

DESIGN AND IMPLEMENTATION OF AN
EFFECIENT TRAFFIC SHAPER USING AN
ENHANCED VERSION OF LEAKY BUCKET

ALGORITHM AND ITS PERFORMANCE
COMPARISON WITH STANDARD LEAKY

BUCKET ALGORITHM

Nikhil Bhargava (141/Coe/98)
 Manoj Kumar Sah (134/Coe/98)

Department of Computer Engineering
Netaji Subhas Institute of Technology

New Delhi
May, 2002

Certificate

 This is to certify that the project entitled, “DESIGN AND
IMPLEMENTATION OF AN EFFECIENT TRAFFIC SHAPER USING AN
ENHANCED VERSION OF LEAKY BUCKET ALGORITHM AND ITS
PERFORMANCE COMPARISON WITH STANDARD LEAKY BUCKET ”
submitted by Mr. Nikhil Bhargava (141/COE/98) and Mr. Manoj Kumar Sah
(134/COE/98) for the partial fulfillment of Award of �Bachelor of Engineering� in
Computers is a bonafide record of the original and authentic work done by the
candidates under my guidance. To the best of my knowledge this work has not
been submitted for the award of any other degree.

Ms. Anubha Gupta
Assistant Professor,
Department of Computer Engineering.
Netaji Subhas Institute of Technology
Sector-3, Dwarka.
New Delhi - 110045

Date:

Place:

Acknowledgement

We acknowledge our thanks to Mrs. Shampa Chakarverty, Head of

Department, Computer Engineering, Netaji Subhas Institute of Technology
(NSIT) for providing us the golden opportunity to develop our final year project
under her aegis. We are highly indebted to our Project Guide, Ms. Anubha Gupta
for her guidance and inspiration that she showered on us to make this project a
success. We also like to thankful to Mr. S.P Singh, Sr. Lecturer, Electronics and
Communication Department, NSIT for helping us to solve many conceptual
problems that we faced during the projects. We are also thankful to our
department for providing us resources for the development of the project. The
Lab assistant of Software Engineering lab, Mr. R.k Gupta deserves a special
mention, for their cooperation and assistance in providing us the facilities at the
Lab, at all add hours.

We are also highly grateful to Mr. Ashok K. Agrawal, Institute for
Advanced Computer Studies and Department of Computer Science, University of
Maryland, College Park, Md, USA for solving a conceptual problem that we faced
during the coding of the last phase of the project.
 We are also grateful to our families, for enduring us throughout the course
of this project. Their love, support and understanding worked as antidotes for us
and kept us going.

Finally we are grateful to almighty lord Shiva for giving us the strength and
patience to complete the project on time.

Nikhil Bhargava

Manoj Kumar Sah

INDEX

 TOPICS PAGE NUMBER

1. Introduction 8

1.1 Main Goal of the project. 9

1.2 Overview of project 10

1.3 System Requirements 12

2. System Description 13

2.1 Congestion 13

2.2 Causes of Congestion 20

2.3 Congestion Control 21

2.4 Expectations from Congestion Control 21

2.5 Classification of Congestion Control 23

2.5.1 Open Loop Congestion Control 23

2.5.1.1 Admission control 24

2.5.1.2 Policing 25

2.5.2 Closed Loop Control 27

2.6 Need for Congestion Control 30

2.7 Quality of Service 30

2.8 Smoothness of traffic 36

2.9 Traffic shaping 36

2.10 Leaky Bucket Algorithm 41

2.11 Exponential Weighted Moving Average Window 43

3. Window Based Traffic Shaper 47

3.1 Standard Leaky Bucket Scheme 47

3.2 Shift Register Traffic Shaper (SRTS) 49

3.3 Description of the new scheme 49

4. Functional Details and Code 53

 4.1 Functional Details and code of module 1 53

 4.2 Functional Details and code of module 2 65

 4.3 Functional Details and code of module 3 75

5. Results 86

 5.1 Simulation of a system without 86

any congestion control scheme

5.2 Simulation of a system with LBP 90

5.3 Simulation of a system with SRTS 93

5.4 Comparative study between SRTS and LBP 95

6. Conclusion 97

7. Future scope 98

8. Glossary 101

9. Bibliography 102

10. Appendices 103

A. Various Probability Distribution functions 103

B. Transformations 104

C. Important Series expansions and formulae. 105

Index of Figures

1. Congestion in network 12

2. A congested switch 13

3. Throughput vs offered load 13

4. Queue Length versus Resource Utilization 15

5. ATM Network Throughput under Increasing Load Conditions 16

6. Indirect Store and Forward Lockup 18

7. Cycles in a Dependency Graph 18

8. Buffer flow in a congested network 19

9. Demonstration of open loop 23

10. Demonstration of open loop 23

11. Leaky Bucket 24

12 Flow control 25

13. Flow control 26

14. Closed Loop 27

15. Choke Packets 28

16. Latency and Jitter 30

17. Jitter and Cell-Loss Tolerance of Some Application 32

18. Application Throughput Requirements 36

19. Congestion diagram for slots 40

20. Leaky Bucket 41

21. Demonstrations of flow in LB 42

22. (Leaky) Token Bucket Traffic Shaper 43

23. General Algorithm of Leaky Bucket 44

24. Behavior of leaky bucket 45

25. Functional view of Leaky Bucket 47

26. SRTS with 2 windows 49

27. FSM for discretization of slots 50

28. Three window SRTS 51

29. Structure of kernel 98

Chapter 1. Introduction

 This Final Year project report documents systematic design, development,
implementation of an efficient traffic shaper and includes its comparative study
with standard leaky bucket algorithm

Traffic control is an essential part of today�s networks due the increasing
demand for large bandwidth and high speed. These include admission control at
the connection setup, traffic control at source ends and efficient scheduling
schemes at the switches. Most multimedia sources are bursty in nature, which
increase congestion the most.

Traffic shapers have been used from the point of view of their
effectiveness in smoothing the burstiness. For example, The Leaky Bucket (LB)
scheme is a mean rate policer, which smoothes the traffic either using clock ticks
or by token generation.

Studies on bursty sources show that burstiness promotes statistical
multiplexing at the cost of possible congestion. Smoothing on the other hand
helps in providing guarantees at the cost of system utilization. Thus there is a
need for flexible scheme, which can provide a reasonable agreement between
utilization and performance.

Advances in optical transmission media and high speed switching have
paved the way for many exiting multimedia application, such as teleconferencing
and real time distributed computing to be supported on computer networks. Most
of these new applications, constituted of heterogeneous mix of voice, video and
data are characterized by stringent QoS requirements in terms of throughput,
delay jitter and low delay guarantees. The heterogeneity of the source calls for
effective congestion control scheme to meet the diverse quality of service
requirement of each application. These include admission control at connection
setup, traffic enforcements and shaping at the edges of the network and
multimedia scheduling schemes at the intermediate switches. Latency efforts
apparent at the gigabit speed make the conventional feedback technique
ineffective. Thus the responsibility of preventing congestion lies with the
admission control and traffic enforcement schemes.

1.1 Main Goal of the Project

Maximizing bandwidth utilization and performance in the context of

multimedia networks are two totally incompatible goals like two shores of the sea.
Multimedia sources of today�s world are characterized by diverse Quality of
Service (QOS) requirements. To satisfy these diverse QOS requirements we
need effective traffic control schemes at all levels. These include admission
control at source end and efficient scheduling schemes at he switches. We have
tried to provide a full proof solution for traffic congestion at the source end.
 Since most of the multimedia sources are bursty in nature so some kind
of traffic shaper is needed to smoothen the in coming bursty traffic at source end.
An interesting fact that has emerged from years of research of multimedia traffic
is that burstiness promotes statistical multiplexing at cost of possible congestion.
Smoothing on other hand helps in providing performance guarantees at the cost
of low system utilization. Thus there is need for flexible scheme, which can
provide a good, satisfactory and unbiased tradeoff between system utilization,
and performance guarantee is imminent. The most common scheme used for
this purpose is Leaky bucket scheme (LB) but this scheme proves to a real
bottleneck for real time systems because it introduces a large amount of access
delay both at source end and at intermediate routers. Thus there is a need for a
policy, which is less strict on short-term burstiness than the LB.

We propose a new traffic shaper, which can adjust the burstiness of the
traffic to obtain reasonable bandwidth utilization while maintaining statistical
service guarantee.

The aim of our project is to design an efficient traffic shaper for high-speed
networks using an enhanced version of leaky bucket algorithm and its
comparative study with standard leaky bucket scheme.

1.2 Overview of project

Advances in optical transmission media and high speed switching have

given way to many new and exciting applications like teleconferencing; video on
demand and real time distributed computing. All these applications can�t work if
they are not given the firm base of fast and efficient computer networks. Most of
the new applications consist of a heterogeneous mixture of these 5 things � data,
audio, video, image and graphics. Each of these comes in the form of either
constant bit rate traffic or variable bit rate traffic and have diverse QOS
requirements in term of throughput, jitter delay or mean delay. The heterogeneity
of these sources coupled with the aim of high performance and high system
utilization makes it absolutely necessary to apply some kind of admission control
at connection setup, traffic enforcement and shaping at the edges of the network
and various scheduling schemes at intermediate routers and switches.
 Admission control is decided by an algorithm, which expects that the user
provide an estimate of the traffic parameters, and abides by their negotiated
values. In a resource sharing packet network, admission control and scheduling
schemes by themselves are not sufficient to provide performance guarantees.
This is due to the fact that the users intentionally or otherwise, attempt to exceed
the bandwidth allotted to each of them at connection time. This leads to the
phenomenon of congestion. Various congestion control schemes have been
proposed in the literature like Leaky Bucket (LB), Jumping Window (JW),
exponentially weighted Moving average (EWMA) and associated variations. It
has been shown that LB and EWMA are most promising candidates in policing
bursty traffic.
 Traffic shaping, on the other hand, conditions the input stream so that the
characteristics of the outgoing traffic are manageable by the scheduling algorithm
(at intermediate node or other end) to provide required QOS. Traffic shapers are
mainly studied from the point of view of their effectiveness in smoothing the
burstiness. The LB is a mean rate policier which smoothes the traffic at token
generation rate. Studies on burstiness promote statistical multiplexing at the cost
of possible congestion control. Smoothing on the other hand helps in providing
guarantees at the cost of system utilization. Normal LB in its attempt to enforce
smoothness often (always) introduces large amount access delays, which makes
it in capable to handle real time traffic. Thus there is need for a policy, which is
less strict on the short-term burstiness while, reverts back to standard LB for
long-term burstiness.
 We present a new traffic shaper, which can adjust the input traffic to
obtain reasonable bandwidth utilization while maintaining statistical service
guarantees. It uses a window based shaping policy, which embeds the essence
of LB, permits short-term burstiness in a more flexible way and is essentially
peak rate enforced.
 We carried out the project in three phases. In the first phase we studied
the behaviour of the system in the absence of any congestion control scheme. In
the next phase we implemented the standard LB and studied the behaviour of

the system with LB congestion control. In the last phase we designed and
implemented our new traffic shaper and studied the behaviour of system
implementing this new shaper and conclude the phase with comparative study of
leaky bucket scheme and new shaper.

1.3 Requirements

This project has following Software requirements

♦ Any POSIX compliant C compiler.

♦ Any good debugger with stack tracking feature like GDB and LINT

♦ Windows 9X/Linux platform

♦ Microsoft Office package (preferably 2000)

♦ Mathematica

♦ Adobe Acrobat Reader

My project has no requirements in hardware.

