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Abstract— Ahlswede et al. introduced the concept of network coding
in multicast networks, wherein they showed that maximum achievable
information rate by network coding in a single-source multi-sink
network exceeds, in general, that for the case of network switching. It
is, hence, of interest to analyze the switching gap for a network, defined
as the ratio of maximum achievable information rate using network
coding (NC) to that of network switching (NS). In this paper, we find
the switching gap for a class of symmetric networks that contains the
well-known butterfly network, which is often used to illustrate the
advantage of network coding.
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I. INTRODUCTION

In their fundamental work on network coding [1], Ahslwede et
al. determined the capacity for multicasting information in a single-
source multi-sink network. Specifically, the network is represented
by a directed graph denoted by G = (V, E), where V is the set
of nodes of a point-to-point communication network (that also
form the vertices of the graph), E is the set of edges such that
information can be sent noiselessly from node p to node q for all
(p, q) ∈ E. We associate a non-negative number called capacity, c
to each edge, which denotes the maximum amount of information
that can be transmitted using that edge or channel.

For single-source network coding [2], it is shown that the
maximum achievable information rate for network coding is given
by the max-flow min-cut bound. This bound cannot be achieved,
in general, by conventional network switching and network coding
has to be applied at selected nodes of the network. It is shown in
[3] that linear network coding suffices to achieve the optimum.

Network switching and network coding are two techniques for
data transmission across a network. Strictly speaking, network
switching is a special case of network coding but we treat them
separately to distinguish between the prevalent practice and the
achievable.

In network switching, a node receives information from its input
bit streams (or channels) and forwards one of the bit streams
(switches) to all other output links. For example, in Fig. 1, assume
that the link capacity of all the edges is unity and A and B are
bits to the multicast, and A, B denotes the information sent across
in two separate time instances (comma indicating the separation in
time). Note that node W is switching the incoming information. It
is clear that link (W, X) require two time cycles to send bit A to
sink t2 and B to sink t1. So, at each odd cycle, one sink receives
two bits and other sink receives only one bit. At even cycle, this
is reversed. Hence the information rate of 3 bits in 2 cycles could
be achieved.

Network coding is defined as the process of linear recombination
of input bit streams coming at a node via its input links, into one
or several output bit streams. Fig. 2 shows network coding. Here
the node W , XORs the bits received from nodes U and V (A and
B) and forwards the result. Such an operation meets the unit link
capacity condition while providing an extra information to both
the sinks enabling them to receive two bits in two time instances.
Hence a rate of 2 bits/sec is achieved.

Switching gap is defined as the ratio of maximum achievable
information rate using network coding (NC) to that of network

Fig. 1. Network Switching

Fig. 2. Network Coding

switching (NS). Switching gap is an indicator of how much network
coding will help over network switching. Larger than unity implies
a good advantage while closer to unity implies little advantage. The
Ahlswede-Cai-Li-Yeung’s butterfly network [1] was analyzed in [4]
to determine switching gap of the network and certain conditions
on link capacities were given where that switching gap of the
network comes out to be unity. We extend that work by taking
modified versions of butterfly network, which are larger networks,
and finding their switching gap under a given set of conditions
on the link capacities of the network. In this process, we analyze
singular-symmetric, dual-symmetric and triple-symmetric butterfly
networks that are defined below. The switching gap increases as
the size of the network grows.

II. ANALYSIS FOR SINGULAR BUTTERFLY NETWORK

Fig. 3 shows singular butterfly network. Here wi > 0 denotes
the link capacities of the edges in the graph.

According to Ahlswede-Cai-Li-Yeung’s fundamental theorem
for single-source network coding [1], the maximum achievable



Fig. 3. Singular-Symmetric Butterfly network

information rate denoted by R∗∗ is equal to the minimum of the
s-t cuts for all source-sink pairs in the network. To enumerate the
s-t cuts, consider the subgraph G′ = (V ′, E′), where V ′ ⊂ V and
E′ ⊂ E, which is formed from graph shown in Fig. 4 by removing
all paths between nodes s and t1.

