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Abstract

Increasing throughput and maximizing bandwidth usage is a potential requirement in both

unicast and multicast communication networks. For any given point-to-point communication

network with multiple mutually exclusive information sources multicasting information bits

to some sets of destinations, it is difficult to characterize the admissible coding rate region.

Network switching alone can never achieve max-flow min-cut bound; however by employing

coding at the nodes, referred to as network coding, bandwidth, in general, can be saved.

Ahlswede, Cai, Li, and Yeung [1] have shown that maximum achievable information rate

by network coding in a single source multicast network is more than that for the case of

network switching. We have this problem of finding the maximum admissible coding rate

region for a given network and then devising a suitable information multicast strategy for a

given communication network. We have analyzed the switching gap for a special network,

defined as the ratio of maximum achievable information rate using network coding (NC )

to that of network switching (NS ). In this work, we have found the switching gap of a

singular-symmetric, dual-symmetric, triple-symmetric and then give an intuitive observation

for the n th version of singular symmetric butterfly network which we term as generic butterfly

network. We have also done an extended survey of the previous work done in area of network

switching and explained major results.

Keywords : Network switching, Network coding, max-flow min-cut theorem, multicast

networks, convex Optimizations, Linear Programming, Route packing
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Chapter 1

Introduction

In their pioneering work on network coding [1], Ahslwede et al. determined the capacity

for multicasting information in a network of lossless channels. Specifically, the network is

represented as G = (V, E, c), where (V, E ) is a directed graph and c is the edge capacity

vector of length |E |. Ahslwede et al. have established a theory of network coding for single-

source and multisource-source multicast networks. For single-source network coding, they

demonstrated that the maximum achievable information rate for network coding is always

upper bounded by max-flow min-cut bound. Further, they demonstrated by many examples

that this bound cannot be achieved by conventional network switching and some kind of

network coding [3] has to be applied at each node of the network. Li, Yeung, and Cai [2]

showed that the multicast capacity can be achieved by linear network coding. Since past 9

years, recent discoveries in this field have generated a lot of interest in research fraternity.

A comprehensive survey on the theory of network coding is presented in Yeung, Li, Cai, and

Zhang in [5].

Network switching and network coding are two techniques of data combination to increase

throughput although the former is a special case of the latter. Switching gap or coding

gain [6], is defined as the ratio of maximum achievable information rate using network coding

(NC ) to that of network switching (NS ). A natural problem arises from here, what is the

switching gap for a given single source multicast network and under what conditions does
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switching gap reaches its maxima and minima (which will be 1). Xue-Bin Liang in [7] has

analyzed the Ahlswede-Cai-Li-Yeung’s classical butterfly network [1] to determine switching

gap of the network as well as determined certain conditions on link capacities such that

switching gap of the network comes out to be unity.

We have looked on the problem of network information flow in a single source multisink

multicast network. Post [1] era, many people have worked on developing optimal strategies

for network information flow for different class of networks. We have tried to extend Liang’s

work [7] by taking modified versions of butterfly network and finding its switching gap under

a given set of conditions on the link capacities of the network. In this process, we analyze

singular-symmetric, dual-symmetric and triple-symmetric butterfly network and then give

an expression for a special case of a generic butterfly network.

This chapter gives a short introduction to the problem. The rest of the report is organized

as follows. Chapter 2 gives motivation for this problem as well as the formal problem

statement. Chapter 3 gives a detailed description of network coding. Chapter 4 gives a

detailed description on network switching. Chapter 5 gives analysis of singular-symmetric

butterfly network, dual-symmetric butterfly network, triple-symmetric butterfly network and

finally generic butterfly network. Chapter 6 concludes the study.
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Chapter 2

Motivation and Problem Statement

A lot of research in the realm of network coding have happened in recent years which provides

the motivation for our work. Let G = (V,E, c) a point-to-point communication network

represented by a directed graph, where V is the finite set of vertices in the network and E

is the finite set of edges connecting two vertices say u and v ∈ V in the network G and c

is the capacity function for E. We do not consider any edge connecting a node to itself i.e.,

in other words we are not considering multigraph. Further we rule out cycles in the graph

which essentially means that we consider the case of acyclic networks only.

Each edge or link, say e is associated with a capacity c which belongs to set of positive

rational numbers, R+. This network could be used to transmit information from one node to

other in the network. We can safely assume that transmission in the network will be error free

if and only if, transmission rate, r over any link e should be lesser then link capacity, c. Let

X be the information source, generating information in bit sequences spread over the field

Ψ at node s ∈ V in the network G. Information gets transmitted from s to every destination

or sink nodes, t1, t2, . . ., tL ∈ V such that information could be reconstructed at each of

t i. Hence, without loss of any generality, we can say that information from source X gets

multicast to L distinct sinks in G. This boils down to a single source-multisink problem in a

multicast point to multi point communication network. Please note that for both Network

switching (NS) and Network coding (NC), there will not be any information loss, however
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flow might not be conserved.

An interesting problem which is only partially explored is that, when is information rate

achieved by network coding (NC) equal to information rate achieved by (NS) under a given

set of conditions on link capacities. We have tried to solve this problem for a specific case

that could be considered as a generic version of Ahlswede-Cai-Li-Yeung’s butterfly network

after modifying this network by taking capacities of all links at same level to be equal (see

chapter 5 for further details). We have then tried to find the maximum transmission rate

or the switching gain for generic single source multi sink network with unit capacity edges.

Although it is a known hard problem [8, 28], but we were able to achieve some bounds on

the rate.
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Chapter 3

Network coding

This chapter gives a detailed description of the field of network coding as well as summarizes

pioneering work done in this field.

3.1 Introduction to Network Coding

Network coding is a new research area that have interesting applications in practical net-

working systems. With network coding, intermediate nodes may send out packets that are

linear combinations of previously received information. There are two main benefits of this

approach i.e. potential throughput improvements and a high degree of robustness.

In network coding, a node acts as encoder/decoder. Instead of simply forwarding data, nodes

may recombine several input packets into one or several output packets. A simple example

in a wireless context is a three node topology, as shown in figure 3.1.

Here, say A and B are wireless nodes (transceivers) and want to exchange packets via an

intermediate node S (say, wireless base station). A [resp. B] sends a packet a [resp. b] to

B, which then broadcasts a xor b instead of a and b in sequence. Both A and B can recover

the packet of interest, while the number of transmissions is reduced by 1 and bandwidth is
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Figure 3.1: Example of Network coding.

conserved. Linear network coding replaces the xor operation is by a linear combination of the

data, interpreted as numbers over some pre defined finite field. Linear combining requires

enhanced computational power at the nodes of the network. But nowadays, processing is

becoming less and less expensive. Thanks to Moores law, the bottleneck has shifted to

network bandwidth in order to support the ever-growing demand in applications and QoS

guarantees over large unreliable networks. Network coding utilizes cheap computational

power to increase network efficacy.

Consider a system that acts as information relay, such as a router, a node in an ad-hoc

network, or a node in a peer to peer distribution network. Traditionally, when forwarding an

information packet destined to some other node, it simply repeats it. With network coding,

we allow the node to combine a number of packets it has received and transmit into one

or several outgoing packets. Assume that each packet consists of L bits. We can interpret

s consecutive bits of a packet as a symbol over the field F2s with each packet consisting

of a vector of L
s symbol. Linear combination is not concatenation by any means. If we

linearly combine packets of length L, the resulting encoded packet also has size L. With

linear network coding, outgoing packets are linear combinations of the original packets and

encoding and decoding algorithms are not only easy to understand and implement but can

be done in polynomial time.
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3.2 Process of Network Coding

Assume that a number of original packets M1, . . . ,Mn are generated by one or several sources.

In linear network coding, each packet in the network is associated with a sequence of co-

efficients g1, . . . , gn in F2s and is equal to X =
∑n

i=1 giMi. The summation has to occur for

every symbol position, i.e., Xk =
∑n

i=1 giMi
k, where Mi

k and Xk is the kth symbol of Mi and X

respectively.

Lets say a packet contains both the coefficients g = (g1, . . . , gn), called encoding vector, and

the encoded data X =
∑n

i=1 giMi, called information vector [3]. The encoding vector is used

by recipients to decode the data. For example, the encoding vector ei = (0, . . . , 0, 1, 0, . . . 0),

where the 1 is at the ith position, means that the information vector is equal to Mi (i.e., is

not encoded). At some special intermediate nodes and all sink nodes, decoding of received

packets is done. Assume a node has received the set (g1,X1), . . . , (gm,Xm). In order to retrieve

the original packets, it needs to solve the system {X j =
∑n

i=1 g j
i M

i } (where the unknowns

are Mi). This is a linear system with m equations and n unknowns. However the condition

m ≥ n is not sufficient, as some of the combinations might be linearly dependent. Hence it

is essential to choose the optimal linear codes for each node.

Past research has shown mainly two approaches to choose the linear codes. The first approach

is to choose random codes. A simple random algorithm for choosing network code is to have

each node in the network select uniformly at random the coefficients over the field F2s [4].

However this approach is independent and decentralized. The second approach is to use

deterministic algorithms for network coding. The polynomial-time algorithm for multicasting

in [16] sequentially examines each node of the network, and decides what linear combinations

each node performs. Since each node uses fixed linear coefficients, the packets only need to

carry the information vector. There also exist deterministic decentralized algorithms that

apply to restricted families of network configurations [17].
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3.3 Benefits of Network Coding

Network Coding can increase the capacity of a network for multicast flows. To make this

point more clear, consider a network that can be represented as a directed graph. The

vertices of the graph correspond to terminals, and the edges of the graph corresponds to

channels. Assume that we have M sources, each sending information at some given rate,

and N receivers. The case when N receivers share the network resources, each of them can

receive the maximum rate it could hope to receive, even if it were using all the network

resources by itself.

Figure 3.2: Data transmission in a butterfly network.

Figure 3.2 show a Butterfly Network with two sources S1 and S2 multicast to both R1 and

R2. All links have unit capacity. Only edge CD is shared between the two paths. With

network coding (by xoring the data on link CD), the maximum achievable rate is 2 for each

source, the same as if every destination were using the network for its sole use. With network

switching, the achievable rates are less. In this case considering both rates equal, network

switching can achieve a maximum rate of 1.5. This holds for multicasting. Consider the

case of unicast traffic. In figure 3.2, say source S1 transmits to destination R2 and S2 to R1.