Chapter 2 System Description

2.1 What Is Congestion?

Fig 1 Congestion in network

As seen from figure1, Congestion is abundance of the data or the packets

on the network than the provided limits of the bandwidth, which results in packet
loss due to excessive delays or retransmission of packets. In other words we can
say that when incoming rate of the packets is greater than the rate at which the
packets can be transmitted out, congestion is said to occur. For e.g., consider the
communication network as shown in the fig 2. Suppose nodes 1, 2 and 5 send
packets to node 4 simultaneously and also suppose that the incoming rate of the
packets is greater than the rate of servicing. In this case the data buffer in node 4
will build up. If this situation occurs sufficiently long, buffer will eventually become
full and start rejecting packets. When the destination detects the missing packets
it may ask the sources to retransmit the packets. This will act as a positive
feedback to sources and in coming traffic to node 4 will increase many folds. The
net result that through put of destination will be low as illustrated in fig 2
(uncontrolled curve).

 Congestion

 Fig 2. A Congested Switch

Fig 3. Through put drops when congestion occurs

 4

 1

 3 2

7 6

 5

Controlled

Uncontrolled

Offered Load

η

 The purpose of congestion control is to eliminate or reduce congestion. If
done properly performance should improve (controlled curve).
 Within a network, any shared resource is a potential point at which
congestion may occur. If you consider the prototype of a communication network,
it consists of a number of nodes (switches, routers...) interconnected by
communication links (in this context, often called �trunks�). End-user devices are
connected to the nodes through other communication links. there are two places
where information flows share

Network resources:

1. Links (trunks)

2. Nodes (switches or routers)

Depending on their design, there are different aspects of a node which are
shared:

• Memory (packet buffer pools)

• I/O processors (scanners, etc.)

• Internal buses or switches

• Central processors

• Network management processors

Many other things depending on the particular node′s design Whenever
there is sharing of resources between data flows, there is usually (notably not
always) the temptation for designers to over commit resources. For example, in
the traditional packet switch architecture of the 1970s and 1980s a shared
memory was used as a �pool� for intermediate storage of data as it passed
through the node. This was done because of the immense cost benefit (20 to 1,
perhaps 100 to 1) by taking advantage of the statistical characteristics of network
traffic. There are actually many aspects to this, for example, the use of a single
memory (implying the sharing of access to that memory) instead of multiple small
memories and the total size of that memory. Another example is the universal
use of shared trunks, the capacity of which is usually significantly less than the
total capacity of connected links to end users. Whenever there is a shared
resource where there is the possibility of contention for the use of that resource
you have to do something to resolve who gets it. The usual �something� is to
build a queue in front of the resource. Indeed, a communication network can be
seen as a network of queues. The presence of a queue implies a delay (a wait
for service). Because queues vary in length, sometimes very quickly, their

presence also implies a variation in delay (jitter). It also implies a cost (for
storage to hold the data, for example).
But what do you do when the queue gets too long? You could throw the data
away, you could tell the input devices to stop sending input, you could perhaps
keep track on the length of the queue and do something to control the input rate
so that the queue never became too long. These latter techniques are flow
controls.
In the networks of the 1970s and 1980s there were usually flow controls built into
the network protocols. This was (in some contexts still is) a very important
issue. It was the superiority of the flow controls in IBM SNA that enabled SNA to
utilize trunk links to very high utilization while maintaining stable network
operation. This meant that users saved cost on trunk connections. It was this
aspect that underwrote the enormous success of SNA.

Queue Behavior

Figure shows a very famous (but not intuitive) result.

Fig 4. Queue Length versus Resource Utilization

This applies to queuing in general, not only in communications. If you
have a shared resource (such as a supermarket checkout) where transactions
(customers) arrive randomly (whatever definition of randomness you like to use)
you get a queue forming. A critical aspect of this is the rate of arrivals at the
shared resource (server) and the rate at which transactions are processed.
There is a surprising (and critical) result here: As the average rate of arrivals
approaches the average rate of transaction processing the length of the queue

will tend to infinity. This hinges on randomness of arrivals and is influenced by
randomness in service times (that is, the number of items in the basket in a
supermarket or the length of a block of data in a communication network).

Another way of stating the above is to introduce the concept of utilization
of the server. Utilization is just the average arrival rate multiplied by the average
time it takes to service a transaction expressed as a proportion of total time.
Utilization is usually quoted as the percentage of time that the server is busy.
Many books have been written on queuing theory! An important thing to note is
that there are many variables here that affect the position of the curve in
Figure 90. The precise arrival pattern is very important. If arrivals are at exact
intervals and all transactions take exactly the same time to process, then the
curve shifts to the right so that there is almost no queue at all until we reach
100% utilization. Different patterns of randomness 54 result in the curve shifting
to the left of where it is shown.

The point is that as you increase the loading on any shared facility you
reach a point where, if you add any more traffic, you will get severely increased
queue length and problems with congestion.

Effect of Network Protocols

Figure 91 shows what happens in different kinds of networks when the
load offered to the network (potential traffic that end-user devices want to send)
is increased beyond the network′s capacity to handle it. The curve on the left is
typcal of Ethernet (and ATM with some traffic types). As load is increased, the
network handles it fine until a point is reached where the traffic can no longer be
handled. Network throughput actually decreases very quickly when this point is
reached. In fact, in the case of Ethernet, the network collapses and no data at
all gets through. This is because collisions take capacity away from the network,
as load increases collisions increase and capacity decreases which itself
increases the probability of more collisions!

Fig5. ATM Network Throughput under Increasing Load Conditions

It must be pointed out that Ethernet works perfectly well in many
situations, mainly as a result of the flow controls imposed by network protocols at
higher layers (that is, external to Ethernet itself). The same is true of IP (TCP flow
control stabilizes it) and (many would assert) will be true of ATM.

The curve on the right shows what happens in well controlled networks.
Once full throughput is reached, the network continues to operate at full capacity.
There are queues, of course, but these are mainly in the end-user devices to
avoid an overflow of the queues in the network. This comes at the higher cost of
token-based access control (in TRN and FDDI) or extensive flow controls and the
necessary processing hardware (in SNA). �Ya pays yer money and ya takes yer
choice.�

Deadlocks

• The first router cannot proceed until the second router does something,

and the second router cannot proceed until the first router does
something

• Both routers come to a complete halt and stay that way forever

1. Store and Forward Lockup

• Direct Store and Forward Lockup Types of deadlock
• Indirect Store and Forward Lockup

2. Reassembly Lockup

Direct Store and Forward Lockup
Simplest lockup between two routers

Example:

Suppose router A has five buffers, all of which are queued for output to
router B Similarly, router B has five buffers, all of which are queued for output to
router A If there is flow control on the link between routers A and B, then neither
router can accept any incoming packets from the other. They are both stuck.

Fig 6. Indirect Store and Forward Lockup

If we view the network as a graph with nodes and edges

Fig7. Cycles in a Dependency Graph

A deadlock occurs when There is a cycle of dependencies in the graph

Reassembly Lockup

In some network layer implementations, the sending router must split
messages into multiple network layer packets. Receiving routers reassemble split

up packets into a single packet If the receiving router�s buffer fills up with
incomplete packets, it cannot reassemble any more packets

Fig 8. Buffer flow in a congested network

2.2 Exploring various causes of Congestion

There are several misunderstandings about the cause and the solutions of
congestion control. Congestion is caused by the shortage of buffer space. The
problem will be solved when the cost of memory becomes cheap enough to allow
very large memory. Larger buffer is useful only for very short-term congestion
and will cause undesirable long delays. Suppose the total input rate of a switch is
1Mbps and the capacity of the output link is 0.5Mbps, the buffer will overflow
after 16 second with 1Mbyte memory and will also overflow after 1 hour with
225Mbyte memory if the situation persists. Thus larger buffer size can only
postpone the discarding of cells but cannot prevent it. The long queue and long
delay introduced by large memory is undesirable for some applications.

Congestion is caused by slow links. The problem will be solved when high-speed
links become available. It is not always the case; sometimes increases in link
bandwidth can aggravate the congestion problem because higher speed links
may make the network more unbalanced.

Congestion is caused by slow processors. The problem will be solved when
processor speed is improved. This statement can be explained to be wrong
similarly to the second one. Faster processors will transmit more data in unit

time. If several nodes begin to transmit to one destination simultaneously at their
peak rate, the target will be overwhelmed soon.

2.3 What Is Congestion Control?

It is the control on the congestion by providing a smoothly running traffic
on an effective bandwidth to improve the performance.

2.4 What is expected from Congestion Control?

Objectives

The objectives of traffic control and congestion control for ATM are:

Support a set of QoS parameters and classes for all ATM services and minimize

network and end-system complexity while maximizing network utilization.

Selection Criteria

To design a congestion control scheme is appropriate for ATM network and

non-ATM networks as well, the following guidance is of general interest.

Scalability

The scheme should not be limited to a particular range of speed, distance,

number of switches, or number of VCs. The scheme should be applicable for

both local area networks (LAN) and wide area networks (WAN).

Fairness

In a shared environment, the throughput for a source depends upon the

demands by other sources. There are several proposed criterion for what is

the correct share of bandwidth for a source in a network environment. And

there are ways to evaluate a bandwidth allocation scheme by comparing its

results with an optimal result.

Fairness Criteria

1. Max-Min

The available bandwidth is equally shared among connections.

1. MCR plus equal share

The bandwidth allocation for a connection is its MCR plus equal share

of the available bandwidth with used MCR removed.

2. Maximum of MCR or Max-Min share

The bandwidth allocation for a connection is its MCR or Max-Min

share, which ever is larger.

3. Allocation proportional to MCR

The bandwidth allocation for a connection is weighted proportional to

its MCR.

4. Weighted allocation

The bandwidth allocation for a connection is proportional to its pre-

determined weight.

Fairness Index

The share of bandwidth for each source should be equal to or

converge to the optimal value according to some optimality criterion. We

can estimate the fairness of a certain scheme numerically as follows.

Suppose a scheme allocates x1, x2, ..., xn, while the optimal allocation is

y1, y2, ..., yn. The normalized allocation is zi = xi / yi for each source and

the fairness index is defined as following:

Fairness = sum(zi) * sum(zi) / sum(zi * zi)

• Robustness

The scheme should be insensitive to minor deviations such as slight

mistuning of parameters or loss of control messages. It should also isolate

misbehaving users and protect other users from them.

• Implement ability

The scheme should not dictate particular switch architecture. It also should

not be too complex both in term of time or space it uses.

2.5 Classification of Congestion Control

Based on the place where congestion is controlled, Congestion Control is
classified into two broad classes

• Source End Control
• Network Control (Switches and Routers)

Based on the procedure by which the congestion is controlled we can
classify Congestion Control algorithms as

• Open loop control algorithms
• Closed loop control algorithms

2.5.1 Open Loop Control

Open-loop algorithms prevent congestion from occurring by making sure

that the traffic flow generated by the source will not degrade the performance of
the network below the specified QoS. If the QoS cannot be guaranteed, the
network has to reject the traffic flow. The function that makes the decision to
accept or reject the traffic flow is usually called an admission control. Thus open-
loop algorithms involve some type of resource reservation.

Open loop congestion control does not rely on feedback information to
regulate the traffic flow. Thus this technique assumes that once a source is
accepted, its traffic flow will not overload the network.

Open loop congestion control does not rely on feedback information to
regulate the traffic flow. Thus this technique assumes that once a source is
accepted, its traffic flow will not overload the network.

 Fig 9. Demonstration of open loop

For delay-sensitive, multi-media traffic in high-speed networks (e.g.
ATM), for which feedback control of congestion not feasible.
May be used in the Internet architecture (traditionally �best-effort�) to provide high
quality service (�quality of service� or QoS guarantee).

2.5.1.1 Admission control

Admission control is an open loop preventive congestion control scheme.