Fig. 4. Singular-Symmetric Butterfly sub network

All s-t cuts for this subgraph are shown as dashed lines in Fig.
4. The cut-set is enumerated as:

1) {(s, a), (s, b)} = w1 + w2.
2) {(s, a), (b, c)} = w1 + w5.
3) {(s, b), (a, c), (a, t1)} = w2 + w3 + w4.
4) {(s, a), (d, t1)} = w1 + w8.
5) {(s, a), (c, d)} = w1 + w7.
6) {(a, t1), (a, c), (b, c)} = w3 + w4 + w5.
7) {(a, t1), (c, d)} = w3 + w7.
8) {(a, t1), (d, t1)} = w3 + w8.

Since the network is symmetrical we can enumerate s-t cut sets
for subgraph between s and t2. These are as follows:

1) {(s, a), (s, b)}=w1 + w2.
2) {(s, b), (a, c)}=w2 + w4.
3) {(b, t2), (a, c), (b, c)}=w4 + w5 + w6.
4) {(s, b), (c, d)}=w2 + w7.

5) {(s, b), (d, t2)}=w2 + w9.
6) {(s, a), (b, c), (b, t2)}=w1 + w5 + w6.
7) {(b, t2), (c, d)}=w6 + w7.
8) {(b, t2), (d, t2)}=w6 + w9.

Combining min cuts of both the sinks, we get the maximum rate
achievable by network coding on this network, R∗∗ as minimum
of following 5 terms.

1) α = (w1 + min(w2, w5)),
2) β = (w2 + min(w1, w4)),
3) γ = (min(w1, w3) + min(w7, w8)),
4) δ = (min(w2, w6) + min(w7, w9)),
5) ζ = (w2 + w4 + min(w3, w6)).

So,

R∗∗ = min(α, β, γ, δ, ζ). (1)

Maximum achievable information rate by network switching (NS),
i.e., R∗ of a communication network is computed by constructing
its payoff matrix [5] and then solving it as per game theory
principles [6]–[8] and finally taking the reciprocal of the final value
to get R∗. Briefly we can say that network switching is a 2 person
matrix game where in player 1 wants to choose an edge which is
maximally present in the routes and player 2 wants to choose a
tree which contains minimal edges of the graph G.

To construct the payoff matrix for any single source communica-
tion network, first multicast routes from source to each of the sink
nodes are determined. It is a path enumeration problem and can be
solved by drawing open rooted trees for each of the sink and then
concatenating one path each from all such trees. A rooted tree is
constructed as an acyclic digraph with a unique node, called root
node, which has the property that there exists a unique path from
the root node to each other node and a set of links defined τ as a
multicast route of the underlying digraph from the source node s to
the sink nodes t1, t2, . . ., tl, if the digraph (S, τ ) induced by τ is a
rooted tree of graph G with leaves as t1, t2, . . ., tl, and root node
as s. For each multicast route τj , one defines an indicator function
as χτj (ei)=1 if ei ∈ τj and 0 otherwise, for i = 1, 2, . . . , I and
j = 1, 2, . . . , J . An I × J payoff matrix A is constructed with
each element defined as

aij =
1

Θ(ei)
χτj (ei) (2)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J .

Rows of this matrix represent edges of graph G and columns
represent multicast routes of G.

Next, principles of row and column dominance as well as
successive elimination [6] are applied on the payoff matrix to get
a simplified square matrix. A link is dominated by another link if
every multicast routes including the former also includes the latter.
A multicast route is dominated by another multicast route if each
dominating link in the latter is also in the former.

Then, this matrix is solved to get a value whose reciprocal gives
the desired rate R∗. Further for complicated networks, the payoff
matrix could be directly constructed using only the dominated links
and multicast routes instead of enumerating all routes.

For the network shown in Fig. 3, there are nine links and total
of seven multicast routes which are shown in the Fig. 5.