Network coding can achieve a rate of 1 for each receiver, while without that, we can only

send data at rate 1
2 to each receiver. Further, network coding allows to achieve the optimal

throughput when multicasting using polynomial time algorithms.

The most compelling benefits of network coding might be in terms of robustness and adapt-
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ability. Consider again figure 3.1 and assume that A and B may go into sleep mode (or may

move out of range) at random and without notifying the base station S. If the base sta-

tion S broadcasts a (or b), the transmission might be completely wasted, since the intended

destination might not be able to receive. However, if the base station broadcasts a xor b,

or random linear combinations of the information packets, the transmission will bring new

information to all active nodes.

Network coding can offer benefits for delay sensitive and high data rate applications in

networks where packets get dropped. Two main approaches are employed today: Automatic

repeat request (ARQ) schemes that achieve the optimal rate at the cost of delay; and packet-

level forward error correcting (FEC) schemes that achieve the optimal delay at the cost

of rate. For example, consider a source A that would like to transmit information to a

destination C. On the path from A to C there exists a router B that can perform network

coding operations. Assume that node A sends encoded packets, that are dropped on paths AB

and BC with probability εAB and εBC respectively. Letting destination C decode the packets

it receives, restricts the rate to R1 ≤ (1 − εAB)(1 − εBC). If we allow the router B to perfectly

decode and re-encode, we will achieve the optimal min-cut rate R2 ≤ min{ (1−εAB), (1−εBC) },
but at the cost of additional delay: we have to wait at node B to receive sufficient encoded

packets to be able to decode and re-encode the information. Using an ARQ scheme will

again allow to achieve rate R2, but again at the cost of increased delay. Alternatively, node

B can, at each time instance, form and send random linear combinations of the encoded

packets it has received up to that time, without waiting for all encoded packets. We can

then achieve the optimal rate R1 without an additional delay.

3.4 Application of Network coding

The most widely known application using network coding is Avalanche [18, 19]. Generally,

in a peer-to- peer content distribution network, a server splits a large file into a number of

blocks. Peer nodes try to retrieve the original file by downloading blocks from the server but

also distributing downloaded blocks among them. To this end, peers maintain connections
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to a limited number of neighbouring peers (randomly selected among the set of peers) with

which they exchange blocks. In Avalanche, the blocks sent out by the server are random

linear combinations of all original blocks. A node can either determine how many innovative

blocks it can transmit to a neighbor by comparing its own and the neighbors matrix of

decoding coefficients, or it can simply transmit coded blocks until the neighbor receives the

first non-innovative block. The node then stops transmitting to this neighbor until it receives

further innovative blocks from other nodes. Network coding minimizes the download times.

With network coding, the performance of the system depends much less on the specific

overlay topology and schedule. Due to the diversity of the coded blocks, a network coding

based solution is much more robust in case the server leaves early or in high churn rates

(where nodes only join for a short period).

Another application area of network coding is transmission in wireless networks. Network

coding can improve throughput in multihop routing in wireless networks with bidirectional

routing with same number of packets to exchange. Given a schedule that alternates between

adjacent routers, after a few initial steps, all inter- mediate routers have packets buffered for

transmission in both directions of the path. Whenever a transmission opportunity arises, a

router combines two packets, one for each direction, with a simple xor and broadcasts it to

its neighbors. Both receiving routers already know one of the packets the broadcast is coded

over, while the other packet is new. Thus, each broadcast allows two routers to receive a

new packet, effectively doubling the capacity of the path. Further, simple xor based network

coding can increase throughput in residential wireless mesh networks [20].

Network coding also finds application in adhoc networks and sensor networks. [21] describes

a novel and interesting application for network coding with untuned transceivers in sensor

networks [36]. Another interesting data gathering algorithm for sensor networks is presented

in [22]. Network coding also finds application in the areas of network tomography and

network security. [23] describes an application of network coding in inferring the loss rates of

links in an overlay network. For conventional active probing, packets are usually multicast to

several receivers. The receivers experience the same loss event which provides information

about losses in the underlying multicast tree. After a sufficiently large number of probe
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packets, shared links and their loss rates can be identified with reasonable accuracy. In such

a setting, network coding provides additional flexibility since packets are not only duplicated

at branching points of the multicast tree, but may also be merged. If multiple senders unicast

packets to a single receiver, and these packets are combined within the network, it allows

to infer the topology in much the same way as multicasting from one sender to multiple

receivers. Furthermore, if the network code (i.e., the specific way in which packets are

combined at the nodes) is known in advance, the coding coefficients contained in the probe

packets provide additional information about the original packets that were combined (and

consequently which packets were lost in which part of the tree). By exploiting these features,

it is possible to significantly reduce the number of active probes and the link stress generated

by these probes. Network coding has also been proposed for passive network monitoring.

Network coding also finds application in network security where in it helps in protection

from a potential eavesdropper, since information is more spread out and thus more difficult

to overhear. In [24], the authors investigate the problem of designing secure network codes for

wiretap networks, where certain known links are tapped by attackers. The source combines

the original data with random information and designs a network code in such a way that only

the receivers are able to decode the original packets. Furthermore, the mutual information

between the packets obtained by the eavesdroppers and the original packets is zero. The

authors, K. Bhattad and K. R. Narayanan, in [25] investigate a weaker form of security, based

on the fact that nodes can only decode packets if they have received a sufficient number of

linearly independent information vectors, which an eavesdropper might not be able to do.

Network coding also simplifies the protection against modified packets in a network [26].

In a network with no additional protection, an intermediate attacker may make arbitrary

modifications to a packet to achieve a certain reaction at the attacked destination. However,

in the case of network coding, an attacker cannot control the outcome of the decoding process

at the destination, without knowing all other coded packets the destination will receive.
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3.5 Previous work done

The problem of computing network information flow in a network introduced in [1] triggered

the question that how much information can be transmitted through a network. The field of

network coding has roots in information theory as well as connections to two classic graph

problems i.e. Steiner tree packing and multicommodity flow.

Information theorists have concentrated on communication over a single channel. [27] de-

scribes a set of senders who wants to transmit information across a channel to a set of

receivers. Mote specifically, it introduces the problem of network information flow as given

many senders and receivers and a channel transition matrix which describes the effect of

the interference and noise in the network, decide whether or not the sources can be trans-

mitted over the channel or not. This problem involves distributed source coding as well

as distributed communication. This work has started research on data compression and

error-tolerance. In networks it is unlikely and tough to model a network as a single channel.

For example, in a network communication problem, different receivers may have access to

different channels in a network. In this case, it is multi channel communication problem.

Characterizing the capacity of an information network has remained an open problem for

decades.

Network coding is a variation of max flow concept in graph theory. However information

flow is different from fluid flow. Network coding does not follow the principle of conservation

of flow but obey capacity constraint. In a traditional view of communication in a network,

data can be replicated at nodes but not encoded together with other data. The problem of

packing fractional Steiner trees in a graph can be used to model this type of communication.

The Steiner packing problem is to find the maximum number of edge-disjoint subgraphs of a

given graph G that connect a given set of required points S [28]. Given a directed capacitated

graph G, a node r and a subset of vertices S, a fractional Steiner tree packing is a set of

fractional Steiner trees such that for every edge in G the total weight of trees containing that

edge is no more than the capacity of the edge. The objective of the fractional Steiner tree

packing problem is to maximize the total weight of the set of Steiner trees. The problem
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of multicasting from a source s to a set of sinks t1, . . . , tn has traditionally been studied as

a fractional Steiner tree packing problem. Each tree in a fractional Steiner packing can be

used to send a fraction of the data as per its weight. Computing optimal fractional Steiner

packing in undirected graphs is NP hard [28].

Another line of thought that went in to develop concepts of network coding is multi com-

modity flow problem in graph theory. In an instance of the multicommodity flow problem,

there is a directed capacitated graph G and k commodities. For each commodity i, there is

a single source si, a single sink ti, and a demand di. In a multicommodity flow, the total flow

of all commodities across an edge in G must be no more than the capacity of that edge. The

objective is to find the largest fraction r such that for every commodity i, at least rdi units

of commodity i flow from source si to sink ti. This problem can be solved optimally using

linear programming [29].

Ahlswede et al. in [1] for the very first time introduced the concept of network coding. The

presented a modified form of max-flow min cut theorem for information networks and proved

that a source can multicast k messages to a set of sinks provided the min-cut between the

source and each sink has capacity k. Network coding was also introduced by R.J Mceliece

in his talk [13] where in the author showed how multicast trees could be used to maximize

data transmission in information network.

Li, Yeung and Cai showed that the maximum achievable rate for the multicast problem can

always be achieved using a linear code [2]. This focused attention on using linear codes for

network coding as their viability to solve a wider array of network coding problems. They

also proved that linear codes could be constructed deterministically but the algorithm is

exponential in size of network. Peter et al. in [39] presented a polynomial time algorithm

for Network Information Flow in a graph.

Koetter and Médard devised an algebraic framework for network coding in [30]. Using the

algebraic framework proposed, the authors studied the application of linear network coding

to directed cyclic graphs. Ho et al. in [31] analyzed a particular class of networks to construct

a randomized algorithm that can be executed in a distributive fashion. Petar et al. gave
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efficient methods of linear network coding in [37].

Jaggi et al. devised a polynomial-time implementation of the Li, Yeung and Cai multicast

algorithm in [32]. It gives a linear solution over a field F such that |F| = O(number of sinks).

This triggered much of research work in determining whether an even smaller alphabet would

suffice or not. A second important contribution of Jaggi et al. was an instance on n nodes

in which network coding achieves a rate Ω(logn) times larger than the best rate achievable

with fractional Steiner tree packing [28].

Li et al. [33] considered network coding in undirected graphs. They showed that fractional

Steiner tree packing techniques can achieve at least 1
2 the maximum possible multicast rate.