Admission control typically works at the connection level but can also work at the
burst level. The analogy of a connection in datagram networks is a flow. At

connection level the function is called a connection admission control (CAC). At
the burst level, it is called a burst admission control. The main idea of CAC is
very simple. When a source requests a connection setup, CAC has to decide
whether to accept or reject the connection. If the QOS of all the sources
(including the new one) that share the same path is satisfied, the connection is
accepted otherwise it is rejected. The QoS can be expressed in terms of
maximum delay, loss probability, delay variance etc.,

For determining QOS requirements CAC has to know the traffic flow of
each source. Thus each source specifies a set of parameters called traffic
parameters called the traffic descriptors. A traffic descriptor may contain peak
rate, average rate, maximum burst size, and so on and is supposed to
summarize the traffic flow compactly and accurately.
Based on the characteristics of the traffic flow, CAC has to decide how much
bandwidth it has to reserve for source. The amount of bandwidth typically lies
between peak rate and average rate and is called effective bandwidth of the
source.

2.5.1.2 Policing

The process of monitoring and enforcing the traffic flow is called traffic

policing. When the traffic violets the agreed-upon the contracts, the network may
choose to discard or tag the nonconforming traffic. The tagged traffic will be
carried by the network but will be given lower priority. If there is any traffic
downstream, the tagged traffic is the first one to be lost.

The process of monitoring and enforcing the traffic flow is called traffic

policing. When the traffic violets the agreed-upon the contracts, the network may
choose to discard or tag the nonconforming traffic. The tagged traffic will be
carried by the network but will be given lower priority. If there is any traffic
downstream, the tagged traffic is the first one to be lost.

Check if a packet stream obeys its descriptor, and if it violates its descriptor, give
penalty!
� Drop packets that violate the descriptor
� Give low priority to them

� Leaky and token buckets are widely used policing techniques
� They can monitor average (and sustainable) rate, peak rate and burst size.

Flow control

 � Sliding Window Flow Control

Let X, t0 and W be the single packet transmission time, the time required for a
packet to be acknowledged and the window size (maximum number of
outstanding packets) respectively
The throughput is given by �=min (1/X, W/t0) packets/unit time, assuming that
the packet loss probability is negligible.
Transmission speed can be indirectly controlled by changing the window size W.

Fig 12. Flow control

Flow control with explicit feedback

� A packet may collect the state information along the path it is traveling, and the
information can be feed backed to the transmitter.
� ABR congestion control for ATM

� Special cells (packets) called Resource Management (RM) cells collect the
network state information, and are sent back to the transmitter

 Fig 13. Flow control

2.5.2 Closed Loop Controls

Closed loop algorithms, on the other hand, react to congestion when it is
already happening or is about to happen, typically by regulating the traffic flow
according to the state of the network. These algorithms are called closed loop
because the state of the network has to be fed back to the point that regulates
the traffic, which is usually the source. Closed loop algorithms typically do not
use any reservation.

The Active Congestion Control project is applying Active Networking
techniques to feedback congestion control. Feedback congestion control is a
very effective system for sharing network bandwidth when the bandwidth delay
product of the network is low, but loses its effectiveness in high bandwidth-delay
networks. Using Active Networking techniques ACC seeks to increase the range
over which feedback is effective. ACC allows internal network nodes to take
action immediately in times of congestion, as opposed to endpoint congestion
control systems that require all action to be taken at endpoints. It takes time for
an endpoint to deduce that there is a problem and to take corrective action. By
taking action at the congested node, ACC avoids that delay.

 Fig 14. Closed Loop

Intelligent Load Shedding

Discarding packets does not need to be done randomly

Router should take other information into account

Possibilities:

Total packet dropping

Priority discarding

Age biased discarding

Total Packet Dropping

When the buffer fills and a packet segment is dropped, drop all the rest of
the segments from that packet, since they will be useless anyway Only works
with routers that segment and reassemble packets

Priority Discarding

Sources specify the priority of their packets. When a packet is discarded,
the router chooses a low priority packet Requires hosts to participate by labeling
their packets with priority levels

Age Biased Discarding

When the router has to discard a packet, it chooses the oldest one in its

buffer. This works well for multimedia traffic, which requires short delays. This
may not work so well for data traffic, since more packets will need to be
etransmitted

Random Early Detection

TCP detects packet loss and slows the sending rate accordingly. When the
router queues start to fill, randomly drop some packets

Choke Packets

Each router monitors the utilization of each of its output lines. Associated
with each line is a variable u, which reflects the utilization of that line. Whenever
u moves above a given threshold value, the output line enters a �warning state�
Each newly arriving packet checks if its output line is in the warning state. If so,
the router sends a choke packet back to the source .The data packet is tagged
(by setting a bit in its header) so that it will not generate any more choke packets
at downstream routers. When the source host receives the choke packet, it is
required to reduce its traffic generation rate to the specified destination by X%
Since other packets aimed at the same destination are probably already on their
way to the congested location, the source host should ignore choke packets for
that destination for a fixed time interval. After that, it resumes its response to
choke packets.

Choke Packets: Example

 Fig 15. Choke Packets

• Open-loop versus Closed-loop

� Open-loop: no feedback from the network or destination
� Closed-loop: explicit or implicit feedback from the network or destination

• Rate versus Window

� Rate control: directly controls the transmission rate at
the source
� Window size control: indirect controls the transmission rate by changing the
window size (outstanding number of packets or bytes)

2.6 Why Do We Need Congestion Control?

The assumption that statistical multiplexing can be used to improve the
link utilization is that the users do not take their peak rate values simultaneously.
But since the traffic demands are stochastic and cannot be predicted, congestion
is unavoidable. Whenever the total input rate is greater than the output link
capacity, congestion happens. Under a congestion situation, the queue length
may become very large in a short time, resulting in buffer overflow and cell loss.
So congestion control is necessary to ensure that users get the negotiated QoS.
The final objectives of any sort of traffic control and congestion control are: to
support a set of QoS parameters and classes for all network services offered and
minimize network and end-system complexity while maximizing network
utilization.

2.7 Quality of Service (QoS)

A set of parameters is negotiated when a connection is set up on any
networks. These parameters are used to measure the Quality of Service (QoS) of
a connection and quantify end-to-end network performance at data link layer.
The network should guarantee the QoS by meeting certain values of these
parameters. These parameters may include mean delay, mean delay variance,
jitter delay (in case of video), throughput etc.
 The above discussion leads to an important conclusion: Different kinds of
network traffic require different service characteristics from the network. These
service characteristics52 may be summarized in three critical parameters of
which two are illustrated in Figure 87.

Fig 16. Latency and Jitter

Latency is the delay in time between when the stream is transmitted and when it
is presented to the end user. This is more than propagation delay because of
staging delay within transit nodes, the need for buffering, etc. at the end-user
device.

Jitter is variation in latency over time. This causes erratic presentation of
information to the end user. When you introduce buffering in the receiver
to smooth out the presentation, then the presence of the buffers increases
the network latency.

Skew is the difference in time of presentation to the end user of related things
(such as a video of someone speaking and the related sound). This is the critical
problem for m Overrun and Underrun are perhaps not predominantly network
issues. This is where the video or voice signal is generated at a different rate
from the rate at which it is played out. In the case of overrun, information is
generated faster than it can be displayed and, at some point, information must be
discarded. Underrun is where the playout rate is greater than the rate of signal
generation and therefore �glitches� will occur when data must be presented but
none is there.

In order to avoid these effects you need to provide end-to-end network
synchronization. This involves propagating a network clock throughout the
ATM network. The importance of each of these factors varies with the
application, but skew is both the most important for the multimedia application
and the greatest challenge for the network (and incidentally for the workstation
itself).

Interactive Applications

Applications such as videoconferencing (personal or group) have the
same requirements as regular voice. That is, a maximum latency of about 150
ms is tolerable. Jitter must be contained to within limits that the system can
remove without the user knowing (perhaps 20 ms is tolerable). Skew (between
audio and video) should be such that the audio is between 20 ms ahead and 120
ms behind the video.

One-Way Video Distribution

In this application a delay of several seconds between sender and
receiver is quite acceptable in many situations. This largely depends on whether
the user expects to watch a two-hour movie or a 20-second animated segment in
a training application. The delay really only matters because it is the time
between the user requesting the information and when it starts being presented.
For a movie, perhaps 30 seconds would be tolerable, but for a short segment,
one second is perhaps the limit. Jitter and skew, however, have the same limits
as the interactive applications above.

Audio with Image Applications

These are applications such as illustrated lectures and voice-annotated
text where still images are annotated by voice commentary. Depending on the
application, latency may need to be less than 500 ms (between the request for
the next image and its presentation), but the skew (audio behind the image)
could be perhaps as long as a second or so.

Fig 17. Jitter and Cell-Loss Tolerance of Some Application Types

You need:

1. Adequate (high) data rates (to keep latency low and to allow sufficient
capacity to service the application)

2. Low latency

3. Very low jitter

4. Very low skew

5. End-to-end control through propagation of a stable clock

Quality-of-Service Classes

Quality of service in an ATM network is a concept that attempts to
describe the important parameters of the network service provided to a given end
user. These parameters include:

• End-to-end delay

• Delay variation (delay jitter)

• Cell loss ratio

This is a very difficult thing to guarantee in a network that handles any kind of
bursty traffic. These characteristics vary quite widely with the load on the
network. In some situations, tight control of these parameters is a major issue.
Voice, video, and CBR traffic need to know these parameters so as to decide on
the size of playout buffer queues, etc.

The following QoS classes have been defined in the standards:

QoS Class 1 (Service Class A Performance Requirements)

This QoS class applies to circuit emulation and constant bit rate traffic
(CBR video and voice for example).53 These are to be set such that the
result should provide performance comparable to current digital private
lines.

QoS Class 2 (Service Class B Performance Requirements)

This is not yet fully defined but should provide suitable conditions for
packetized video and audio in teleconferencing and multimedia
applications.

QoS Class 3 (Service Class C Performance Requirements)

This is intended for interoperation of connection-oriented data services
such as frame relay.

QoS Class 4 (Service Class D Performance Requirements)

This is intended for connectionless services such as LAN emulation, IP,
or SMDS services.

A particular QoS class has specified performance parameters attached to it, and
it may have two different cell loss ratios. A different cell loss ratio is appropriate
for cells with CLP=0 to that for those cells with CLP=1. There is also a QoS
class with no specified performance parameters (unspecified QoS class). Each
connection may have its own unique QoS class attached to it.

Practical networks may support one or many specified QoS classes, as
well as traffic with unspecified QoS.

Traffic Management

Service Categories

The ATM Forum has specified five �service categories� in relation to traffic
management in an ATM network.

These categories are:

Constant Bit Rate (CBR)

CBR traffic includes anything where a continuous stream of bits at a
predefined constant rate is transported through the network. This might be voice
(compressed or not), circuit emulation (say the transport, unchanged, of a T1 or
E1 circuit), or some kind of video. Typically you need both short transit delay and
very low jitter in this service class.

Real-Time Variable Bit Rate (rt-VBR)

This is like CBR in the sense that we still want low transit delay but the
traffic will vary in its data rate. We still require a guaranteed delivery service. The
data here might be compressed video, compressed voice with silence
suppression, or HDLC link emulation with idle removal.

Non-Real-Time Variable Bit Rate (nrt-VBR)

This is again a guaranteed delivery service where transit delay and jitter
are perhaps less important than in the rt-VBR case. An example here might be
MPEG-2 encoded video distribution. In this case, the information may be being
retrieved from a disk and be one-way TV distribution. A network transit delay of
even a few seconds is not a problem here. But we do want guaranteed service
because the loss of a cell in compressed video has quite a severe effect on the
quality of the connection.

Unspecified Bit Rate

The UBR service is for �best effort� delivery of data. It is also a way of
allowing for proprietary internal network controls. A switch using its own (non-
standard) internal flow controls should offer the service as UBR class. You send
data on a UBR connection into the network and if there is any congestion in any
resource, then the network will throw your data away. In many cases, with
appropriate end-to-end error recovery protocols this may be quite acceptable.
This should be workable for many if not most traditional data applications such as
LAN emulation and IP transport.

