vision-based navigation system.

7. Scope for Future Work

The present work may be extended in the following directions, on which the authors
are working at present.

(1) In the present study, the vision system has been used for determining the
inputs of motion planner, on-line. However, it will be more interesting to see
its performance, after coupling it with a motion planning algorithm.

(2) Since the developed vision system contains only one camera, it is not possi-
ble to determine 3D postures of the objects. However, the same can be obtained
by using a vision system consists of multiple cameras. But, in such a case, in-
tegration of the camera data is to be done efficiently in real-time.
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