This put an upper bound on the usefulness of network coding in undirected graphs for

the multicast problem. Desmond et al. in [38] studied network coding in networks having

certain cost to operate. They showed that the minimum-cost multicast problems without

network coding are very difficult except in the special cases of unicast and broadcast, finding

minimum-cost subgraphs for single multicast connections with network coding can be posed

as a linear optimization problem.

Liang in [7] analyzed the butterfly network given in [1] to determine the ratio of maximum

rate achieved by network coding to that of network switching. He termed this ratio is switch-

ing gap or coding gain of the network. He concluded that the switching gain would always

be greater than 1 except for a special case. Chandra Chekri in [35] examined the throughput

of network coding with the average throughput achievable by routing, where the average

throughput refers to the average of the rates that the individual receivers experience. Chen

et al. in [40] investigates the diversity gain offered by implementing network over wireless

communication links. Their results show that Distributed Antenna System with network

coding leads to better diversity performance, at a lower hardware cost and higher spectral

efficiency. Lihua et al. in [41] gave zero-error network coding theorems for acyclic com-

munication networks. More specifically, they studied the problem of under what conditions

a set of mutually independent information sources can be faithfully transmitted through

a communication network, for which the connectivity among the nodes and the multicast
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requirements of the source information are arbitrary, except that the connectivity does not

form directed cycles. They obtained inner and outer bounds on the zero-error admissible

coding rate region.

The Network Coding Home Page [42] provides a bibliography for the topics not covered in

this thesis. Ho’s dissertation [34] is also an excellent reference for network coding.
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Chapter 4

Network switching

This chapter gives a detailed description of the field of network switching as well as sum-

marizes pioneering work done in this field. Network switching is a special case of network

coding wherein, a node having a capacity of say k units, is given data more than k units at

a time to transmit. In this case, the node has to switch between the incoming data streams

each time. One of the basic problem that arises out of it is that what can be the optimum

switching strategy for a single source multi sink multi-cast network with each edge having

unit capacity.

4.1 Introduction to Network Switching

Shannon once defined communication as, “The fundamental problem of communication is

that of reproducing at one point either exactly or approximately a message selected at

another point.” Information can be compared to fluid flow as both exhibit similar properties.

However, there is a a fundamental difference between the two as shown in figures 4.1 and

4.2.

These figures clearly show that the information flow like fluid flow is not conserved and hence

maximum information that could be transmitted from a source to a set of sinks cannot be
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Figure 4.1: Example of Fluid Flow

given by classical max flow min cut theorem that works for fluid networks.

We explain this statement with an example. Consider figure 4.3. There is a single source

and two sink nodes. Assume each edge has unit capacity and we examine the network in

steady state. Now the source sends packet A on both its out going edges and in the next

cycle it sends a packet B on its left edge and C on its right edge. Now each sink receive

packet A from mutually edge disjoint paths. However, since the other path to each sink has

a common edge, so there would be path switching and each sink would receive 1 packet in

two cycles. Hence the rate due to network switching would be 3
2 .

4.2 Previous work

Although there is lot of work done in area of design and development of network switches

and network switching in multicast networks [43], there is minimal work done in determining

network switching gain for a single source multi sink communication network. We organize

the work done in this specific area by the kind of approaches taken to provide solution to

the problem of determining the maximum rate achieved by network switching for a single

source multi sink communication network.
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Figure 4.2: Example of Information flow

Figure 4.3: Example of Network switching
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4.2.1 Information theoretic characterization of Network switching

Joy et al. in [27] gave a information theoretic definition of max-flow min-cut theorem as the

rate of flow of information across any boundary is less than the mutual information between

the input on one side of the boundary and output on the other side conditioned on input on

the other side. Ahlswede et al. in [1] showed that it is not optimal to regard information to

be multicast as a fluid that can be routed or replicated easily. They argued that it is not

optimal to treat a node in a multicast network as a simple switch which could just replicate

or forward the incoming flow, rather every node should act as an encoder and can perform

linear functions over incoming data streams. They showed that max flow min cut theorem

applies for information network after some modifications and network switching alone cannot

achieve the max flow bound. In simple terms, the main result of Ahlswede et al. can be

stated as follows.

Theorem 4.2.1. Let G = (V,E) be a graph with source s and sinks t1, . . . , tL and the capacity

of an edge (i, j) is Ri j. Let the information rate of the source (in bits per unit time) be h.

Then (R, h,G) is admissible if and only if the values of a max-flow from s to tl, l = 1, . . . , L

are greater than or equal to h, the rate of information source.

The proof for this requires construction of a special class of block codes call α codes and

can be found in [1]. However to graphically illustrate it, consider figure 4.4 which shows a

single source three sink network. So here L = 3. The value for max flow from source to all

sinks for this network is 2. Now if we use plain network switching and no coding then, we

cannot send more than one common packet to all 3 sinks. Figure 4.6 shows this case. To

enable all sinks to receive both the packets, s has to send b1 and b2 to node C in two separate

cycles. However, if we deploy simple XOR based coding by sending a combination (b1
⊕

b2)

on node C, we can achieve a rate of 2 packets per cycle. This confirms the max-flow min cut

theorem given by the author.

Based upon Ahlswede et al. work [1], if we consider network switching as a special form of

network coding, then a unique problem related to performance of switching against coding

can be framed. Under what conditions can network switching achieve a rate equal to network
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Figure 4.4: A one source three sink network

coding and what is the value of switching gap or coding gain [6] (defined as the ratio of

information rate achieved by network coding and information rate achieved by network

switching) for a given single source multi sink multicast network. Ngai et al. in [6] have

constructed a special type of networks (refer figure 4.4) which they termed as combination

networks and then determined the switching gain for them. They concluded that the network

coding gain for generalized combination network can be unbounded. However it is specific to

only a particular type of network and did address the problem of finding network switching

rate for a generic network.

Xue-Bin Liang [7] made some progress in this problem by finding the switching gap for

classical butterfly network as given in [1] in terms of capacity of the edges of the graph

modeling the multicast network. The author used the fundamental theorem on max flow

min cut for information networks [1] to determine the maximum information rate given by

network coding. It enumerated all minimum cuts for both source sink pairs s − t1 and s − t2

and equated the rate due to network coding R∗∗ as minimum of these value. To determine,

the rate achieved by network switching, R∗, for this network, they used the results in [8] and

equated R∗ as the reciprocal of the value of the game with payoff matrix formed by taking
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Figure 4.5: A one source three sink network with coding

Figure 4.6: A one source three sink network with switching
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reciprocal of the capacities of edges of the graph formed by the network. Liang in [7] also

found the conditions on link capacities for which the switching gap becomes 1. However,

he concluded that it is hard to calculate switching gap for a generic single source multicast

network with arbitrarily edge capacities and it is still an open problem.

4.2.2 Game Theoretic characterization of Network Switching

From Liang’s work [7], network switching is formulated as a special game called matrix game,

which is a 2 person zero-sum game played by two players, such that to send flow, the first

player aims at choosing an edge which has maximum capacity and the second player aims

at choosing a route from source to all sinks (essentially a multicast tree) which has overall

minimum weight. Both Liang [8] and R. J. McEliece in [13] have given a game theoretic

characterization of network switching at nearly the same time.

R. J. McEliece in [13] gave a probabilistic solution to the problem of single source multicast

problem which was based on game theory concepts. The multicast network considered is

single source multi sink network depicted as a acyclic directed graph G(V,E, c) where c is

the capacity function of the edges. The basic underlying assumptions are that the network

contains no cycles, all links operate asynchronously with noiseless transmission. He first

constructed all possible spanning tree for the given network and then introduced the notion

of minimum cut in the network by assigning a probabilistic value to each of the spanning

tree in the network. He assigned weights to edges of the trees such that sum of weights of all

edges in every multicast tree is greater than or equal to 1. He also introduced the concept

of spanning tree packing function, w(T) such that, for every edge belonging to the graph

G i.e. e ∈ G, sum of trees having that e should be less than or equal to 1. These two are

contrasting aims and hence the author used game theory principle to construct a 2 person

zero sum game and the value of the payoff of this game is the reciprocal of network switching

rate of the underlying network. However, the whole method is probabilistic in nature and

cannot be applied in generic networks. More over assigning weights to each edge of the graph

is very hard to perform.
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Xue-Bin Liang in their classical paper [8], has developed an analytic framework for treatment

of the achievable information rate region for single and multisource network switching for the

multicast networks with links having arbitrary positive real-valued capacity and formulated

the multisource network switching as a matrix game. He obtained a game-theoretic charac-

terization of the maximum achievable information rate region for such a network and then

goes on to calculate the maximum achievable information rate of network switching for but-

terfly network given in [1]. However, this method is again based on game theory principles

and lacked a formal mathematical and graph theoretic solution. Further both these works

did not addressed the problem of giving an optimal switching strategy for a generic single

source multi cast network. In the next section, we explored the graph theoretic solution to

this problem.

4.2.3 Fractional Steiner tree packing problem

Xue-Bin Liang in [8] stated that the problem of finding the maximum achievable information

rate for single-source network switching is equivalent to the maximum fractional Steiner tree

packing problem investigated by Jain, Mahdian, and Salavatipour in [28] and Wu, Chou, and

Jain in [44]. Kamal Jain et al. in [28] have defined the steiner packing problem as finding

the maximum number of edge-disjoint subgraphs of a given graph G that connect a given

set of required points S. Single source multisink network switching problem is equivalent to

steiner tree packing problem which can be defined as finding set of maximal size edge-disjoint

steiner trees connecting all the sinks with the source. If the graph have real valued capacity

function then it becomes fractional steiner tree packing problem. Formally, the maximum

number of edge disjoint steiner trees for a Graph G(V,E) is equal to the integer part of the

minimum value of
EG(P)
‖P‖−1 for every (non empty) partition P of V such that P = {V1, ...,Vt} and

EG(P) denotes the number of edges between distinct classes of P and ‖P‖ denotes number of

classes of P. The problem of fractional steiner tree packing problem is same as the problem

of finding maximum switching rate for a single source multicast network having real values

capacity function. The authors have formulated it as a linear program.
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Lets say, τ denotes the collection of all steiner trees in graph G connecting set S, and ce is

the capacity of the edge e, then fractional steiner tree packing problem is

maximize
∑

T ∈ τ
xT (4.1)

subject to ∀e ∈ E :
∑

T:e∈T

xT ≤ ce

∀T ∈ τ : xT ≥ 0

Using principle of duality, 4.1 is equivalent to

minimize
∑

e∈E
ceye (4.2)

subject to ∀T ∈ τ :
∑

T:e∈T
ye ≥ 1

∀e ∈ E : ye ≥ 0

This problem is nothing but assignment of non negative weights to graph edges such that

minimum weight steiner tree has atleast unit weight and a linear (simple product) function

of edges is minimized. This LP is not solvable in polynomial time because the separation

oracle for this is the steiner tree problem itself. They have given an approximation algorithm

for this problem using separation oracle from known results.