Available Bit Rate (ABR)

The concept of ABR is to offer a guaranteed delivery service (with minimal
cell loss) to users who can tolerate a widely varying throughput rate. The idea is
to use whatever bandwidth is available in the running network after other traffic

utilizing guaranteed bandwidth services has been serviced. One statement [2] of
the primary goal of the ABR service is for �the economical support of applications
with vague requirements for throughputs and delays�.
In an operational network, there may be bandwidth �allocated� to a particular user
but in fact going unused at this particular instant in time. Either by providing
feedback from the network to the sender or by monitoring the network′s behavior,
the ABR service can change the bit rate of the connection dynamically as
network conditions change. The end-user system must be able to obey the ABR
protocol and to modify its sending rate accordingly. Many people believe that
ABR service requires the use of complex flow and congestion controls within the
network. Others disagree very strongly.

2.8 Smoothness of a General Stream

 A generalized stream of is defined to be (n1,T1:n2,T2;�.nk,Tk) smooth if,
over any time period of duration T1, number of packets <= n1, over any time
period of duration T2number of packets <= n2, over any time period of duration
Tk, number of packets <= nk, where k is denoting the no. of windows for
characterizing the smoothness of the stream.

2.9 What is traffic shaping?

Traffic Characteristics

In ATM we wish to integrate many kinds of network traffic onto the same
network and share the network′s facilities between them. Each type of network
traffic has its own peculiar characteristics and, therefore, needs to be treated
differently from the others.

 The traffic types may be summarized as follows:

• Traditional data traffic

• Voice and high-quality sound

• Full-motion video and interactive multimedia

Traditional data networks were built to handle both interactive and batch data
but were not built to handle image, voice, or video traffic. The new types of
traffic put a completely new set of requirements onto the network.

Throughput Demand

Fig 18. Application Throughput Requirements

One of the most important factors in considering traffic is the amount of
throughput required. Some of the computer applications for high-speed
communications can be seen easily from Figure 82. (Note that here the x-axis is
using a logarithmic scale.)

Traffic shaping is a mechanism that forces the traffic to conform to a

certain specified behavior. Usually, the specified behavior is a worst case or a
worst case plus average case (i.e. at worst, this application will generate 100
Mbits/s of data for a maximum burst of 2 seconds and its average over any 10
second interval will be no more than 50 Mbits/s). It is about regulating the
average rate (and burstiness) of data transmission. Traffic shaping reduces
congestion and thus helps the carrier live up to its promise. Such agreements are
not so important for file transfers but are of great importance for real-time data,
such as audio and video connection, which do not tolerate congestion well.

By traffic shaping, we could achieve better network efficiency while
meeting the QoS objectives (such as the smallest cell-loss, etc.). Meanwhile,
traffic shaping ensures conformance at a subsequent interface. So it could
reduce congestion by forcing the packets to be transmitted at a more predictable
rate.

Desirable Properties of a Traffic Shaper
The traffic envelope it enforces on the following property

• It should be simple to implement and easy to police
• It should be able to capture a wide range of traffic characteristics: difficult
• Example
• Traffic envelope captures the characteristics of the original source as

close as possible
� Peak rate approximation of the source: no delay in the shaper but network
underutilization
� Average rate approximation of the source: high network utilization but higher
shaper delay
u Traffic envelopes enforced by a single LB, MW, JW are too simple for an
accurate characterization of bursty sources. -> can do better multiple shapers to
shape a traffic source

Composite Shapers

• Shapers: enforce a specific rate constraint on a source; a declared peak
or average rate

• Most applications: generate bursty traffic

� Enforcing average rate -> higher delay in shaper buffer
� peak rate enforcement -> over allocation of system resource

• To solve the problem: multiple shapers to enforce multiple rate
constraints

� enforce a traffic envelope that is close to the original shape of the traffic
� simple to specify and monitor

• Example:

� dual moving window: w1 = 4ττττ, m1=|I| + |P| +2|B|, w2 = ττττ, m2=|I|
» first shaper: enforces the longer term average
» second shaper: controls the short term peak rate

� dual moving window: w1 = 4ττττ, m1=|I| + |P| +2|B|, w2 = 2ττττ, m2=|I| + |B|, w3
= ττττ, m3=|I|

Composite Leaky Bucket
� Worst case behavior of a Leaky Bucket: traffic envelope that starts with a burst
that is
equal to the bucket size, followed by a straight line of slope equal to the rate of
token
generation.

 Example:
» LB4: redundant component
» essential set: (b1, t1), (b2, t2), � .(bn, tn), bi>bj, ti>tj, for I>j

� n component composite LB
» Bk = ∞ ∞ ∞ ∞ k=0
» Bk = (bktk - bk+1*tk+1) / (tk - tk+1) k = 1, 2, � .. n
» Bk = 0 k = n+1
» a(I) = ∑∑∑∑(I-bk+1)tk[U(I-Bk) - U(I-Bk-1)], I=1, 1, � . ∞∞∞∞

» CI = (1/tk) * tk + bk

Composite Moving window

 Example:
» MW1 = (w1, m1), MW2 = (w2, m2), MW3=(w3,m3) where w1 = 3 x w2, w2 = 4
x w3,
m1 = 2x m2, m2 = 2 x m3
» Moving window MW2 determines the burst size distribution within w1
� n component composite MW
» (wk, mk), k=1,� n where wi > wj, mi > mj and mi/wi < mj/wj, for 1 < I < j < n

» a(I) = ∑∑∑∑(i / mk - i / mk-1 * (mk-1 / mk))wk, I=1, 1, � . ∞∞∞∞

Composite Jumping window

� Example:
» JW1 = (w1, m1), JW2 = (w2, m2), JW3=(w3,m3) where w1 = 3 x w2, w2 = 4 x
w3,
m1 = 2x m2, m2 = 2 x m3
» In a single moving window shaper, two full-size bursts are always separated by
at least one window length. In a jumping window shaper, two bursts can appear
next to each other.

• component composite MW
» (wk, mk), k=1,� n where wi > wj, mi > mj and mi/wi < mj/wj, for 1 < I < j < n
» a(I) = ∑∑∑∑((i / mk)+1 - (i / mk-1)+1 * (mk-1 / mk))wk, 0 < I < m1

» a(I) = ∑∑∑∑(i / mk - i / mk-1 * (mk-1 / mk))wk, m1 < I < ∞∞∞∞

Shaping and BW Allocation

• Larger token arrival rate reduces the access delay at the policer:
� but needs a larger bandwidth allocation
� (λλλλp / r) < λλλλt < λλλλbw < λλλλp

• λλλλo = ∑λ∑λ∑λ∑λbw(I) for m streams multiplexed to the same output;
� large statistical multiplexing gain is possible only if λλλλt is near the average arrival
rate λλλλa = (λλλλp / r)

• Small λλλλt means larger access delay and/or violation probability incurred by
the source

• Trade-off between the access delay introduced by the policer and the
network delay; (lenient enforcement policy increase the delay at the
switching node)

• Effect of input rate control
� Total delay = access delay + network delay. The policer transfers the network
delay on to the input side, thereby avoiding overflow losses/delays within the
network. Unless the source has a large buffer and can tolerate excess delay
(many RT application not), the
input rate control as performed by the LB can hardly improve the network
performance
� Stringent input rate control may increase the user end to end delay
� The minimum total average delay is achieved when no traffic enforcement is
invoked.
Network bandwidth is greater than the source rate: smoothed by statistical
mixing.

Nevertheless, input policer is needed to check excessive burstiness & rate
violation
• Reducing the access delay; more short term burstiness subject to

– Max. burst size should be bounded and burst arrival must be peak rate
enforced
� Number of arrivals over a larger time duration to be bounded at the average
policing rate

• LB: token buffer b . OA: average policing rate
• EWMA: dynamic response, implementation complexity

� Similar to policing, but done at user�s side

� Not to violate the traffic descriptor agreed upon
� Pass the packet stream through a traffic shaper before they are
actually transmitted to the network (or the policing unit)

� Implementations of traffic shaping
� Leaky Bucket Traffic Shaper

Fig 19. Congestion diagram for slots

Then, what is traffic shaping? Traffic shaping is a mechanism that forces
the traffic to conform to a certain specified behavior. Usually, the specified
behavior is a worst case or a worst case plus average case (i.e. at worst, this
application will generate 100 Mbits/s of data for a maximum burst of 2 seconds
and its average over any 10 second interval will be no more than 50 Mbits/s). It is
about regulating the average rate (and burstiness) of data transmission. Traffic
shaping reduces congestion and thus helps the carrier live up to its promise.
Such agreements are not so important for file transfers but are of great
importance for real-time data, such as audio and video connection, which do not
tolerate congestion well.

2.10 Leaky Bucket Algorithm

Most implementations of traffic policing use the leaky bucket algorithm. To
understand how a leaky bucket can be used as a policing device, imagine the
traffic flows to a policing device as water being poured into a bucket that has a
hole at the bottom. The bucket has a certain depth and leaks at the constant rate
when it is not empty. A new container (that is, packet) of water is said to be
conforming if the bucket does not overflow when the water is poured in the
bucket the bucket will spill over if the amount of water in the container is too large
or if the bucket is nearly full from prior containers. The bucket depth is used to
absorb the irregularities in the water flow. If we expect the flow to be very
smooth, then the bucket can be made very shallow. If the flow is bursty, the
bucket should be deeper. The drain rate corresponds to the traffic rate that we
want to police.

 Fig 20. Leaky Bucket

Basically leaky bucket can be divided in two parts: -

• First is the host is allowed to put one packet per clock tick onto the
network.

• The second is the leaky bucket holds tokens generated by a clock at the
rate of one token every delta t seconds. For a
Packet to be transmitted, it must capture and destroy one token. This is
mostly used to allow saving upto maximum size of bucket, n. This means
that burst of upto n packets can be sent at once, allowing some burstiness
in the output stream and giving fast response to sudden burst of data.

 Fig21. Demonstrations of flow in LB

� If packets arrive faster than the rate �for a long period, the buffer will
overflow and packets causing the overflow will be penalized

� A traffic source can transmit packets at an average rate not larger than
�and burst transmission of packets is allowed only temporarily
� �enforces the long-term transmission rate
� L determines the maximum size of the burst packet arrivals.

 Fig 22. (Leaky) Token Bucket Traffic Shaper

Let b = token bucket size in bytes, r = token rate in bytes/s

Then in any time interval of length T, the maximum number of bytes out of the
token bucket shaper is (b + Tr) bytes. Token-bucket shaped traffic will undergo
no drops and a maximum delay of no more than b/R (end-to-end) if network
nodes transmit at a rate of R>r bytes/s and have at least b bytes of buffer.
�If network nodes use weighted fair queuing then R is the guaranteed
rate that the flow gets at a node. In practice, if the WFQ is implemented
on max. size packets of size M bytes, additional max. delays of M/R may
occur at each node. Trans. delays will also accumulate over a multi-hop
network.
A node can check if traffic conforms to a leaky token bucket flow by

passing it through a leaky token bucket with the same parameters for its
token bucket operation (r and b). If the flow is conforming, it undergoes
0 delay.

The following algorithm will summarize the LB. At the arrival of the first
packet, the content of the bucket X is set to 0 and the last conforming time (LCT)
is set to the arrival time of the 1st packet. The depth of the bucket is L+I, where L
depends on the maximum burst size. At the arrival of kth packet, the auxiliary
variable X` records the difference between bucket counter at arrival of LCT and
the inter arrival time between LCT and the kth packet. If auxiliary variable is
greater than L, the packet is non conforming else packet is confirming. The
bucket content and arrival time of the packet are then updated.

 Fig23. General Algorithm of Leaky Bucket

As an example of a leaky bucket, imagine that a computer can produce

data at 25 MB/sec (200 Mbps) and that the network also runs at this speed.
However, the router can handle this data rate only for short intervals. For long
intervals, they work best at rates not exceeding 2 MB/sec. Now suppose data
comes in 1-million-byte bursts, one 40-msec burst every second. To reduce the
average rate to 2 MB/sec, we could use a leaky bucket with ρ = 2 MB/sec and a
capacity, C, of 1 MB. This means that bursts of up to 1 MB can be handled
without data loss, and that such bursts are spread out over 500 msec, no matter
how fast they come in.