Fig. 5. Multicast routes in singular-Symmetric Butterfly network

Its payoff matrix A is given below.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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However, it is not necessary to enumerate of all the multicast routes
to find R∗. Applying the game theory principles described above,
we get the following simplified matrix:

A1 =

∣∣∣∣∣∣
1

w1

1
w1

0
1

w2
0 1

w2

0 1
w7

1
w7

∣∣∣∣∣∣ (3)

Now val(A)=val(A1) [5]. Using Lemma 1 in [5], let (X∗, Y ∗) be
the mixed strategy pair for both players respectively at Equilibrium
point. Applying the Lagrange Multiplier method [9] to A, we have
following cases:

1) If w1 ≤ (w2 + w4), w2 ≤ (w1 + w7) and w7 ≤ (w1 + w2)
then we have X∗ = ((w1/(w1 + w2 + w7)), (w2/(w1 +
w2 + w7)), (w7/(w1 + w2 + w7))) and Y ∗ = (((w1 +
w2−w7)/(w1 + w2 + w7)), ((w1−w2 + w7)/(w1 + w2 +
w7)), ((−w1 + w2 + w7)/(w1 + w2 + w7))) and val(A) is

val(A) =
2

(w1 + w2 + w7)
. (4)

2) If w7 > w1+w2, we have X∗ = (w1/(w1+w2), w2/(w1+
w2), 0) and Y ∗ = (0, w1/(w1 + w2), w2/(w1 + w2)) and
val(A) is

val(A) =
1

(w1 + w2)
. (5)

3) If w1 > w2 + w7, we have X∗ = (0, w2/(w2 +
w7), w7/(w2+w7), 0) and Y ∗ = (w2/(w2+w7), w7/(w2+
w7), 0) and val(A) is

val(A) =
1

(w2 + w7)
. (6)

4) If w2 > w1 + w7, we have X∗ = (w1/(w1 +
w7), 0, w7/(w1 + w7), 0) and Y ∗ = (w1/(w1 +
w7), 0, w7/(w1 + w7)) and val(A) is

val(A) =
1

(w1 + w7)
. (7)

For the given singular butterfly network, let us assume the follow-
ing conditions:

w1 < min(w3, w4).
w2 < min(w5, w6).
w7 < min(w8, w9).

And using above assumptions, maximum rate due to network
coding, R∗∗ (using 1) is

R∗∗ = min ((w1 + w2), (w2 + w7), (w1 + w7)) . (8)

Thus using these conditions and above cases, if we organize
w1, w2, w3 in increasing order and denote one particular permuta-
tion of indices 1,2 and 7 as l, m, n then,

val(A) =
2

(wl + wm + min((wl + wm), wn))
. (9)

Hence,

R∗ =
1

val(A)
=

(wl + wm + min((wl + wm), wn))

2
. (10)

Now using 8, we have

R∗∗ = (wl + wm). (11)

So, using 9 and 11, Switching gap of the network becomes

R∗∗

R∗ =
2(wl + wm)

(wl + wm + min((wl + wm), wn))
≥ 1 (12)

Using 12, if each edge has same capacity, say w then switching
gain will be

R∗∗

R∗ =
4

3
. (13)

III. ANALYSIS FOR DUAL BUTTERFLY NETWORK

Fig. 6 shows dual butterfly network. It has two loops of singular
butterfly network overlapped one after the other as shown in fig.
3.

Fig. 6. Dual-Symmetric Butterfly network

Since it is symmetrical to singular symmetric case, it will have
same min-cut values for sinks t1, t2 and t3. Thus, R∗∗ will be
same as given in (1). Further using edge capacity assumptions,
maximum rate due to network coding, R∗∗ (using 1) is

R∗∗ = min ((w1 + w2), (w2 + w7), (w1 + w7)) . (14)

Using assumptions about link capacities stated in
previous section R∗∗, we have 5 dominating edges, namely
(s, a), (s, b), (s, c), (d, f), (e, g). We calculate network switching



rate using multi cast routes formed taking subset of routes formed
by these five edges. After elimination of dominated links and
multicast routes, we get the following payoff matrix.

A =

∣∣∣∣∣∣∣∣∣∣∣
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(15)

Proceeding as in previous section, we solve A to get following
cases.