The research focus then shifted to finding the coding advantage for single source multicast

network when coding is employed to the case when normal switching is used. Agarwal and

Charikar in [45] found a remarkable parallel between the coding advantage network examples

in network coding and the integrality gap examples in optimization for computer science and

demonstrated that the maximum switching gap for a single-source multicast network equals

the maximum integrality gap of linear programming formulation for a Steiner tree packing

problem. They analyzed for both directed as well as undirected networks and helped in

improving the known bounds on coding advantage for single source multicast networks.

Since the minimum weight Steiner tree problem is NP-hard for both undirected and directed

networks, polynomial time solvable LP relaxations of Steiner tree are commonly used to

obtain a lower bound on the optimal Steiner tree weight. The quality of the bound provided
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by the LP relaxation is measured by its integrality gap, i.e. the ratio between the optimum

Steiner tree weight and the optimum solution to the LP relaxation. Agarwal et al. in this

work have shown that the maximum coding advantage is equal to the integrality gap of the

bidirected cut relaxation for the undirected Steiner tree problem and for directed networks,

the coding advantage is equal to the integrality gap of a natural LP formulation of directed

Steiner tree.

To understand this work, we redefine the network as given in [45]. The input network is

represented as an undirected graph G = (V,E). Let c : E → R+ be capacity assignment

to the edges. Let ce denote the capacity of edge e ∈ E. Let source be m0 and receivers

{m1, . . . ,mk}. Let rate of network switching be denoted by Π(G, c) and of that of network

coding be denoted by χ(G, c). Let τ be the set of steiner trees for G connecting terminals

{m0, . . . ,mk}. Coding advantage is defined as ratio
χ(G,c)
Π(G,c) . The Steiner packing number is

given by the following linear program.

maximize
∑

t∈ τ
xt (4.3)

subject to ∀e ∈ E :
∑

t∈ τ:e∈ t

xt ≤ ce

∀t ∈ τ : xt ≥ 0

We can construct the dual of 4.3 as follows.

minimize
∑

e∈E

ceye (4.4)

subject to ∀t ∈ τ :
∑

t:e∈ t

ye ≥ 1

∀e ∈ E : ye ≥ 0

Let we to denote the weight of edge e ∈ E. For each undirected edge e ∈ E, lets have two

directed edges e1 and e2 which represent the both orientations of e and have same weight as

the undirected edge and Cost is C(e) =C(e1) + C(e2) (refer fig 4.7). Let D = {e1, e2, ∀e ∈ E}.
After orientation of the entire edge set E, E becomes a directed link set D, with the number

of links in the set doubled. Since the capacity of a directed link must be non-negative, we

also have C(r) ≥ 0 , ∀ r ∈ D.
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Figure 4.7: Orientation of an undirected edge in the network into two directed ones [45].

They have converted this standard steiner tree LP in terms of maximum flow in the network

[65]. Let m0 be the source and {m1, . . .mk} be the multicast receivers. f 1, . . . , f k be the

information flows to each of the receivers. Let each f i specifies a flow rate f i(e) for each

directed link e ∈ D. Let f i
in(v) denotes the total incoming f i flow rate at a node v, and

f i
out(v) be total outgoing flow at v. We need to maximize overall all flow rate f ∗. We use the

following flow constraints to define the flow based LP.

• Flow rates must be non-negative and upper bounded by link capacities.

• Total incoming flow f i equals to outgoing flow rate in f i.

• The incoming flow rate at the source and the outgoing flow rates at the receiver are

all zero, for each f i.

The last constraint is that conceptually the flow at every sink node should be the same.

maximize f ∗ (4.5)

subject to ∀a ∈ D ca ≥ 0

∀e ∈ E ce1 + ce1 = ce

∀i ∈ [1, . . . , k],∀v ∈ V − {mo,mi} f i
in(v) = f i

out(v)

∀i ∈ [1, . . . , k] f i
in(mo) = 0

∀i ∈ [1, . . . , k] f i
out(mi) = 0

∀i ∈ [1, . . . , k] f ∗ = f i
in(mi)

The solution for 4.5 i.e. f ∗ would be χ(G, c). Now, let OPT(G,w) denotes the weight of the

minimum weight Steiner tree on G for a given edge weight function w. Finding OPT(G,w)
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is NP-hard [28]. So far, we have defined the LP on original edge set E of the graph. Now,

we have a bidirectional edge set D after orientation of E, so we define bidirected cut integer

program to find OPT(G,w). Set C is a subset of vertices such that C contains the source m0

and C̄ contains at least one terminal. δ(C) = {(u, v) ∈ D : u ∈ C, v < C}. The following

integer program computes the minimum weight Steiner tree:

minimize
∑

e∈D

wece (4.6)

subject to ∀ valid sets C :
∑

e∈ δ(C)

ce ≥ 1

∀e ∈ D : ce ∈ {0, 1}

Now solution for this LP will be OPT(G,W). If we replace the last constaint in 4.6 by this

∀e ∈ D ce ≥ 0.

After this relation, let the optimum value of the bidirected cut relaxation for G with given

weights w be denoted by B(G,w). The maximum value of the ratio OPT(G,w)/B(G,w) is

called the integrality gap, g of the LP relaxation.

We know give the main result of this paper.

Lemma 4.2.2.
∑

e∈E ceye is an upper bound on the value of the bidirected cut relaxation

for the Steiner tree instance with edge costs given by the ye’s.

Proof. Since the graph G with capacities ce has a flow value, f ∗ = 1, every edge can be

bidirected and the capacity distributed between the two oppositely directed copies so that

a flow of 1 can be routed separately from the source to every terminal according to these

capacities. Further the directed capacity across any cut separating the source and at least

one terminal node must be at least 1 for f ∗ to be 1. �

Theorem 4.2.3.

max
c

χ(G, c)
Π(G, c)

≤ max
w

OPT(G,w)
B(G,w)
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Proof. Lets consider the equation 4.5. We can scale the capacities of the edges to make

f ∗ as 1. Now, consider the dual to the Steiner packing LP in 4.4. By strong duality, the

optimum value is equal to Π(G, c). Consider the parameter ye as edge cost in 4.4. The first

constraint of the dual gives us the condition that every Steiner tree under these edge costs

should have cost at least 1. So, using lemma 4.2.2, there exists a weight function w such

that OPT(G,w) ≥ 1 and B(G,w) ≤ Π(G, c). �

Lemma 4.2.4. χ(G, c) for the graph G with capacities ce is atleast 1.

Proof. The bidirected cut relaxation equation 4.6 shows us a way to distribute ce amongst

forward and back edge for original edge e, such that for every cut separating the source and a

terminal, the directed capacity is atleast 1. This means that the directed graph can support

a flow of at least 1 from the source to every terminal. �

Theorem 4.2.5.

max
c

χ(G, c)
Π(G, c)

≥ max
w

OPT(G,w)
B(G,w)

Proof. Consider a network and its graph G with weight function w for which the bidirected

cut relaxation has gap g. Using the result in lemma 4.2.4, we now construct a graph which

coding advantage atleast g.

After orientation step, we have obtained two edges e1 and e2 for every edge e in original

graph G such that ce = ce1 + ce2 . Run the flow LP as given in equation 4.5 on G with these

capacities and it will have coding advantage atlesast g. �

Using the results 4.2.3 and 4.2.5, we can say that for a given weight function w, there is

a steiner tree of cost at most
∑

wece
Π(G,c) . But the solution to LP (4.6) with modified constraint

was B(G, c) which is same as
∑

wece. And for a given weight function w, the integral gap is

originally defined as
OPT(G,c)

B(G,c) . This implies that there is a Steiner tree of cost at most
B(G,c)
Π(G,c) .

This inturn implies, Π(G, c) ≤ 1/g, which makes coding advantage
χ(G,c)
Π(G,c) ≥ g.
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4.2.4 Heuristic based approach for network switching problem

Single source multicast routing refers to the transmission of a packet from a single source to

more than one destinations such that only one copy of the packet flows on a single link. In

single source multicast routing problem, there is one source multicast node and the remaining

are destination nodes. The paths between the source to destinations are represented in terms

of a Multicast tree [47]. The problem of finding multicast tree is represented in terms of an

undirected graph in which minimum cost paths between a source to destination multicast

nodes are desired. Several approaches are being used to solve this problem and among them

most popular is Steiner tree problem. In Steiner tree problem a multicast tree is found

in which paths from the source to destination multicast nodes are found separately. The

Steiner tree problem is NP-complete [28] and heuristic approaches are used to find solutions.

Instead of heuristic approach, Umair et al. in [46] presents an algorithm to find single source

multicast trees that have an over all near minimum cost paths from the source to destination

nodes under the assumption that a minimum cost path from source to any destination node

lies within k-hops. The algorithm is based on message transmission from destinations to

source to find the tree. To explain the algorithm briefly, we first explain their model. The

network is represented by a graph G(V,E), where V is the set of nodes, and E is the set

of links. Each link e has J non negative weights wj(e), j = 1 to J and a cost c(e). A path

is defined as a sequence of nodes p = (s, v1, v2, . . . , vk, d), where s is the source multicast

node and d is any destination multicast node and remaining are intermediate nodes on the

path between s and d. The weight of the path is the summation of all weights present at

each link or it could be the minimum or maximum value incurred in the path from s to d.

Similarly, the cost of the path is the summation of all links costs. The model is shown in

Fig. 4.8, in which shaded circle nodes are multicast destinations and square node A is the

source multicast node. The nodes can act either a router or a host. The packet format from

destination to source is shown in 4.9.