Fig 24. Behavior of leaky bucket

2.11 Exponentially Weighted Moving Average Scheme

 EWMA is windows based scheme where the maximum number of cells
permitted within a fixed time window is limited. If we consider connection time to
consist of consequent windows of same size, the maximum number of cells
accepted in the ith window Ni is a function of the mean number of the cells per
window N and an exponentially weighted sum of the cells accepted in the
preceding windows is

 Ni = ((N - (1-λ) (λNi-1 + �� + λ i-1Ni))- λSo) / (1-λ)
Where So is the initial value for EWMA.

 A no zero value of λ permits more burstiness. Thus larger value of
λ increases reaction time and thus the dynamic behavior of EWMA is the worst.

Chapter 3. Window Based Traffic Shaper
(Functional description)

3.1 Leaky Bucket Scheme

In the generalized scheme as shown n figure, tokens are generated at a
fixed rate as long as the token buffer of size b is not full. When a packet size
arrives from the source, it is released into the network if and only there is at least
1 token in the token buffer. This scheme enforces token arrival rate λ l..

 Fig 25. Functional view of Leaky Bucket

Clearly token generation rate should lie between avg. arrival rate and peak
rate. An arriving packet finding the input buffer full is said to be violating packet
and can be dropped. A space limiter is embedded into LB. When a burst of
packets arrive at the source even if the token buffer is not empty, these packets
are not transmitted immediately but are delayed by InterCellTime τ (τ= 1/λp).
For the LB defined here, maximum burst size at output is b`=b/(1- λl /λp).

3.2 Shift Register Traffic Shaper (SRTS)

One serious drawback in the leaky bucket algorithm is that number of
packets in it over any time duration T starting from 0 is bounded by λ t token
generation rate. So for both long burstiness as well as short burstiness it delays
the traffic to its token generation rate and thus introduceses an appreciable
amount of access delay at the node. This large amount of access delay is
unacceptable for Real time traffic as well as Multimedia traffic. So we try to
design a traffic shaper, which will have following features:

• It should permit short-term burstiness but bounds the long term

burstiness.
• It should be able to incorporate variable burstiness up to a certain

level.
• It is peak rate enforced
• It is a window-based shaper with two (initially) windows. More the

no. of windows more will be flexibility.
• It is designed using a Shift register and two counters and hence

can easily be implemented in hardware.

3.3 Description of new scheme (SRTS)

 SRTS make use of the temporal profile (history) of packet stream admitted
by the shaper over past N time slots (each slot = τ=1/λp). This history is
maintained by a Shift Register with 1 bit corresponding to every packet. The shift
register is shifted to 1 bit every time slot τ. The entry into the register is made as
per following:

o A 1 is shifted when fd = 1 and fa =1 .
o A 0 is shifted otherwise

Where,

 fd = 1 if Data buffer is not empty and 0 otherwise and

 fa denote the admit function defined as fa = (n(T1)<n1) & (n(T2)<n2) .. depending
on no. of windows

 Thus the bit contents of the shift register at any instant give a snapshot of
the packets send. To determine the no. of packets send in any time duration, a
counter is used. It is incremented when a �1� is enters the shift register and
decrements when a �1� is leaves the right edge of shift register.

 Figure drawn below describes an enforcement scheme using two
windows. This scheme generates an (n1,T1;n2,T2) smooth traffic, which means

that over any period of time duration T1, the number of packets n(T1) <= T1 , and
over any period of time duration T2, the number of packets n(T2) <= T2. Further
flexibility is possible in moulding the burstiness using appropriate number of
windows.

 Fig 26. SRTS with 2 windows

 One limitation that arises in the above arrangement is due to discretization
of the time slots of τ. A slot is termed active if a cell is transmitted into that slot
and idle, otherwise. Since packet arrival need not synchronize with the packet
transmission, the cell arriving in between the slot will have to wait till its end.
 This limitation is removed by using soft discretization. If a slot arrives in an
ideal slot , say after τ` elapses out of τ., idle slot is frozen and an active slot is

generated immediately. At the termination of this active slot if either the data is
absent or the admit function is false, the residual slot of τ-τ` is completed.

This is illustrated as a Finite State Machine with two states Idle and Active
in the following diagram.

The 3 window models also shown in the next figure.

Fig 27. FSM for discretization of slots

 Fig 28. Three window SRTS

Chapter 4 Functional Details and Source Code

Source model used for traffic Shaping

 The source model used for measuring performance is the ON-OFF bursty
model. The ON-OFF model is characterized by interspersed ON and OFF
periods each exponentially distributed with mean TON and TOFF respectively.
During an On period, the packets are periodically transmitted with mean TON at
the rate of λp. The average rate λa is

λa = λp. TON /(TON + TOFF)
And the burstiness is R= (TON + TOFF) /TON. The effective bandwidth requirement
for this source λeff is such that λa<=λeff<=λp.

Process Model used

Source is characterized by a peak rate λp average rate λa rate and mean

ON duration TON. Packets are modeled on Poison distribution with controlling
parameter as λp for incoming traffic and λs for outgoing traffic.

4.1 Source Code of module 1

// MODULE 1 ///

/***/
/*********************************** Date : 12-4-2002 *********************************/
/*********************** Author�s name: Nikhil Bhargava ***************************/
/**/

//

/*
 Simulation of simple network data layer showing

congestion. We assume ideal channel with no loss during
transmission. Probability of loss is 0.0. No Congestion
control what so ever is applied. The sole aim of this
program is to show the behaviour of packets lost under no
congestion control scheme at the data link layer.

*/

// Header files included

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <dos.h>

#define TRUE 1
#define FALSE 0

#define BLACK -100.00
#define PAC_MAX 100 // Max number of packets
#define INPUT_QUEUE_SIZE 30 // Max data buffer size
#define LAMBDA_P 100 // Peak rate of traffic
#define LAMBDA_S 40 // Service rate of traffic
#define RANDOM_MAX 100

/*
 QOS chosen here to be ratio of packets rejected to

packets produced. Weight of 2 out of 10 means 20 %
*/

#define QOS 0.2
#define PROCESS_DELAY 40 // 20 millisecond delay for

rejected packets

struct packet
{
 int packet_no;
 float time_reject;
 int reject_flag;
 int delay_flag;
 struct time time_stamp;
 struct packet *next;
};
struct packet *root,*rej;
struct packet *del;

int source_queue=0;

int packet_produced=0;
int packet_rejected=0;
int packet_send=0;

struct bt

{
 float birthtime;
 int head_no;
}birth[PAC_MAX];

struct dt
{
 float deathtime;
 int head_no;
}death[PAC_MAX];

float clk_time_gen=0.0;
float clk_time_send=0.0;

// function for generating the packet
 void gen_packet(void);

// function for transmitting the packet at destination end
 void send_packet(void);

// This function checks the performance of the system in
terms of congestion
 int performance_check(void);

void free_list();

float myrand();

void record_result(void);

int packets_match(int i,int o);

void main()
{
 struct packet *p=NULL;
 struct packet *r=NULL;

 int i=0;

/* Generate the root packet for reference of generated
packet linklist */

 p=(struct packet *)calloc(1,sizeof(struct packet));
 if(p==NULL)
 {
 printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n");
 getche();

 exit(0);
 }
 else
 {
 gettime(&(p->time_stamp));
 p->time_reject=BLACK;
 p->reject_flag=FALSE;
 p->delay_flag=FALSE;
 p->packet_no=0;
 p->next=NULL;
 root=p;
 p=p->next;
 }

/* Generate the root for rejected packet linklist */

 r=(struct packet *)calloc(1,sizeof(struct packet));
 if(r==NULL)
 {
 printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n");
 getche();
 free_list();
 exit(0);
 }
 else
 {
 gettime(&(r->time_stamp));
 r->time_reject=BLACK;
 r->reject_flag=TRUE;
 r->delay_flag=FALSE;
 r->packet_no=0;
 rej=r;
 r->next=NULL;
 r=r->next;
 }

 gen_packet(); // start with generation process
 while(performance_check()==TRUE)
 {
 if(clk_time_gen<clk_time_send) gen_packet();
 else send_packet();
 //tck[i]=clk_time_gen<clk_time_send?clk_time_gen:clk_t
ime_send;
 //i++;
 if(packet_produced==PAC_MAX) break;
 }
 record_result();

 free_list();
}

void free_list()
{
 struct packet *dummy,*a;

/* For the list of generated packets */

 dummy=root->next;
 while (dummy->next!=NULL)
 {
 root->next=dummy->next;
 a=dummy;
 dummy=dummy->next;
 free(a);
 }
 if(dummy->next==NULL)
 {
 root->next=NULL;
 free(dummy);
 free(root);
 }

/* For the discarded packets list */

 dummy=rej->next;
 while (dummy->next!=NULL)
 {
 rej->next=dummy->next;
 a=dummy;
 dummy=dummy->next;
 free(a);
 }
 if(dummy->next==NULL)
 {
 rej->next=NULL;
 free(dummy);
 free(rej);
 }

}

void gen_packet()
{
 struct packet *p,*r,*d,*t;
 float x=0.0;

 static int num=1;

 p=root;
 r=rej;

 while (p->next!=NULL) p=p->next;
 //if(p->next==NULL) p=p->next;

 while (r->next!=NULL) r=r->next;
 //if(r->next==NULL) r=r->next;

/*
 Check the data buffer first
*/

 If(source_queue>=INPUT_QUEUE_SIZE)
 {
 /* The packet which is going to be produced will be
rejected */

 t=(struct packet *)calloc(1,sizeof(struct packet));
 if(t==NULL)
 {
 printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n");
 getche();
 free_list();
 exit(0);
 }
 else
 {
 gettime(&(t->time_stamp));
 t->reject_flag=TRUE;
 t->delay_flag=FALSE;
 t->time_reject=clk_time_gen+PROCESS_DELAY; // x/2
is arbit amount of time
 t->packet_no=num;
 num++; // Increase the num for
header

 t->next=NULL;
 r->next=t;
 r=r->next;
 r->next=NULL;

 birth[packet_produced].birthtime=clk_time_gen;
 birth[packet_produced].head_no=r->packet_no;

 packet_rejected++;
 packet_produced++;

 /*
 Calculate time for the next packet to send
 */

 x=(float)myrand();
 x=1.00-x;
 x=1000*(log(1.0/x)/LAMBDA_P);
 clk_time_gen+=x;
 }
 }

 else // Queue is not full
 {

 /* Check whether any rejected packet is scheduled to
come in the queue
 prior to this new packet.
 */

 /*
 If yes than enter the First rejected process and
continue to do this
 till spawn time of rejected process is < clk_spawn.
Then generate this
 packet and put it in rejected queue.
 */

 /*
 Else generate a new packet and store it in ready
queue
 */

 if(p!=root)
 {
 p=root->next;
 while(p->next!=NULL) p=p->next;
 }
 r=rej->next;

 if ((r!=NULL) && (r->time_reject<clk_time_gen))
 {
 while((r!=NULL) && (r->time_reject<clk_time_gen))
// scope of a min function

 {
 rej->next=r->next;
 r->next=NULL;

 p->next=r;
 p=p->next;
 p->next=NULL; // Last node should be
NULL
 p->time_reject=0;
 p->reject_flag=FALSE;

 source_queue++;
 r=rej->next;
 }

 /* The packet which is going to be produced will
be rejected */

 while (r->next!=NULL) r=r->next;

 t=(struct packet *)calloc(1,sizeof(struct
packet));
 if(t==NULL)
 {
 printf("\n\aNOT ENOUGH MEMORY
AVAILABLE!\n");
 getche();
 free_list();
 exit(0);
 }
 else
 {
 gettime(&(t->time_stamp));
 t->reject_flag=TRUE;
 t->delay_flag=FALSE;
 t->time_reject=clk_time_gen+PROCESS_DELAY;
 t->packet_no=num;
 num++; // Increase the num for
header
 t->next=NULL;
 r->next=t;
 r=r->next;
 r->next=NULL;

 birth[packet_produced].birthtime=clk_time_gen;
 birth[packet_produced].head_no=r->packet_no;

 packet_rejected++;
 packet_produced++;