1) If (2w2
1 +w2w7) ≥ 2w1w7, (w2+w7) > 2w1 and w1 > w2

then X∗ = ((w1/(2w1 + w2 + 2w7)), (w2/(2w1 + w2 +
2w7), (w1/(2w1 + w2 + 2w7)), (w7/(2w1 + w2 +
2w7)), (w7/(2w1 + w2 + 2w7))) and
Y ∗ = (((2w2

1+w2w7−2w1w7)/(2w1(w1+w7))), ((2w2
1+

w2w7 − 2w1w7)/(2w1(w1 + w7))), ((w7 + w2 −
2w1)/(2(w1 + w7))), ((w1(w1 − w2) + w7(2w1 −
w2))/(w1(w1 + w7))), ((w7 + w2 − 2w1)/(2(w1 + w7))))
and val(A) is

val(A) =
4

2w1 + w2 + 2w7
. (16)

2) If (2w2
1 + w2w7) < 2w1w7 then X∗ = (0, 0, 0, 1/2, 1/2)

and Y ∗ = (0, 0, w2/(w2 + 2w1), ((2w1 − w2)/(w2 +
2w1)), w2/(w2 + 2w1)) and val(A) is

val(A) =
1

w7
. (17)

3) If 2w1 < w2 and (1 + (w1/w7)) < (5 − (3w2/2w1) +
(w7/2w1)) then X∗ = (1/3, 1/3, 1/3, 0, 0) and Y ∗ =
((3w1−w2)/(w1+w7), (3w1−w2)/(w1+w7), (w7+w2−
2w1)/(2(w1 +w7)), 0, (w7 +w2−2w1)/(2(w1 +w7))) and
val(A) is

val(A) =
2w1

10w1 − 3w2 + w7
. (18)

From these three cases, we get

val(A) = min

(
4

2w1 + w2 + 2w7
,

1

w7
,

2w1

10w1 − 3w2 + w7

)
.

(19)
Hence,

R∗ = min

(
2w1 + w2 + 2w7

4
, w7,

10w1 − 3w2 + w7

2w1

)
. (20)

Using (14) and (20), we have

R∗∗

R∗ =
min ((w1 + w2), (w2 + w7), (w1 + w7))

min
(

2w1+w2+2w7
4

, w7,
10w1−3w2+w7

2w1

) . (21)

If we take each edge has same capacity, say w then switching
gain will be calculated on basis of case 1 and it is

R∗∗

R∗ =
8

5
= 1.60. (22)

IV. ANALYSIS FOR TRIPLE BUTTERFLY NETWORK

Fig. 7 shows triple butterfly network. Since it is symmetrical to
singular symmetric case, it will have same min-cut values for sinks
t1, t2 and t3. Thus, R∗∗ will be same as given in (1). Further using
edge capacity assumptions, maximum rate due to network coding,
R∗∗ (using 1) is

R∗∗ = min ((w1 + w2), (w2 + w7), (w1 + w7)) . (23)

Using assumptions about link capacities stated in previous
section R∗∗, we have 7 dominating edges, namely
(s, a), (s, b), (s, c), (s, d), (e, h), (f, i), (g, j). We calculate

Fig. 7. Triple-symmetric Butterfly network

network switching rate using multi cast routes formed taking
subset of routes formed by these seven edges. After elimination of
dominated links and multicast routes, we get the following payoff
matrix.

A =
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(24)

Proceeding as in previous section, we apply lagrange multipliers
[9] to A and get following cases.