The algorithm starts with A configured to accept packets from destination nodes. The

field Node Identity (refer figure 4.9) contains identity of the destination multicast node that

originated the packet, the second field contain the node identities of all nodes that occur in
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Figure 4.8: Network model for multicast routing problem [46]

Figure 4.9: Packet format of destination to source [46]

the path from destination multicast node to source multicast node and the third field Cost[u]

contain accumulated costs of all links from destination multicast node to source multicast

node where C(u, v) is the cost of one link (u, v). It can also store J weights (W1[u], . . . ,WJ[u])

that are associated with each link. In next step, each destination sends a packet, as shown

in figure 4.9, to A. The packet travels in the network until hop count reaches greater than

k. In that case, it is terminated by an end host.

At router the packets copies the router identity and multiple copies of the packet are gener-

ated that are forwarded to each link. Each packet accumulates or compares with the value

of the link where the router is forwarding the packet. The host in addition also checks the

hop count of the packet to see if reaches greater than k and then forward the packet to

all outgoing links. The packet appearing twice is discarded. Figure 4.10 shows structure

of source buffer. When a packet arrives at the source multicast node, it first stores it in a
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Figure 4.10: Queue structure at source [46]

Figure 4.11: Packet format from a node to source [46]

Queue IQ. The packets are sequentially fetched from the queue and a priority is assign to

the packet. When a new node wants to join the network, it will send the packet as shown

in figure 4.11. The multicast tree found by the source node is shown through the Key(0) to

Key(n) pointers when n paths to destination nodes are present.

The previous work focused on finding multicast trees used two approaches i.e. ‘Dijkstra’s ’

algorithm and its variants, and Evolutionary algorithms. The basic approach in both the

algorithms is worth describing. This algorithm was conceived by Dutch computer scientist

Edsger Dijkstra and it is a graph search greedy algorithm that solves the single-source

shortest path problem for a graph with nonnegative edge path costs, producing a shortest

path tree. This algorithm runs in O(|E| lg |V|) time. The algorithm can be found at [64].

On the other hand, evolutionary algorithms are stochastic search methods that mimic the
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metaphor of natural biological evolution. Evolutionary algorithms operate on a population

of potential solutions applying the principle of survival of the fittest to produce better and

better approximations to a solution. At each generation, a new set of approximations is

created by the process of selecting individuals according to their level of fitness in the problem

domain and breeding them together using operators borrowed from natural genetics. There

are various forms of evolutionary algorithms i.e. genetic algorithms, genetic programming,

evolution strategy etc.

The ‘Dijkstra’s ’ algorithm has the advantage of being fast therefore it is integrated into

heuristics to give a better solution in [48]. The authors [48] focused on group multicast

routing problem (GMRP) which is a generalization of single-source multicasting where each

member of a multicast group sends data to all other members of that group. So it is nothing

but finding a set of routing trees for one tree for each member so that it can multicast

messages to all members. This holds practical importance since applications like video

conferences are based on it. However in this problem, two things need to be optimized i.e.

tight delay constraints and sufficient bandwidth. Two approaches are suggested for this

problem. The first approach is constructing a core based tree [60] which is used alone for

multicasting. This tree would be rooted at the the core and having nodes as multicasting

group members with minimal cost. This method suffered from the problem of too much

congestion at certain links and very high upper bound on delay which make it unsuitable

for video applications. The authors have instead created one source based steiner tree for

each source separately so that each group member can send messages via its own tree. They

have proved that this problem of creating group multicast trees for high bandwidth delay

sensitive applications in point to point communication network is NP-complete and then

have developed heuristics to solve it. They proposed an iterative algorithm that takes a set

of multicast trees, which satisfies delay constraints but lack sufficient bandwidth, as input.

It is then iteratively modified to satisfy bandwidth sufficiency condition. However their

algorithm do not always give a feasible solution satisfying all QoS constraints and hence

there is a need for QoS sensitive algorithm for this problem.

It is known that the ‘Dijkstra’s ’ algorithm finds network path starting from source node
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and follows links having minimum cost at each link which sometimes lead to high execution

time and does not always result into a minimum overall cost path found between source

to destination because of its greedy property. To overcome this problem of the algorithm,

Geng Fe [50] proposed using it in forward, reverse and lookahead directions and given a

QoS sensitive algorithm which gives a feasible solution with very probability. Aissa and

Mnaouer [51] proposed an extended prime ‘Dijkstra’s ’ algorithm (EPDT) that has cost and

radius as two different parameters and attempt to find optimized paths with respect to both

these parameters.

Moving on to the work done in evolutionary schemes, Chun-Wei Tsai et al. in [49] proposed

a novel genetic algorithm for this problem. Genetic algorithm works by searching a solution

from a large sample set and and then optimizing it. The authors in [49] used three generic

concepts of genetic algorithms to design their scheme which are as follows.

1. Multiple search iterations in different directions to avoid local minima.

2. Different search methods for different populations in search space.

3. Use message passing to search in large solution space and upgrade the sub optimal

solution to more optimal one.

To explain it further, we would formally represent the problem as well as explain the con-

nection between the multicast routes and the chromosomes used in genetics.

Problem stmt: Given a diag G(V,E,w, io) with V as set of vertices and E as set of edges

between the connecting pair of vertices. Let w be the cost function w : E → R. In addi-

tion, a non empty set N = {vo,u1,u2,u3, . . . , uk} of terminals in G is given where N ⊆ V,

v0 is the source node, and D = {u1,u2,u3, . . . ,uk} is the set of destination nodes. The de-

lay of each vertex(io) is the sum of its reception data and transmission data i.e. io = sn + dn.

Objective: A subnetwork TG(N) = (VT,ET,wT, ioT) of G such that : N ⊆ V; there is a
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Figure 4.12: Representation of multicast tree as binary string [49]

path from source node to each destination node; the cost of TG(N),
∑

el ∈ET
w(el) +

∑
w(i0),

is minimized. The fitness function is F(a) = min {∑el ∈ET
w(el) +

∑
w(i0) }.

A route is defined here as feasible connection between a source and destination pair. The

algorithm takes as input a routing table having R routes for each source destination pair.

For a given source node vo and destination nodes set D = {u1,u2,u3, . . . , uk}, a chromosome

can be denoted by a string of letters of length k. A gene, di, which is the smallest unit of a

chromosome, is defined as an integer in {0, 1, . . . , (R−1)} and it denotes route between source

and destination. The authors have numbered the edges of a graph G from 1 to k and then

any multicast tree T is defined as binary string (e1, e2, . . . , ek) such that ei = 1 iff edge i ∈
T and 0 otherwise. Figure 4.13 shows relationship between chromosome, gene and routing

table and figure 4.12 shows a representation of multicast tree as a binary string.

A chromosome intuitively represents a multicast solution since it guarantees a path from

source to a destination. In case there is a cycle then by definition of fitness function, it

will have a large fitness value and would be removed from search space. The algorithm is to

create more and more chromosomes satisfying fitness criteria which is nothing but a modified

representation of Qos criteria.

The work proposed by LIU Ying and WU Jianping [53] is also based on evolutionary algo-

rithms but they modified the problem from [49] by adding degree constraint to the amount

of information a node (switch) can multicast steiner tree problem. The degree constraint d

means that a node can output the received packet to at most (d − 1) out going links. The

work proposes a genetic algorithm for solving degree constrained multicast routing problem.
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Figure 4.13: Relationship between chromosome, gene and routing table source [49]

4.2.5 Switching in multicast routing in real time networks

Switching in a network has been a core design problem in network switches. In simple terms,

a network switch is a computer networking device that connects network segments. Switches

use the concept of switching between different incoming streams. The problem of switching

becomes all more important in dynamic multicast routing specially since multimedia applica-

tions are increasingly in demand. People are advocating for faster, incremental and dynamic

schemes for constructing multicast trees. Doar and Leslie in [56] analyzed the problem of

brute force multicast routing. They have talked about three ways in which heuristic Steiner

trees may be used for routing multicast groups whose membership is dynamic. One is to

reroute the whole tree whenever the group membership changes. A variation of this method

is to permit partial or local rearrangement of the tree when modifications to the membership

occur. The second approach is to begin with an optimal or near optimal tree and make min-

imal changes to it as group membership changes. However, it is intuitive to comment that
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as membership in the group changes, one would expect the inefficiency of this method to

degrade. Kou at al. in [63] have adopted this heuristic based solution to generate minimum

cost steiner trees. They took a minimum spanning tree of the whole graph and modified it

to remove superfluous nodes (nodes which have been removed from the network) and then

tried to include more Steiner nodes, which may reduce the overall cost of the spanning tree.

The third category of multicast routing is to choose a suboptimal tree which will be resilient

to changes. In the extreme case, finding the minimum source to destination path for all

destinations independently and taking the union of these paths produces trees which will

be resilient to changes. Doar and Leslie in [56] have examined the performance of the

third method on randomly constructed graphs. They constructed multicast tree by finding

the shortest distance path from source to the node which was to be added (from the add

request) and add all the nodes in the path as steiner nodes to form the multicast tree. They

concluded that their algorithm of computing multicast steiner trees performances worse then

the standard optimal steiner trees created by Kou at al. in [63] by only a small factor.

Depending upon the nature of application and the constraints associated with it, various

algorithms have been proposed to construct multicast trees for a given communication net-

work. For applications where end to end delay is most important factor such as stock market

network, shortest path routing strategies perform well. A shortest path routing strategy

connects the source of the multicast to each receiver using the shortest unicast route from

source to the receiver in the underlying network be it IP, ATM or ethernet. The three com-

monly used multicast routing protocols for IP based systems are DVMRP [57], CBT [60]

and PIM [59]. For applications that require large amount of bandwidth but can tolerate

the delay, the dynamic greedy algorithm as given by Imase and Waxman in [58] works very

well. It gives multicast trees with good total cost. Imase and Waxman also proved in [58]

that no other dynamic algorithm can perform more cost effective trees than their scheme, if

the condition that multicast receivers are allowed to join the multicast groups at arbitrary

times and not allowed to leave. All these results helped researchers conclude that even in

the worst case, the tree produced by shortest path strategies can be up to a factor of k worst

than the tree produced by best available greedy scheme.
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However, greedy schemes do not find wide application. One of the reasons is that they fail

to work in dynamic network conditions when nodes are free to join and leave the network at

any time [58]. In this paper, the authors have studied the problem of routing and multicast

communication in a wireless network in which nodes enter and leave the network in adhoc

manner. They studied both the cases when existing routes are rearranged to maintain

connectivity and when the rearrangement is not allowed. For the non rearrangeable version,

they developed a polynomial time algorithm with worst-case performance within two times

optimal of any non rearrangeable algorithm. For the rearrangeable problem they developed

a polynomial time algorithm whose performance is within eight times optimal. This result

showed that greedy scheme do not work well in dynamic heterogenous network systems.