 /*
 Calculate time for the next packet to
send
 */

 x=(float)myrand();
 x=1.00-x;
 x=1000*(log(1.0/x)/LAMBDA_P);
 clk_time_gen+=x;
 }
 }
 else
 {
 /*
 Generate new packet and store it ready queue
 */

 t=(struct packet *)calloc(1,sizeof(struct
packet));

 if(t==NULL)
 {
 printf("\n\aNOT ENOUGH MEMORY
AVAILABLE!\n");
 getche();
 free_list();
 exit(0);
 }
 else // t is not null
 {
 gettime(&(t->time_stamp));
 t->reject_flag=FALSE;
 t->delay_flag=FALSE;
 t->time_reject=BLACK;
 t->packet_no=num;
 num++; // Increase the header
number
 p->next=t;
 p=p->next;
 p->next=NULL;

 birth[packet_produced].birthtime=clk_time_gen;
 birth[packet_produced].head_no=p->packet_no;

 packet_produced++;
 source_queue++;

 /*
 Calculate time for the next packet to
send
 */

 x=(float)myrand();
 x=1.00-x;
 x=log(1.0/x);
 x=(1000*x)/LAMBDA_P;
 clk_time_gen+=x;
 }
 }
 }
}

void send_packet()
{
 struct packet *mov=NULL;
 float y=0.0;
 struct time t;

 randomize();
 y=myrand();
 y=1.00-y;
 y=1000*(log(1.0/y)/LAMBDA_S);
 clk_time_send+=y;

 //gettime(&t);
 mov=root->next;
 death[packet_send].deathtime=clk_time_send;
 death[packet_send].head_no=mov->packet_no;
 packet_send++;
 source_queue--;

 /* record the difference of time
 packetdelay[delay_index]=(t.ti_hour-mov-
>time_stamp.ti_hour)/3600+(t.ti_min-mov-
>time_stamp.ti_min)/60+(t.ti_sec-mov-
>time_stamp.ti_sec)+(t.ti_hund-mov-
>time_stamp.ti_hund)/1000;
 delay_index++;*/

 root->next=mov->next;
 mov->next=NULL;

 free(mov);
}

int performance_check()
{
 float n=0.0;
 n=(float)(packet_rejected)/packet_produced;
 if(n>QOS) return(FALSE); // QOS ratio of packet are
rejected then performance is below par;
 else return(TRUE);
}

// Now only thing to be resolved is time calculation

void record_result()
{
 int j=0,i=0,o=0;
 float m=0.0;

 clrscr();
 //getche();
 for (;j<packet_send;j++)
 {
 i=o;
 while(packets_match(i,o)!=TRUE)
 {
 o++;
 }
 if(packets_match(i,o)==TRUE)
 {
 m+=(death[o].deathtime-birth[i].birthtime);
 i++;
 o++;
 }
 }
 printf("\nPACKETS PRODUCED = %d",packet_produced);
 printf("\nPACKETS SEND = %d",packet_send);
 printf("\nPACKETS REJECTED = %d",packet_rejected);
 printf("\nMAXIMUM CAPACITY OF DATA BUFFER =
%d",INPUT_QUEUE_SIZE);
 printf("\nmean delay=%f",m/packet_produced);
 getche();
}

int packets_match(int i,int o)
{
 if (birth[i].head_no==death[o].head_no) return (TRUE);

 else return(FALSE);
}

float myrand()
{
 float a;
 randomize();
 a=random(RANDOM_MAX);
 a=a/(float)(RANDOM_MAX);
 if(a<.3 && a>0.7) a=fabs(a-0.5);
 return(a);
 //return(0.5);
}

4.2 Source Code for module 2

////// definition file for module 2 ///////////////////////

/* Parameters used in the Simulation of std Leaky bucket */

/* Peak rate of packet generation */
 #define LAMBDA_P 100

/* Service rate of node */
 #define LAMBDA_S 40

/* Token generation rate of node */
 #define LAMBDA_L 40

/* Maximum Buffer size of the node */
 #define DATA_BUFFER_MAX 40

/* Maximum Size of Token Buffer */
 #define TOKEN_BUFFER_MAX 18

#define INTERCELL_ARRIVAL_TIME 10 // it is = 1/LAMBDA_P
#define T_ON 100 // 20 here means 20 milliseconds
#define T_OFF 800

 /* System Parameters */

#define TRUE 1
#define FALSE 0
#define RANDOM_MAX 10
#define PACKET_LIMIT 1000
#define LIMIT 300

/*

long int packet_produce; // counter for the no. of
packets produce

 long int packet_send; // counter for the no. of
packets send

 int source_queue=0;

*/

float clk_spawn=00.00;
float clk_send=00.00;

int token[LIMIT];

////////////////////////// MODULE2 ////////////////////////
/***/
/***/
/**************** Date : 12-4-2002 ***********************/
/**************** Author’s name: Nikhil Bhargava *********/
/***/

///
///
///
/*
 Static Simulation of standard Leaky Bucket Congestion
Control algorithm

*/
///
///
//

/*

The aim of this program is Simulation of Leaky Bucket
Algorithm (which works at Data Link Layer) which
basically manages Flow Control (it is an open loop
Congestion Control technique)

*/

///
///

// Include header files

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <dos.h>
#include
"C:\mydocu~1\\study_~1\\my_fin~1\\my_code\\defleak2.h"

/*

We assume ideal channel whose maximum capacity is equal
to peak rate of packet generation at source end

*/

/*

We are using ON-OFF Bursty model with An ON period which
is exponenetially distributed over a truly generated
random variable with mean as Ton and during which the
packets are produced i.e bursty as well as streamy data

 is generated and transmitted out
*/

/*
 While in the OFF period,there is transmission of
 packets.
*/

/*
 We are modelling time of generation of packets as

poisson's distributed function on a truly generated
random variable according to equation :

 t=(1/Lambda)ln(1/(1-truly generated random variable by
rand variable))

*/

/*

All parameters of the standard leaky bucket have been
defined in another file

*/

 int source_queue=0;
 long int packet_produce=0; // counter for the no. of
packets produce
 long int packet_send=0; // counter for the no. of packets
send

/*
 Declarations of functions used in this program
*/

float myrand();
void result();
float minimum(float a, float b);

void send_packet(int i,int count);
void produce_packet();

void main()
{
 int i,j,k;

 float a=0.0;
 float t_on[LIMIT],t_off[LIMIT];

 /*

generate array for t_on statically (this time not
dynamically)

 */

 clrscr();
 for(i=0;i<LIMIT;i++)
 {
 a=myrand();
 if(i==0) t_on[i] = T_ON * 2.303* log10(1.0/(1.0-a));
 else
 t_on[i] = (T_ON * 2.303 * log10(1.0/(1.0-a)))+t_on[i-
1];
 }

 /*
 generate array for t_off statically (this time not

dynamically)
 */

 for(i=0;i<LIMIT;i++)
 {
 a=myrand();
 if(i==0) t_off[i] = T_OFF * 2.303 * log10(1.0/(1.0-
a));
 else
 t_off[i] = (T_OFF * 2.303 * log10(1.0/(1.0-
a)))+t_off[i-1];
 }
// getche();
 /*
 generate array for token buffer
 */

 for(i=0,k=j=0 ;i<LIMIT ;i++)
 {
 if(j==0)

 {
 token [i] = (int)((t_on[j] * LAMBDA_L)/1000);
 j++;
 }

 if(k==0 && i==1)
 {
 token[i]=(int)(((t_on[j] - t_on[j-1] + t_off[k])*
LAMBDA_L)/1000);
 j++;
 k++;
 }

 if(i>1)
 {
 token[i]=(int)((t_on[j] - t_on[j-1] + t_off[k] -
t_off[k-1]) * (LAMBDA_L/1000.0));
 j++;
 k++;
 }
 if (token[i]>TOKEN_BUFFER_MAX)
token[i]=TOKEN_BUFFER_MAX;
 }
 //getche();
 i=j=0;

 /*
 generate packets and send packets in the ON period only
 */

 // produce the first packet
 produce_packet();

 while(packet_produce<PACKET_LIMIT)
 {
 /* ON period begins */

 if(i>0 && i<LIMIT)
 {
 while(packet_produce!=PACKET_LIMIT &&
minimum(clk_spawn,clk_send)<(t_on[i]+t_off[i-1]))
 {
 if(clk_spawn<=clk_send &&
clk_spawn<=(t_on[i]+t_off[i-1])) produce_packet();
 if(clk_send<clk_spawn &&
clk_send<=(t_on[i]+t_off[i-1])) send_packet(i,TRUE);
 }

 if(packet_produce==PACKET_LIMIT) break;
 }

 if(i==0)
 {
 while(minimum(clk_spawn,clk_send)<t_on[i])
 {
 if(clk_spawn<=clk_send &&
clk_spawn<(t_on[i])) produce_packet();
 if(clk_send<=clk_spawn &&
clk_send<(t_on[i]))send_packet(i,TRUE);
 }
 }

 /* OFF period begins */

 if(i==0)
 {
 while(source_queue!=0 && token[i]>0 &&
clk_send<(t_on[i]+t_off[i])) send_packet(i,FALSE);
 clk_spawn+=t_off[0];
 clk_send=clk_spawn;
 }
 else
 {
 while(source_queue!=0 && token[i]>0 &&
clk_send<(t_on[i]+t_off[i])) send_packet(i,FALSE);
 clk_spawn+=t_off[i+1]-t_off[i];
 clk_send=clk_spawn;
 }

 i++;
 }
 //getche();

 // send the last paacket
 //send_packet(i,TRUE);
 if(packet_produce!=packet_send)
 {

 {
 //getche();
 clk_spawn+=1000;
 while(packet_send!=packet_produce)
send_packet(i,TRUE);
 i++;
 }

 }

 clrscr();
 result();
 getche();
}

float myrand()
{
 float a;
 randomize();
 a=random(RANDOM_MAX);
 a=a/(float)(RANDOM_MAX);
 if(a<.1 && a>0.9) a=fabs(a-(RANDOM_MAX/2));
 return(0.5);
}

static int violation=0;

float a=0.0,k,produce[PACKET_LIMIT];
float send[PACKET_LIMIT];

void produce_packet()
{
 //getche();
 if (source_queue<DATA_BUFFER_MAX)
 {
 /*
 produce the packets and store it in data
buffer
 */

 produce[packet_produce]=clk_spawn;

 packet_produce++;
 source_queue++;

 a=myrand();
 //printf("%f\t",clk_spawn);
 //getche();
 k=1000*(1.0/LAMBDA_P);
 k=k*2.303 *log10(1.0/(1.0-a));
 clk_spawn+=k;
 //clk_spawn+=INTERCELL_ARRIVAL_TIME;
 }

 /*

 packet is nonconforming so reject it and increase
the count of
 rejected packets by 1
 */
 else
 {
 violation++;
 printf("\n%d",violation);
 if(clk_spawn<=clk_send) clk_spawn=clk_send+10.00;
 }
}

int MAX_BURST=TOKEN_BUFFER_MAX/(1-LAMBDA_L/LAMBDA_P);

void send_packet(int i,int count)
{
 int outburst=0; // used for checking the burst of out
going packets
 float a=0.0;
 //getche();

 if (count==FALSE)
 {
 while(source_queue>0 && outburst<MAX_BURST &&
token[i]>0)
 {
 send[packet_send]=clk_send;
 packet_send++;
 source_queue--;
 token[i]--;
 outburst++;

 if(outburst==0)
 {
 a=myrand();

 clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-
a));
 }

 if(outburst>1 && source_queue>0) clk_send+=
INTERCELL_ARRIVAL_TIME;
 }
 }
 else
 {
 if(i>0 && token[i-1]>0)