1) If 2(w1 + w2) ≥ 3w7 and (3w7 + 2w2) ≥ w7w1

then X∗ = ((w1/(2w1 + 2w2 + 3w7)), (w2/(2w1 +
2w2 + 3w7)), (w1/(2w1 + 2w2 + 3w7)), (w2/(2w1 +
2w2 +3w7)), (w7/(2w1 +2w2 +3w7)), (w7/(2w1 +2w2 +
3w7)), (w7/(2w1 + 2w2 + 3w7))) and
Y ∗ = (((2w1 +2w2− 3w7)/(2w1 +2w2 +3w7)), ((2w1 +
2w2 − 3w7)/(2w1 + 2w2 + 3w7)), ((2w1 + 2w2 −
3w7)/(2w1 + 2w2 + 3w7)), ((2w1 − 4w2 + 3w7)/(2w1 +
2w2 + 3w7)), ((−4w1 + 2w2 + 3w7)/(2w1 + 2w2 +
3w7)), ((2w1−4w2+3w7)/(2w1+2w2+3w7)), ((−4w1+
2w2 + 3w7)/(2w1 + 2w2 + 3w7))) and val(A) is

val(A) =
6

2w1 + 2w2 + 3w7
. (25)

2) If 2w1 + 2w2 < 3w7 then X∗ =
(0, 0, 0, ((2w1 − w7)/2w7), (w7 − w1)/w7, ((2w1 −
w7)/2w7), (w7 − w1)/w7) and Y ∗ = (0, 0, 0, (w4 −
w1)/w4, w1/3w4, w1/3w4, w1/3w4) and val(A) is

val(A) =
6

2w1 + 2w2 + 3w7
. (26)

3) If 2(w1 + w2) < 3w7 and (3w1 − 2w7)/w1 < (4w1 −
3w7)/2w7, then X∗ = (0, 1/2, 0, 1/2, 0, 0, 0) and Y ∗ =
(0, 0, 0, ((2w1 − w7)/2(4w1 − 3w7)), ((w1 − w2)/(4w1−
3w7)), ((2w1 − w7)/2(4w1 − 3w7)), ((w1 − w2)/(4w1 −
3w7))) and val(A) is

val(A) =
6w1 − 5w7

2w2(4w1 − 3w7)
. (27)



4) If 2(w1 + w2) < 3w7 and (6w1 − 5w7)/w2 < (4w1 −
3w7)/w7, then X∗ = (1/2, 0, 1/2, 0, 0, 0, 0) and Y ∗ =
(0, 0, 0, ((2w1 − w7)/2(4w1 − 3w7)), ((w1 − w2)/(4w1−
3w7)), ((2w1 − w7)/2(4w1 − 3w7)), ((w1 − w2)/(4w1 −
3w7))) and val(A) is

val(A) =
3w1 − 2w7

w1(4w1 − 3w7)
. (28)

From these cases, we get

val(A) = min

(
6

2w1 + 2w2 + 3w7
,

6w1 − 5w7

2w2(4w1 − 3w7)
,

3w1 − 2w7

w1(4w1 − 3w7)

)
.

(29)
Hence,

R∗ = min

(
2w1 + 2w2 + 3w7

6
,
2w2(4w1 − 3w7)

6w1 − 5w7
,
w1(4w1 − 3w7)

3w1 − 2w7

)
.

(30)
Using (23) and (30), we have

R∗∗

R∗ =
min ((w1 + w2), (w2 + w7), (w1 + w7))

min
(

2w1+2w2+3w7
6

, 2w2(4w1−3w7)
6w1−5w7

, w1(4w1−3w7)
3w1−2w7

) .

(31)
If we take each edge has same capacity, say w then switching gain
will be calculated on basis of case 1 and it is

R∗∗

R∗ =
12

7
= 1.92. (32)

V. CONCLUSION AND FUTURE WORK

In this paper, we analyze a specific class of butterfly network
under suitable assumptions about its link capacities. Based upon
analysis of its three variants, we find that the information rate due
to NC is coming out to be same in all versions of the network
while information rate due to NS is decreasing as we are increasing
the complexity of the network. Maximum information rate due to
network coding is upper bounded by max-flow min-cut theorem.
However as per our analysis analysis, we could conclude that
maximum information rate due to network switching is hard to find
for a generic class of networks. There is no formal way to apply
game theory rules on a generic network. Matrix simplification
rules lack a formal mathematical approach. In our future work, we
will give an alternate graph theoretic approach to find maximum
achievable information rate due to network switching for general
single source multicast network.
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