Another reason of non applicability of greedy schemes is that such schemes do not guarantee

an end to end delay bound. Thus such schemes are not used for high end video based

applications which have high bandwidth requirements as well as stringent end to end delay

requirements. On the other hand shortest path based strategies offer definite end to end delay

bound. Third reason for non applicability of greedy schemes is that underlying IP network

makes implementation of shortest path algorithms easier. For instance, MBone is multicast

backbone which helps transmit packet to all receivers simultaneously in Internet [61, 62]. It

does not support source routing and require shortest path routing. In IP Multicast, packets

are forwarded along a distribution tree, rooted at the source of the data and extending to

each receiver in the multicast group. Senders need not know explicitly about receivers and

receivers need not know about senders. Instead, a sender simply transmits packets to an IP

group address and receivers tell the network (via the Internet Group Management Protocol

or IGMP) that they are interested in receiving packets sent to that group. Moreover, the

process by which receivers join and leave multicast groups is timely and efficient. In Internet

communication, because the source address uniquely identifies the spanning tree, multicast

routers can use it to compute the forwarding decision for a given packet i.e. to forward a

packet, a multicast router indexes a routing table using the packets source address, which

yields a routing entry containing a set of outgoing links. The router then transmits a copy of

the packet along each outgoing link. To avoid sending traffic where there are no interested
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receivers, a multicast router omits links that have no downstream receivers for a particular

group. In short, the source address determines the routing decision and the destination

address determines the prune decision. However in MBone framework, shortest path routing

is used. An IP router has two or more interfaces that attach it to multiple networks. Because

of these multiple attachments, a router can switch or forward packets between networks.

Each router maintains a table of routes that maps a destination network to an outgoing

interface. When a packet arrives on an incoming link, the router locates the proper route

and forwards the packet toward its destination on the corresponding interface. Routers

exchange control messages to effect a distributed algorithm that causes each router to learn

its local representation of a global set of paths through the network. Typically, this routing

protocol is essentially a shortest path which causes the aggregate set of routing tables to

converge to a state where any packet will traverse between any two hosts attached to the

network.
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Chapter 5

Switching gap for special class of

butterfly networks

This chapter gives the analysis of ashlewede’s butterfly network [1]. We have constructed

different variations of classical butterfly network and calculated the switching gap for each of

them. Based upon the results, we have made an intuitive observation about generic version

of this butterfly network and given as a conjecture. However to understand the analytical

treatment, we need to revisit the max flow min cut theorem as well as game theory.

This whole problem is a variant of classical max flow problem in graph theory applied to

information theory. So, we begin this chapter with a brief discussion on max-flow min-cut

theorem.

5.1 Max-Flow Min-Cut Theorem

In graph theory, a network flow is an assignment of flow to the edges of a directed graph,

called a flow network in this case, where each edge has capacity (which may be positive real

or integer), such that the amount of flow along an edge does not exceed its capacity. Further,

there is restriction that the amount of flow into a node equals the amount of flow out of it,
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except if it is a source, which only has outgoing flow, or sink, which has only incoming flow.

A flow network can be used to simulate traffic in a road system, fluids in pipes, currents in

an electrical circuit, or anything similar in which something travels through a network of

nodes.

Given a graph G (V,E ) with nodes V and edges E, and special nodes source s (in-degree

0) and sink t (out-degree 0). Let f (u,v) be the flow from node u to node v, and c(u,v) the

capacity. Formally stating, a network flow is a real function f : V×V→R with the following

three properties for all nodes u and v :

1. Skew Symmetry: f (u,v) = -f (v,u)

2. Capacity Constraints: f (u,v) ≤ c(u,v)

3. Flow conservation:
∑

w∈V f (u,w) = 0, where w < (s, t)

The residual capacity of an edge is cf(u,v) = c(u,v) - f (u,v). A residual network is denoted

by G f (V, E f) and it consists of residual edges obtained by transforming the original network

G. This way there can be an edge from v to u in the residual network, even though there is

no edge from u to v in the original network.

A cut (S,T ) of flow network G=(V, E ) is a partition of V into S and T = V -S such that s

∈ S and t ∈ T.

An augmenting path is a path (u1, u2, . . ., uk), where u1 = s, uk = t, and cf (u i, u i + 1) >

0, such that more flow could be pushed along this path. There are various ways of choosing

an augmenting path and depending upon that different max flow determination algorithms

have been proposed.
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5.1.1 The Maximum-Flow Min-Cut Theorem

Theorem 5.1.1. (The Max-Flow Min-Cut Theorem) If f is a flow in a flow network G =

(V, E ) with source s and sink t, then the 3 following statements are equivalent

1. f is a maximum flow in G.

2. The residual network G f contains no augmenting paths.

3. |f | = c(S, T ) for some cut (S, T ) of G .

5.2 Game Theory

Game theory is a branch of mathematical analysis developed to study decision making in

conflict situations. Such a situation exists when two or more decision makers who have

different objectives, act on the same system or share the same resources. There are two

person and multi person games. Game theory provides a mathematical process for selecting

an Optimum strategy (that is, an optimum decision or a sequence of decisions) in the face of

an opponent who has a strategy of his own. In game theory one usually makes the following

assumptions:

1. Each decision maker player has available to him two or more well-specified choices or

sequences of choices called plays.

2. Every possible combination of plays available to the players leads to a well-defined

end-state (win, loss, or draw) that terminates the game.

3. A specified payoff for each player is associated with each end-state (a zero-sum game

means that the sum of payoffs to all players is zero in each end-state).

4. Each decision maker has perfect knowledge of the game and of his opposition; that is,

he knows in full detail the rules of the game as well as the payoffs of all other players.
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5. All decision makers are rational; that is, each player, given two alternatives, will select

the one that yields him the greater payoff.

Game Theory finds wide application in areas of financial accounting, economics, sociology,

computer networks, stochastic based applications etc. Network switching can be formulated

as a special game, called matrix game played in the multicast networks [8, 13]. Interested

readers can refer [10,11,14] for further details.

5.2.1 Zero-Sum games

Formally, a game τ is said to be zero-sum if and only if at each terminal vertex of the game

tree, the payoff function (p1,...,pn) satisfies

n∑

i=1

pi = 0.

Figure 5.1: Game of matching Pennies.

Figure 5.1 shows Game Tree for matching pennies [9]. It is a simple example of zero-sum

with two players. It consists of tossing a coin by each player and in case both outcomes are

heads or both are tails then player I wins, otherwise player II wins.

A finite zero sum 2 person game reduces to a matrix A, with as many rows as Player PI has

strategies and as many columns as player PII has strategies. In simpler terms, the payoff is

defined as the amount Player PI receives from second Player PII. PI will try to maximize
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it while PII will try to minimize it. It is a play of game such that, if PI chooses say, i th

row from the I rows and PII chooses say, j th column from the J columns, then the expected

payoff, is the element a ij, in the i th row and j th column of the matrix.

We refer to rows and columns as pure strategies of PI and PII respectively. Aim of PI is

to maximize the minimum payoff, thereby guaranteing a lower bound called (gain floor) [9]

given by

ν = max
1≤i≤I

min
1≤j≤J

aij

Similarly, PII will try to choose a pure strategy so as to minimize the maximum payoff

thereby, guaranteing an upper bound for loss (called loss ceiling) [9] given by

ν = min
1≤j≤J

max
1≤i≤I

aij

It is clear that ν ≥ ν and equality holds ⇔ there exists a pair of strategies (i ∗, j ∗) satisfying

the following condition.

min
1≤j≤J

ai∗j = ai∗j∗ = max
1≤i≤I

aij∗ (5.1)

(i ∗, j ∗) satisfying (5.1) is called a saddle point for the payoff matrix A. It is a also termed as

Nash equilibrium point of the game since, at this point both the players are having maximum

gain and one way change of strategy by either player will not provide any gain. Saddle point

may or may not exist. For e.g., consider this game matrix.
∣∣∣∣∣∣∣∣∣∣∣∣

5 1 3

3 2 4

3 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

It has a saddle point at 1st row 2nd column with ν=1.

5.2.2 Mixed Strategy

A mixed strategy for a player is a probability distribution on the set of his pure strategies.

Precisely, if say ’m’ pure strategies are there, a mixed strategy reduces to m-vector, x=(x 1,

. . ., xm), satisfying [10]
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x i ≥0 and

∑m
i=1 x i = 1.

Let X be the set of all mixed strategies of PI and let Y be the set of all mixed strategies of

PII. If PI chooses mixed strategy x and PII chooses y, then the expected payoff is

A(x,y) =

m∑

i=1

m∑

j=1

xiaijyi or in matrix notation

A(x,y) = xAyT

νI = PI’s gain floor

= max
x∈X

min
j

xA · j
(A · j is the j th column of A)

νII = PII’s loss ceiling

= min
y∈Y

max
i

A · iyT

We can represent mixed strategy for PI by an I -dimensional probability distribution X =

(x 1, x 2, ..., x I)
T, where T denotes the transpose of a matrix. A mixed strategy for PII is

denoted by a J -dimensional probability distribution vector Y=(y1, y2, ..., yJ)
T. So, the

expected payoff in case PI chooses mixed strategy x and PII chooses mixed strategy y is

xTAY =

I∑

i=1

J∑

j=1

xiaijyj.

Let us define X as

X = { (x1, x2, ..., xI) ∈ RI | (5.2)
I∑

i=1

xi = 1 and xi ≥ 0 for i = 1, 2....I }.

Now we can define PI’s expected gain-floor (νI) and PII’s expected loss ceiling (νII).

νI = max
x∈X

min
y∈Y

xTAY. (5.3)

νII = min
y∈Y

max
x∈X

xTAY. (5.4)
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Theorem 5.2.1. (MiniMax Theorem) It states that

νI = νII (5.5)

The proof of this theorem can be found here [9]. Minimax Theorem [9] implies that every

matrix game with payoff matrix as A has at least one pair of mixed strategies (x ∗,y ∗) where

in, x ∗ ∈ X and y ∗ ∈ Y such that

νI = min
y∈Y

(x∗)TAy = (x∗)TAy∗ = max
x∈X

xTAy∗ = νII. (5.6)

So (x ∗,y ∗), is the saddle point of the expected payoff function xTAy. Following Lemma [13,

pg. 138, Eqn. (5)] characterizes the solution of a matrix game.

Lemma : For a matrix game with I×J payoff matrix A, a necessary and sufficient condition

for a mixed-strategy pair (x ∗, y ∗) given x ∗ ∈ X and y ∗ ∈ Y to be a Nash Equilibrium point

and for a real number ν ∈ R to be the value of the game is that every component of the

vector (x ∗)TA ∈ RJ is ≥ ν and every component of the vector Ay ∗ ∈ RI is ≤ ν [9].

5.2.3 Computation of Optimal Strategies

In case,if a saddle point exists, then pure strategies i and j or equivalently, the mixed strategy

x and y with x i=1, y i=1 and all other components equal to zero, will be optimal strategies

of PI and PII respectively.

Domination : In a matrix A, we say that the i th row dominates the k th row if

aij ≥ akj for every j and

aij > akj for atleast one j

Similarly, we say that j th column dominates the i th column if,

aij ≤ ail for every i and

aij < ail for at least one i
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Here is a working example

A =

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣
2nd column dominates the 4th column ⇒ PII will never use 4th column.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

3rd row dominates 1st row ⇒ PI will never use 1st row

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

3rd column dominates first column. So, eliminating all dominated components, we have

A =

∣∣∣∣∣∣∣∣
1 2

4 1

∣∣∣∣∣∣∣∣
So we need solve just the 2 × 2 game-matrix.

Another way to solve for optimal strategy for matrix games is by fictious play method given

in [11] but it works for integral link capacities. Moreover, it is intuitive and lacks formal

basis.

5.3 Analysis for Singular Butterfly Network

Figure 5.2 shows singular butterfly network. Here w i >0 denotes the link capacities of the

edges in the graph.

Now, according to Ahlswede-Cai-Li-Yeung’s fundamental theorem for single-source network

coding [1], the maximum achievable information rate denoted by R∗∗ is equal to the minimum
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Figure 5.2: Singular-Symmetric Butterfly network.

of the s-t cuts for all source-sink pairs in the network. To enumerate the s-t cuts, consider

the subgraph G′ = (V′,E′), where V′ ⊂ V and E′ ⊂ E, which is formed from graph shown in

above figure by removing all paths between s-t2. All s-t cuts are shown as dashed lines in

figure 5.3. The cut-set for this network is enumerated below.

1. {(s, a), (s, b)} = 2w1

2. {(s, a), (b, c)} = w1 + w2

3. {(s, a), (a, c), (d, t1)} = 2w2 + w3

4. {(s, a), (a, c), (c, d)} = w1 + w2 + w4

5. {(a, t1), (a, c), (b, c)} = w1 + w2 + w5

6. {(a, t1), (c, d)} = w3 + w4

7. {(a, t1), (d, t1)} = w3 + w5

Please note that since butterfly network is a symmetrical network so we can get the minimum

cut values for s − t2 from values for s − t1. So, for subgraph between s and t2, we have the

following s-t cut sets.
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Figure 5.3: Singular-Symmetric Butterfly sub network between s − t1.

1. {(s, a), (s, b)}=2w1

2. {(s, b), (a, c)}=w1 + w2

3. {(b, t2), (a, c), (b, c)}=2w2 + w3

4. {(s, b), (b, c), (c, d)}=w1 + w2 + w4

5. {(s, b), (b, c), (d, t2)}=w1 + w2 + w5

6. {(b, t2), (c, d)}=w3 + w4

7. {(b, t2), (d, t2)}=w3 + w5

For the given singular butterfly network, we have assumed the following conditions

w 1 <w 2

w 1 <w 3

w 4 <w 5
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Based upon these three assumptions, we combine the various s− t cut set values and finally,

R∗∗ is equal the minimum of the following 5 values.

1. min(w 1,w 3)+min(w 4,w 5)

2. w 1+min(w 1,w 2)

3. 2w 2+w 3

4. w 1+w 2+w 3

5. w 1+w 2+w 3+w 4

Under these conditions, we have R∗∗ is minimum of

R∗∗ = min (w1 + w4, 2w1).

R∗∗ = w1 + min(w1,w4). (5.7)

Now, we are left with problem to solve R∗ i.e. maximum achievable information rate by

network switching (NS). Liang in [8] gives a method to compute R∗ of a network by con-

structing its payoff-matrix and then solving it as per game theory principles [9] and finally

taking reciprocal of it to get R∗. In a nutshell, first we determine multicast routes from

source to each of the sink nodes. This is a path enumeration problem and can be done by

constructing rooted trees for each of the link and then concatenating one path each from

all such trees. Formally, a rooted tree is defined as an acyclic digraph with a unique node,

called its root node, which has the property that there exists a unique path from the root

node to each other node. We call the set of links, τ as a multicast route of the underlying

digraph from the source node s to the sink nodes t1, t2, . . ., tl, if the digraph (S, τ) induced

by τ is a rooted tree of G with t1, t2, . . ., tl, whose root node is s and whose leaves are all

sink nodes. If L=1, a multicast route τ is the set of links of an open path from the source

node s to the sink node t1. Then for each multicast route τ j they have defined an indicator
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function over E as χτ j(ei)=1 if ei ∈ τ j and 0 otherwise, for i = 1, 2, . . . , I and j = 1, 2, . . . , J.

They have then created an I × J payoff matrix A such that

ai j =
1

Θ(ei)
χτ j(ei)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J with {e1, e2, . . . , eI} being the set of links E and {τ1, τ2, . . . , τJ}
being the set of multicast routes from s to t1, t2, . . . , tl.

Brute force method is to enumerate all multicast routes in the network, form a payoff matrix

say A using all links and multicast routes enumerated above and solve it to get its value i.e.,

val(A). Then R∗ = 1/val(A). For this network given in Fig 5.1, payoff matrix is as follows.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 0 1/w1 1/w1 0 1/w1 1/w1

1/w3 1/w3 1/w3 0 0 0 0

0 1/w2 0 1/w2 1/w2 0 0

0 0 1/w2 0 0 1/w2 1/w2

1/w3 0 0 1/w3 0 1/w3 0

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

0 0 0 1/w5 1/w5 1/w5 1/w5

0 1/w5 1/w5 0 1/w5 0 1/w5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

However, this is not a feasible method for more complex networks since it will have many

more links and multicast routes than the network shown in fig 5.2. We do not necessarily

need an enumeration of all the multicast routes to find R∗. We need to work only on the

dominating links and dominating multicast routes. A link is dominated by another link

if every multicast routes including the former also includes the latter. A multicast route

is dominated by another multicast route if each dominating link in the latter is also in the

former. Applying successive elimination method from previous section, we can use dominated

links and dominated multicast routes to get a simpler square pay off matrix, then find the

value of the game and use it to get R∗.
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Using assumptions about link capacities stated earlier to compute R∗∗, we have both the

links with capacities w 1 and the single link with capacity w 4 as dominating and these 3 links

form 3 multi cast routes. As a result, we get the following payoff matrix.

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 0

1/w1 0 1/w1

0 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣
Alternatively, using assumptions about various link capacities stated earlier, we see that row

number 1 dominates row number 3 and 4 and 5; row number 1 dominates row number 5 and

6 and row number 1 dominates row number 7 and 8 and 9. Removing all dominated rows

we have, the following matrix.

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 0 1/w1 1/w1 0 1/w1 1/w1

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣

Now we see that column number 7 dominates column number 3, 4 and 6. Eliminating col-

umn number 3, 4 and 6, we have

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 0

1/w1 0 0 1/w1

0 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣

Now, column 2 dominates column 3 or vice-versa since both are equal. Hence eliminating

column number 2, we get

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 0

1/w1 0 1/w1

0 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣

Please note that the rows of this matrix shows the dominant links in the singular butterfly

network where as the columns denote multicast routes. It is clear from [8] that val(A) =
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val(A1). Using Lemma given in section III and applying lagrange multipliers [12] to A, we

have following cases.

1. Case 1: if 2w1 ≥ w4 then we have X ∗=(w1/(2w1+w4),w1/(2w1+w4),w4/(2w1+w4))

and Y ∗=((2w1-w4)/(2w1+w4),w4/(2w1+w4),w4/(2w1+w4)) are optimal strategies for

PI and PII and val(A) is

val(A) =
2

(2w1 + w4)

2. Case 2: if 2w1 < w4 then we have X ∗=(1/2,1/2,0) and Y ∗=(0,1/2,1/2) and val(A) is

val(A) =
1

2w1
.

From these two cases, we get,

val(A) = min ((2/(2w1 + w4)), (1/2w1)) .

Hence

R∗ =
1

val(A)
=

2w1 + min (2w1,w4)
2

. (5.8)

Using this,

R∗∗ = wi + wj. (5.9)

And,

R∗ =
2

wi + wj + min{(wi + wj), (wk)} . (5.10)

Using 5.7 and 5.8, we have,

R∗∗

R∗
=

2(w1 + min(w1,w4))
2w1 + min(2w1,w4)

.
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Now conditioning on values of w1 and w4, we have following four cases.

1. case 1: If 2w1 < w4, then we have

R∗∗

R∗
=

4w1

4w1
= 1

2. case 2: If w1 < w4 < 2w1, then we have

R∗∗

R∗
=

2(w1 + w4)
2w1 + w4

R∗∗

R∗
=

2
1 + w4

2w1

3. case 3: If w4 < w1, then we have

R∗∗

R∗
=

2(w1 + w4)
2w1 + w4

R∗∗

R∗
=

2
1 + w1

w1+w4

If we have w1 = w4 = w, then the switching gap becomes,

R∗∗

R∗
=

2(w + w)
2w + w

=
4
3

(5.11)

5.4 Analysis for dual butterfly network

Figure 5.4 shows dual butterfly network. Here w i > 0 denotes the link capacities of the edges

in the graph.

For the above network taking into account assumptions as in case of singular butterfly

network, R∗∗ is equal the following 7 values.
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Figure 5.4: Dual-Symmetric Butterfly network

1. 3w 1

2. w 1+w 2

3. w 2+w 3+min(w 1,w 2)

4. w 1+w 4

5. 2w 4+w 3

6. 2w 1+w 3+w 5

7. w 1+w 2+w 3+w 4

From this set under the assumptions in section 5.3, we only take minimum min-cuts and

thus

R∗∗ = min (3w1,w1 + w2,w1 + w4). (5.12)

Using assumptions about link capacities stated earlier to compute R∗∗, we have all three links

with capacities w 1 and all two links with capacity w 4 as dominating and these 5 links form

5 multi cast routes. After elimination of dominated links and multicast routes, we get the
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following payoff matrix.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 0

1/w1 1/w1 1/w1 0 1/w1

1/w1 1/w1 0 1/w1 1/w1

1/w4 0 1/w4 1/w4 1/w4

0 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Proceeding as in previous section, we use the Lemma given in section III and apply lagrange

multipliers [12] to A and get following cases.

1. Case 1 : If 3w1 ≥ 2w4 and 2w4 ≥ w1 then X ∗=(w1/(3w1+2w4),w1/(3w1+2w4),w1/(3w1+2w4),

w4/(3w1+2w4),w4/(3w1+2w4)) and

Y ∗=((3w1-2w4)/(3w1+2w4),(3w1-2w4)/(3w1+2w4), (2w4-w1)/(3w1+2w4),(2w4-w1)/(3w1+2w4),

(2w4-w1)/(3w1+2w4)) are optimal strategies for PI and PII and val(A) is

val(A) =
4

(3w1 + 2w4)
.

2. Case 2 : If 3w1 < 2w4 then X ∗=(1/3,1/3,1/3,0,0) and Y ∗=(0,0,1/3,1/3,1/3) are optimal

strategies for PI and PII and val(A) is

val(A) =
2

3w1
.

3. Case 3 : If 2w4 < w1 then X ∗=(0,0,0,1/2,1/2) and Y ∗=(1/2,1/2,0,0,0) are optimal

strategies for PI and PII and val(A) is

val(A) =
1

2w4
.
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From these three cases, we get

val(A) = min
(
(

4
3w1 + 2w4

), (
2

3w1
), (

1
2w4

)
)
.

Hence,

R∗ = min
(
(
3w1 + 2w4

4
), (

3w1

2
), (2w4)

)
. (5.13)

Using 5.12 and 5.13, we have,

R∗∗

R∗
=

min (3w1,w1 + w2,w1 + w4)

min
(
( 3w1+2w4

4 ), (3w1
2 ), (2w4)

) (5.14)

If we have w 1=w 4=w then,

R∗∗

R∗
=

(2w)
(5w

4 )
=

8
5

= 1.60. (5.15)

5.5 Analysis for triple butterfly network

Figure 5.5 shows triple butterfly network. Here w i > 0 denotes the link capacities of the

edges in the graph.

For the above network taking into account assumptions as in case of singular butterfly

network, R∗∗ is equal the following seven values.

1. 4w 1

2. w 1+w 2

3. w 2+w 3+min{w1,w2}
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Figure 5.5: Triple-symmetric Butterfly network

4. w 1+w 4

5. 2w 4+w 3

6. 2w 1+w 3+w 5

7. w 1+w 2+w 3+w 4

From this set under the assumptions in section V, we only take minimum min-cuts and thus

R∗∗ = min (4w1,w1 + w2,w1 + w4). (5.16)

Using assumptions about link capacities stated earlier to compute R∗∗, we have all four links

with capacities w 1 and all three links with capacity w 4 as dominating and these 7 links form

7 multi cast routes. After elimination of dominated links and multicast routes, we get the

following payoff matrix.
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A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 1/w1 1/w1 1/w1 1/w1 0 1/w1

1/w1 1/w1 1/w1 1/w1 0 1/w1 1/w1

1/w1 1/w1 1/w1 0 1/w1 1/w1 1/w1

1/w4 1/w4 0 1/w4 1/w4 1/w4 1/w4

1/w4 0 1/w4 1/w4 1/w4 1/w4 1/w4

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Proceeding as in previous section, we use the Lemma given in section III and apply lagrange

multipliers [12] to A and get following cases.

1. Case 1: If 4w1 ≥ 3w4 and 3w4 ≥ 2w1 then X ∗=(w 1/(4w 1+3w 4),w 1/(4w 1+3w 4),w 1/(4w 1+3w 4),

w 1/(4w 1+3w 4),w 4/(4w 1+3w 4),w 4/(4w 1+3w 4),w 4/(4w 1+3w 4)) and

Y ∗=((4w 1-3w 4)/(4w 1+3w 4),(4w 1-3w 4)/(4w 1+3w 4), (4w 1-3w 4)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4),

(3w 4-2w 1)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4)) and val(A) is

val(A) =
6

4w1 + 3w4
.

2. Case 2 : If 4w 1 <3w 4 then X ∗=(1/3,1/3,1/3,0,0,0,0) and Y ∗= (0,0,0,(w 4-w 1)/w 4,w 1/3w 4,w 1/3w 4,w 1/3w 4)

and val(A) is

val(A) =
(3w4 − w1)

3w1w4
.

3. Case 3 : If 3w 4 <2w 1, then X ∗=(0,0,0,0,1/3,1/3,1/3) and Y ∗ = (1/3,1/3,1/3,0,0,0,0)

and val(A) is

val(A) =
2

3w4
.
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From these three cases, we get,

val(A) = min
(
(

6
4w1 + 3w4

), (
3w4 − w1

3w1w4
), (

2
3w4

)
)
.

Hence

R∗ = min
(
(
4w1 + 3w4

6
), (

3w1w4

3w4 − w1
), (

3w4

2
)
)
. (5.17)

Using 5.16 and 5.17, we have,

R∗∗

R∗
=

min ((4w1,w1 + w2,w1 + w4))

min
(
(4w1+3w4

6 ), ( 3w1w4
3w4−w1

), (3w4
2 )

) . (5.18)

If we have w 1=w 4=w then,

R∗∗

R∗
=

(2w)
( 7w

6 )
=

12
7

= 1.72. (5.19)

5.6 Analysis for generic butterfly network

Generic butterfly network is the singular-symmetric butterfly network repeated n times.

So it has one source and a total of (n + 1) sinks. Using results from section 5.3, 5.4 and

5.5, information rate with Network Coding (NC ), i.e., R∗∗ will be same as that of Triple

symmetric butterfly network except one term (n + 1)w1 will be added in this case.

R∗∗ = min{ ((n + 1)w1,w1 + w2,w1 + w4) }. (5.20)

Using assumptions about link capacities stated earlier to compute R∗∗, we have (n+1) domi-

nant links with capacities w 1 and n dominant links with capacity w 4. Thus the payoff matrix

for this network will be (2n + 1) × (2n + 1).
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It is very difficult to solve this pay off matrix via game theoretic methods. Here we give an

intuitive observation based on the results from previous three sections.

1. Case 1 : If (n + 1)w1 ≥ nw4 and nw4 ≥ (n − 1)w1 then x 1=w 1/((n+1)w 1+nw 4),

x 2=w 1/((n+1)w 1+nw 4),. . .,xn=w 1/((n+1)w 1+nw 4); xn+1=w 4/(n+1)w 1+nw 4),. . ., x 2n+1=w 4/(n+1)w 1+nw 4).

And y1=((n+1)w 1-nw 4)/((n+1)w 1+nw 4),

y2=((n+1)w 1-nw 4)/((n+1)w 1+nw 4),. . .,

yn=((n+1)w 1-nw 4)/((n+1)w 1+nw 4);

yn+1=(nw 4-(n-1)w 1)/((n+1)w 1+nw 4),. . .,

y2n+1=(nw 4-(n-1)w 1)/((n+1)w 1+nw 4).

From these conditions, it follows that

val(A) =
2n

((n + 1)w1 + nw4)

Hence,

R∗ =
((n + 1)w1 + nw4)

2n
(5.21)

Using 5.20 and 5.21, we have,

R∗∗

R∗
=

min ((n + 1)w1,w1 + w2,w1 + w4)
((n+1)w1+nw4)

2n

(5.22)

If we have w 1=w 4=w then,

R∗∗

R∗
=

(4nw)
((2n + 1)w)

=
4n

2n + 1
. (5.23)
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We can verify this claim by substituting n with values 1, 2 and 3 to get the coding gain for

singular symmetric, dual symmetric and triple symmetric butterfly networks respectively.
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Chapter 6

Conclusion and Future Work

In this work, we have studied information network flow problem on a single source multi

sink multicast communication network. We have tried to extend the idea in [7] by analyzing

a generic butterfly network under suitable assumptions about link capacities. From the

results, we could conclude that information rate due to Network coding is coming out to

be same in all versions of the network. This means as number of nodes are increasing

the network, no additional gain is coming out by using Network Coding. On the other

hand, information rate due to network switching is decreasing as we are duplicating singular

butterfly network. Hence, simple switching for generic butterfly network does not increase

throughput. Further, switching gain is equal to coding gain for the butterfly network [1]

only when all link capacities are equal.

We found out that application of game theory for network switching is not generic and

requires certain conditions on link capacities. Moreover the problem for single source mul-

ticast flow appears to be a NP hard problem. We recommend focus should now be given

on working towards a graph theoretic solution for this problem with some simplifications.

Such a solution will not only give maximum possible network information rate for a generic

single source multisink multicast network but in the process it would also give the optimum

switching strategy for the network.
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