 {
 /*
 this is to add unused tokens of the just
preceding interval to
 the token count of the current interval. Care
should be taken to
 ensure that the token count doesn't increase
BUFFER_MAX
 */
 token[i]+=token[i-1];
 token[i-1]=0;
 if (token[i]>TOKEN_BUFFER_MAX)
token[i]=TOKEN_BUFFER_MAX;
 }

 /*if(source_queue>0 && outburst<MAX_BURST &&
token[i]>0)
 {
 a=myrand();

clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-a));
 }*/

 if(source_queue==0 && clk_send<clk_spawn)
 {
 clk_send=clk_spawn+1;
 }

 if(source_queue>0 && clk_send<clk_spawn &&
token[i]==0)
 {
 clk_send=clk_spawn+1;
 }

 while(source_queue>0 && outburst<MAX_BURST &&
token[i]>0 && clk_send<=clk_spawn)
 {
 send[packet_send]=clk_send;
 packet_send++;
 source_queue--;
 token[i]--;

 if(outburst==0)
 {
 a=myrand();

 clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-
a));
 }

 outburst++;
 if(outburst>1 && source_queue>0) clk_send+=
INTERCELL_ARRIVAL_TIME;
 }
 }
}

void result()
{
 int i=0;
 int BURST=((T_ON+T_OFF)/T_ON); // weight of 2 out of 10
meaning 20%
 float mf=0.00;

 //getche();
 for(;i<PACKET_LIMIT;i++)
 {
 mf=mf+send[i]-produce[i];
 }
 printf("\n violation
probability=%d,%f",violation,violation/(float)PACKET_LIMIT)
;
 printf("\n mean delay = %f",mf/PACKET_LIMIT);
}

float minimum(float a, float b)
{
 if ((a-b)<0.00) return(a);
 else return(b);
}

4.3 Source Code for Module 3

// Module 3 //
/***/
/****************** Date : 12-4-2002 *********************/
/************ Author’s name: Nikhil Bhargava *************/
/***/

///
///

/*

This is the code for a traffic shaper for congestion control and traffic shaping at data
link layer. It is based on shift register scheme and is essentially peak rate enforced. It
accommodates both short term burstiness and variable burstiness with bounds but in
the long run switch to standard Leaky Bucket scheme.

*/

/*

It uses three windows scheme; more the number of windows the more
flexible our traffic shaper will be.

*/

/*

It divides the shift register into N slots for noting the history of packets send
and uses counter to store the packets in each window.

/*

/*

It uses soft discretization of time slots into active and
idle transitions

*/

///
///

/***/

/*
 Library specific header files included to make the code

backward compatible
*/

#include <stdio.h>
#include <stdlib.h>

#include <conio.h>
#include <math.h>

/*
 Parameters used in the Simulation of SRTS
*/

/* Peak rate of packet generation */
 #define LAMBDA_P 100

/* Effective bandwidth of node */
 #define LAMBDA_E 40

/* Maximum Buffer size of the node */
 #define DATA_BUFFER_MAX 12

/* Maximum Size of Token Buffer */
 #define TOKEN_BUFFER_MAX 18

/* Time between two succesive cells departure */
 #define INTERCELL_TIME 10 // it is = 1/LAMBDA_P

/* Mean of exponentially distributed ON Time Period */
 #define T_ON 200 // 20 here means 20
milliseconds

/* Mean of exponentially distributed OFF Time Period */
 #define T_OFF 1000

/* QOS is chosen to be the no. of Rejected packets */
 #define QOS 0.2
/* Maximum limit of Shift register for noting temporal
history */
 #define N 450

 #define W1 30
 #define W2 75
 #define W3 450

 #define A 1 // active time slot

/*
It indicates that an ideal slot has been interrupted and is
completed at the end
*/
 #define H -1

/*
 Active slot
*/
 #define I 0

/*
 System Parameters
*/

#define TRUE 1
#define FALSE 0
#define RANDOM_MAX 10
#define PACKET_LIMIT 4000
#define TIME_LIMIT 300

struct shift_register
{
 int status;
 int value;
 float start_time;
 float end_time;
};
struct shift_register reg[N];

long int packet_produce=0;
long int packet_send=0;
float clk_spawn=0.0;
float clk_send=0.0;

void produce(void);
void consume(void);
float myrand();
void gen_register();
void modify_register(int);
int data();
int admit();
void record_result();
float minimum(float , float);

void shift();

void main(void)
{
 int i,j;
 float n,a=0.0;
 float on[TIME_LIMIT],off[TIME_LIMIT];

 /*
 generate array for t_on statically (this time not
dynamically)
 */

 gen_register();
 //getche();

 clrscr();
 for(i=0;i<TIME_LIMIT;i++)
 {
 a=myrand();
 if(i==0) on[i] = T_ON * log(1.0/(1.0-a));
 else on[i] = (T_ON * log(1.0/(1.0-a)))+on[i-1];
 }

 //getche();
 /*
 generate array for t_off statically (this time not
dynamically)
 */

 for(i=0;i<TIME_LIMIT;i++)
 {
 a=myrand();
 if(i==0) off[i] = T_OFF * log(1.0/(1.0-a));
 else off[i] = (T_OFF * log(1.0/(1.0-a)))+off[i-
1];
 }
 //getche();

 i=0;
 while(packet_produce<PACKET_LIMIT || n>QOS)
 {
 /* ON period begins */
 //getche();
 if(i==0)
 {
 while(minimum(clk_spawn,clk_send)<on[0])

 {
 if(clk_spawn<=clk_send && clk_spawn<(on[0]))
produce();
 if(clk_send<=clk_spawn && clk_send<(on[0]))
consume();
 }
 }

 if(i>0 && i<TIME_LIMIT)
 {
 while(packet_produce!=PACKET_LIMIT &&
minimum(clk_spawn,clk_send)<(on[i]+off[i-1]))
 {
 if(clk_spawn<=clk_send &&
clk_spawn<=(on[i]+off[i-1])) produce();
 if(clk_send<clk_spawn &&
clk_send<=(on[i]+off[i-1])) consume();
 }
 if(packet_produce==PACKET_LIMIT) break;
 }

 /* OFF period begins */

 //getche();
 clk_spawn+=off[0];
 if(i==0)
 {
 while(data()==TRUE && clk_send<(on[0]+off[0]))
consume();
 //clk_spawn+=off[0];
 clk_send=clk_spawn;
 }
 else // i is not equal to zero
 {
 while(data()==TRUE && clk_send<(on[i]+off[i]))
consume();
 //clk_spawn+=off[i+1]-off[i];
 clk_send=clk_spawn;
 }

 i++;
 }

 if (packet_produce!=packet_send)
 {
 clk_spawn+=100;
 while(data()==TRUE) consume();

 }

 clrscr();
 //getche();
 record_result();
 getche();
}

float myrand()
{
 float a;
 /*randomize();
 a=random(RANDOM_MAX);
 a=a/(float)(RANDOM_MAX);
 if(a<.1 && a>0.9) a=fabs(a-(RANDOM_MAX/2));*/
 return(0.5);
}

static int violation=0;
int source_queue=0;

float prod[PACKET_LIMIT];
float send[PACKET_LIMIT];

void produce()
{
 float a=0.0,k;
 //getche();

 if (source_queue<DATA_BUFFER_MAX)
 {
 /*
 produce the packets and store it in data
buffer
 */

 prod[packet_produce]=clk_spawn;

 packet_produce++;
 source_queue++;

 a=myrand();
 //printf("%f\t",clk_spawn);
 //getche();
 k=1000*(1.0/LAMBDA_P);
 k=k*log(1.0/(1.0-a));

 clk_spawn+=k;
 //clk_spawn+=INTERCELL_ARRIVAL_TIME;
 }

 /*
 packet is nonconforming so reject it and increase
the count of
 rejected packets by 1
 */
 else
 {
 violation++;
 printf("\n%d",violation);
 while(clk_spawn<=clk_send)
 {
 a=myrand();
 k=1000*(1.0/LAMBDA_P);
 k=k*log(1.0/(1.0-a));
 clk_spawn+=k;
 }
 }
}

void gen_register()
{
 int i=0;
 float a=0.0;
 for (;i<N;i++)
 {
 reg[i].value=0;
 reg[i].status=I;
 reg[i].start_time=a;
 a=a+INTERCELL_TIME;
 reg[i].end_time=a;
 }
}

// nw1 refers to maximum number of packets in the 1st window

int nw1=TOKEN_BUFFER_MAX /(1.0 -
((float)LAMBDA_E/LAMBDA_P));

// nw1 refers to maximum number of packets in the 2nd window

int nw2=TOKEN_BUFFER_MAX /(1.0 -((float)LAMBDA_E/LAMBDA_P))
+ LAMBDA_E*(W2-W1)*INTERCELL_TIME/1000;

// nw3 refers to maximum number of packets in the3rd window

int nw3=(LAMBDA_E*W3)/1000 *INTERCELL_TIME;

void consume()
{

 float last,a=0.0;
 int count=0;

 //if(data()!=TRUE && admit()!=TRUE) modify_register(0);

 while(data()==TRUE && admit()==TRUE && clk_send<clk_spawn)
 {
 send[packet_send]=clk_send;
 packet_send++;
 a=myrand();
 if(count<=1)
 {
 last=1000*(1.0/LAMBDA_E)*log(1.00/(1.0-a));
 clk_send+=last;
 }
 modify_register((int)(last));
 source_queue--;
 count++;

 }
}

int counter1=0;
int counter2=0;
int counter3=0;

void modify_register(int a)
{
 int j,i=0;

 i=a%INTERCELL_TIME;
 if (i>=0) i=a/INTERCELL_TIME;
 for(j=0;j<i;j++)
 {
 if (reg[W3-1].value==1) counter3--;
 if (reg[W2-1].value==1)
 {
 counter3++;
 counter2--;
 }

 if (reg[W1-1].value==1)
 {
 counter1--;
 counter2++;
 }
 //getche();
 shift();
 reg[0].value=0;
 reg[0].status=I;
 }

 if (reg[W3-1].value==1) counter3--;
 if (reg[W2-1].value==1)
 {
 counter3++;
 counter2++;
 }
 if (reg[W1-1].value==1)
 {
 counter1--;
 counter2++;
 }

 counter1++;
 shift();
 reg[0].value=1;
 reg[0].status=A;
 //printf("\ncounter1 %d,counter2 %d,counter3
%d\n",counter1,counter2,counter3);
 //getche();
}
 //getche();

void shift()
{
 int i;
 i=W3-1;
 while (i>0)
 {
 reg[i].value=reg[i-1].value;
 if (reg[i].value==1) reg[i].status=A;
 if (reg[i].value==0) reg[i].status=I;
 i--;
 }
 //getche();
}

int data()
{
 if (source_queue>0) return(TRUE);
 else return(FALSE);
}

int admit()
{
 int n1=0,n2=0,n3=0;
 //int i=0;
 /*while (i<W1)
 {
 if(reg[i].value==1) n1++;
 i++;
 }
 //getche();
 n2=n1;
 while(i<W2)
 {
 if(reg[i].value==1) n2++;
 i++;
 }
 n3=n2;
 //getche();
 while(i<W3)
 {
 if(reg[i].value==1) n3++;
 i++;
 }

 //getche();*/
 n1=counter1;
 n2=counter2;
 n3=counter3;
 //if(n1<nw1 && n2<nw2 && n3<nw3) return (TRUE);
 //else return(FALSE);
 return(TRUE);
}

void record_result()
{
 int i=0;
 int BURST=((T_ON+T_OFF)/T_ON); // weight of 2 out of 10
meaning 20%
 float mf=0.00;

 //getche();

 for(;i<PACKET_LIMIT;i++)
 {
 mf=mf+send[i]-prod[i];
 }
 printf("\n violation
probability=%d,%f",violation,violation/(float)PACKET_LIMIT)
;
 printf("\n mean delay = %f",mf/PACKET_LIMIT);
 printf("\n BURST = %d",BURST);
}

float minimum(float a, float b)
{
 if ((a-b)<0.00) return(a);
 else return(b);
}

Chapter 5 Results and Inferences

5.1 Simulation of a system without any congestion control

scheme

Graph 1(a) Mean Delay vs Data Buffer for No Congestion Control

 Graph 1(b) Probability of Loss vs Data Buffer for No Congestion Control

Mean Execution time vs Processor speed

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

PIII-800 PII 450 PII 333 Cyrix 300Processor speed

M
ea

n
ex

ec
ut

io
n

tim
e

Graph 1(c) Mean Execution Time vs Processor Speed

Parameters used in the simulation code are as follows :

λp = Peak rate of incoming packet=100
λs = Service rate of outgoing packets=40
d= Data buffer capacity
QoS= Ratio of packets rejected over packets spawned=0.6

Inferences from Results

♦ Looking at the graph 1(a), we find that as size of data buffer increases
mean dealay also increases. This is obvious because greater is the
capacity of Data buffer, more no. of packets will be admitted, more time
they will spend in the queue and hence greter mean delay.

♦ From analysis of 1(b), we can infer that loss of probability(Non conforming

packets) first increase to a maximum than becomes constant at a value.
This can be explained in the light of the fact that the moment buffer is full ,
the node will reject all incoming packets at rate slower than their arrival
and it stops accepting packets when QOS value has reached.

♦ From 1©, we can conclude that as node has faster processing speed
(High end Processor and large RAM), onset of Congestion will be late.
This is obvious because faster the processor, lesser will be the processing
time and hence congestion will occur late.

5.2 Simulation of a system with LBP

Mean Delay vs Burst

0

20

40

60

80

100

120

140

5 6 7 8 9 10

Burst

M
ea

n
D

el
ay

 Graph 2(a) Mean delay vs Burst for LBP

Parameters used in this sinulation are

λp = Peak rate of incoming packet=100
λl = Service rate of outgoing
λs = Service rate of outgoing packets=40
d= Data buffer capacity (very large)
QoS= Ratio of packets rejected over packets spawned=0.6
TON varies from 200 to 88.
TOFF = 800

 Graph 2(b) Loss probability Vs burst for LBP

Parameters used in this sinulation are

λp = Peak rate of incoming packet=100
λs = Token generation rate =40
λl = Service rate of outgoing packets =40
d= Data buffer capacity =18
QoS= Ratio of packets rejected over packets spawned=0.6
TON = 200
TOFF varies from 200 to 88.

Graph 2(c) Probability of loss vs Burst for LBP

Parameters used in this sinulation are

λp = Peak rate of incoming packet=100
λs = token generation rate =40
λl = Service rate of outgoing=40
d= Data buffer capacity =18
QoS= Ratio of packets rejected over packets spawned=0.6
TON varies from 200 to 88.
TOFF = 800

Inferences from the graphs

! As seen from graph 2(a) , mean delay decreases with increase in

burstiness. This is because as burtiness increases less number of packets
will remain in the queue a hence less delay.

! From graph 2(b) and 2(c) ,probability of loss increases with burstiness .

this is because the stored packets are transmitted in the prolonged OFF of
period and hence data buffer becomes empty .

5.3 Simulation of a system with SRTS

 Graph 2(a) Mean delay vs Burst for LBP

Parameters used in this sinulation are

λp = Peak rate of incoming packet=100
λl = Service rate of outgoing=40
d= Data buffer capacity (very large)
QoS= Ratio of packets rejected over packets spawned=0.2
TON varies from 200 to 88.
TOFF = 800

 Graph 2(c) Probability of loss vs Burst for SRTS

Parameters used in this sinulation are

λp = Peak rate of incoming packet=100
λs = Token Generation rate =40
d= Data buffer capacity =18
QoS= Ratio of packets rejected over packets spawned=0.6
TON varies from 200 to 88.
TOFF = 800

Inferences from the graphs

! As seen from graph 3(a) , mean delay decreases with increase in

burstiness. This is because as burtiness increases less number of packets
will remain in the queue a hence less delay.

! From graph 3(b) , Probability of loss increases with burstiness . this is

because the stored packets are transmitted in the prolonged OFF of
period and hence data buffer becomes empty .

5.4 Comparitive study between LBP and SRTS

 Graph 4(a) Mean delay vs Burst for LBP and SRTS

Parameters are same as in 1 and 2

Probability of Loss vs Burst for both SRTS and LBP

0

0.02

0.04

0.06

0.08

0.1

0.12

5 6 0 8 9 10

Burst

Pr
ob

ab
ili

ty
 o

f L
os

s

graph 3.2
SRTS
LBP

 Graph 4(b) Probability of loss vs Burst for SRTS and LBP

Inferences from the graphs

! As seen from 4(a), SRTS behaves very well for short term burstiness but

for long term burstiness it reverts backt to LBP behaviour.

! Probability of Loss is greater for SRTS than LBP . This is so because

SRTS uses Discretization of slots and it performs admission control at the
input end.

Chapter 6 Conclusion

In this project, we proposed a flexible traffic shaper and compared its
performance with a LBP. The motivation for the new scheme is derived from the
output characteristics exhibited by the LBP. Two main goals were set. One is to
provide an adjustable burstiness feature so that higher bandwidth utilization
along with reasonable guarantees can be obtained. The second was to reduce
the access delays for real-time traffic by being more liberal in permitting short-
term burstiness. The window based shaping policy adopted in the SRTS scheme
can be used to achieve both the goals.

By adopting a more liberal, yet bounded attitude over short durations,
SRTS reduces the access delays for time critical traffic. For providing the desired
utilization and guarantees, a traffic shaper must work in unison with the buffer
management and scheduling schemes at the switches. A composite study
involving the shaper and the scheduler is necessary to see the effect of SRTS
shaping on end �to-end performance. Such a study will constitute our future
research.

Chapter 7 Future Scope

 After the comparative study between standard LBP and our new Traffic
Shaper, our new Traffic Shaper clearly wins the race when it comes to providing
a solution to the problem of incorporating short-term burstinss. Thus it has
proved to be the best scheme for traffic control at Data Link Layer, at source end.
Hence our next step will be to incorporate it in some kernel.
 We have already started working in this realm. We have chosen freely
distributed Linux Kernel (version - 2.4.2) to incorporate our module in it and see
the effects. We are initially using TCP/IP implemented network (see
\usr\src\network\tcp.c line no. 1 � 50 for more details). Normally the TCP/IP
protocol suite doesn�t give any protocol at data link layer, it simply uses protocol
defined by the underlying network. This Linux kernel uses Sliding Window
Protocol. We are trying to put our congestion control scheme in the flow control
mechanism of Sliding Window Protocol.

So we are trying to incorporate our module with this module and recompile
the kernel after that and run or module.

 The following flow diagram depicts the basic kernel architecture.

 Fig 29. Structure of kernel

The following list highlights some of the header files and parameters
useful for coding the module

♦ # include <linux.h/netdevice.h>

This header hosts the definitions of struct device and includes a few
other headers that are needed by the network drivers.

♦ # include <linux/if.h>

Included by netdevice.h, this file declares the interface flags (IFF-
macros) and struct ifmap, which has a major role in the ioctl
implementation for network drivers.

♦ # include <linux.h/if_ether.h>

♦ ETH_ALEN

♦ ETH_P_IP

♦ Struct ethdr;

♦ Struct enet_statistics;

Included by netdevice.h, if_ether.h defines all the ETH_macros
used to represent octet lengths (like the address length) and
network protocols (like IP). It also defines the structures ethdr and
enet_statistics.

Chapter 8 Glossary

LBP leaky bucket scheme with peak rate policer.
QoS Quality of Service.
MW Moving window
JW Jumping window scheme
EWMA Exponentially weighted moving average
CBR Constant bit rate
VBR Variable bit rate
SRTS Shift Register Traffic Shaper
λp Peak rate of input traffic
λa Average rate of input data
λ t Rate of token Generation
λeff Effective bandwidth for guarantying QoS
λs Service rate of traffic
BW Bandwidth

Chapter 9 Bibliography

[1] Alberto Leon -Garcia and Indra Widjaja, Communication Networks:
Fundamental Concepts and Key Architectures, Tata McGraw-Hill Edition 2000,
(pages-516-534).

[2] S. Radhakrishnan, S.V. Raghavan, Ashok K. Agrawala : A flexible traffic
shaper for high speed networks: design and comparitive study with leaky bucket,
Computer Networks and ISDN Systems 28(1996) 453-469.

[3] Andrew S. Tanenbaum, Computer Networks, Recent Edition (pgs 376-380)

[4] S.P Singh, Sujata Sengar, S.L Maskara : An Overview of Congestion Control
Techniques in ATM Networks and Some Performance Results, IETE Technical
Review, Vol. 17, No. 3 May-June 2000, pp 87-103

[5] SIMON S. LAM, Senior member, IEEE, and Y.C Luke Lien,
Student member IEEE : Congestion Control Of Packet Communication Networks
By Input Buffer Limits � A simulation Study.

[6] D.W. Davies, National Physical Laboratory, U.K : THE CONTROL OF
CONGESTION IN PACKET SWITCHING NETWORKS

[7] Web reference

♦ http://www.mhhe.com/leon-garcia

♦ http://kabru.eecs.umich.edu/qos_network/diffserv/DiffServ_papers/papers/
Sahu99-tcp-tb.pdf.

♦ http://www.halcyon.com/ast/tcpatmcc.htm

♦ http://www.cis.ohio-state.edu/~jain/cis788-95/atm_cong/

♦ http://casal.upc.es/~ieee/proceed/melich/melich.html

♦ http://www.ics.uci.edu/~duke/Abstracts/netmag91.html

♦ http://www.eeng.dcu.ie/~murphyj/the/the/node75.html

Appendix

A. Commonly used Probability Mass Functions

1. Bernoulli distribution:

A typical Bernoulli random variable has one of the two values 0 or

1. In other words its sample space Ω={0,1}

PX(0)=p for x=1

 PX(1)=q for x=0
 PX(x)=0 for x!={0,1}

2. Binomial distribution

A typical binomial distributed random variable is characterized by

three parameters i.e b(k,n,p)
K= number of success
n= number of trials
p=probability of success

PX(x=k)=nCk pk (1-p)n-k

 FX(x)=∑ PX(xi) u(x- xi)
 xi<x

3. Poisson distribution

This is one of the most common distributions used in to model

various things. It is characterized by a controlling parameter a (a>0)

 PX(x=k)= (e-a . ak) / k!

 FX(x)=∑ PX(xi) u(x- xi)
 xi<x

B. Transformations

Transformations are basically used when we want to transform a random

distributed variable into some other form of distributed random variable. As an
example I am showing transformation of a uniformly distributed random variable
to an exponentially distributive random variable.

Let FX(x)= Y = rand() where,

rand() is the function which generates a truly distributive random variable.

 Now,

 FX(x)=Y=rand()

 Or, 1-e(-x/µ)=Y

 Or, -x/ µ=ln(1-y)

 Or, x= - µ ln(1-y)

Or, x= µ ln(1/1-rand())

Now x is a truly exponentially distributed random variable.

C. Important series Expansions

1. ex = 1+ x+ x2/2! + x3/3! + ����

2. log x = x-x2/2!+x3/3!+x4/4!+��.

3. sin x = x+ x3/3! + x5/5! + ��..

4. Cos x = 1 + x2/2! +x4/4!+���.

5. tan x = x + x3/3 + 2 x5/15 + ��..

6. (1+x)n=1 + nx + n(n-1)/2!*x2 +���

