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Chapter 1. Introduction 
 
 
 This Final Year project report documents systematic design, development, 
implementation of an efficient traffic shaper and includes its comparative study 
with standard leaky bucket algorithm   
  

Traffic control is an essential part of today�s networks due the increasing 
demand for large bandwidth and high speed. These include admission control at 
the connection setup, traffic control at source ends and efficient scheduling 
schemes at the switches. Most multimedia sources are bursty in nature, which 
increase congestion the most. 

Traffic shapers have been used from the point of view of their 
effectiveness in smoothing the burstiness. For example, The Leaky Bucket (LB) 
scheme is a mean rate policer, which smoothes the traffic either using clock ticks 
or by token generation. 

Studies on bursty sources show that burstiness promotes statistical 
multiplexing at the cost of possible congestion. Smoothing on the other hand 
helps in providing guarantees at the cost of system utilization. Thus there is a 
need for flexible scheme, which can provide a reasonable agreement between 
utilization and performance. 

Advances in optical transmission media and high speed switching have 
paved the way for many exiting multimedia application, such as teleconferencing 
and real time distributed computing to be supported on computer networks. Most 
of these new applications, constituted of heterogeneous mix of voice, video and 
data are characterized by stringent QoS requirements in terms of throughput, 
delay jitter and low delay guarantees. The heterogeneity of the source calls for 
effective congestion control scheme to meet the diverse quality of service 
requirement of each application. These include admission control at connection 
setup, traffic enforcements and shaping at the edges of the network and 
multimedia scheduling schemes at the intermediate switches. Latency efforts 
apparent at the gigabit speed make the conventional feedback technique 
ineffective. Thus the responsibility of preventing congestion lies with the 
admission control and traffic enforcement schemes. 
  
 
 
 
 
 
 
 
 



1.1 Main Goal of the Project 
 
Maximizing bandwidth utilization and performance in the context of 

multimedia networks are two totally incompatible goals like two shores of the sea.  
Multimedia sources of today�s world are characterized by diverse Quality of 
Service (QOS) requirements. To satisfy these diverse QOS requirements we 
need effective traffic control schemes at all levels. These include admission 
control at source end and efficient scheduling schemes at he switches. We have 
tried to provide a full proof solution for traffic congestion at the source end. 
  Since most of the multimedia sources are bursty in nature so some kind 
of traffic shaper is needed to smoothen the in coming bursty traffic at source end. 
An interesting fact that has emerged from years of research of multimedia traffic 
is that burstiness promotes statistical multiplexing at cost of possible congestion. 
Smoothing on other hand helps in providing performance guarantees at the cost 
of low system utilization. Thus there is need for flexible scheme, which can 
provide a good, satisfactory and unbiased tradeoff between system utilization, 
and performance guarantee is imminent. The most common scheme used for 
this purpose is Leaky bucket scheme (LB) but this scheme proves to a real 
bottleneck for real time systems because it introduces a large amount of access 
delay both at source end and at intermediate routers. Thus there is a need for a 
policy, which is less strict on short-term burstiness than the LB.  

We propose a new traffic shaper, which can adjust the burstiness of the 
traffic to obtain reasonable bandwidth utilization while maintaining statistical 
service guarantee.  
 

The aim of our project is to design an efficient traffic shaper for high-speed 
networks using an enhanced version of leaky bucket algorithm and its 
comparative study with standard leaky bucket scheme. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 



1.2 Overview of project 
 

 
Advances in optical transmission media and high speed switching have 

given way to many new and exciting applications like teleconferencing; video on 
demand and real time distributed computing. All these applications can�t work if 
they are not given the firm base of fast and efficient computer networks. Most of 
the new applications consist of a heterogeneous mixture of these 5 things � data, 
audio, video, image and graphics. Each of these comes in the form of either 
constant bit rate traffic or variable bit rate traffic and have diverse QOS 
requirements in term of throughput, jitter delay or mean delay. The heterogeneity 
of these sources coupled with the aim of high performance and high system 
utilization makes it absolutely necessary to apply some kind of admission control 
at connection setup, traffic enforcement and shaping at the edges of the network 
and various scheduling schemes at intermediate routers and switches.   
 Admission control is decided by an algorithm, which expects that the user 
provide an estimate of the traffic parameters, and abides by their negotiated 
values. In a resource sharing packet network, admission control and scheduling 
schemes by themselves are not sufficient to provide performance guarantees. 
This is due to the fact that the users intentionally or otherwise, attempt to exceed 
the bandwidth allotted to each of them at connection time. This leads to the 
phenomenon of congestion. Various congestion control schemes have been 
proposed in the literature like Leaky Bucket (LB), Jumping Window (JW), 
exponentially weighted Moving average (EWMA) and associated variations. It 
has been shown that LB and EWMA are most promising candidates in policing 
bursty traffic.  
 Traffic shaping, on the other hand, conditions the input stream so that the 
characteristics of the outgoing traffic are manageable by the scheduling algorithm 
(at intermediate node or other end) to provide required QOS. Traffic shapers are 
mainly studied from the point of view of their effectiveness in smoothing the 
burstiness. The LB is a mean rate policier which smoothes the traffic at token 
generation rate. Studies on burstiness promote statistical multiplexing at the cost 
of possible congestion control. Smoothing on the other hand helps in providing 
guarantees at the cost of system utilization. Normal LB in its attempt to enforce 
smoothness often (always) introduces large amount access delays, which makes 
it in capable to handle real time traffic. Thus there is need for a policy, which is 
less strict on the short-term burstiness while, reverts back to standard LB for 
long-term burstiness. 
 We present a new traffic shaper, which can adjust the input traffic to 
obtain reasonable bandwidth utilization while maintaining statistical service 
guarantees. It uses a window based shaping policy, which embeds the essence 
of LB, permits short-term burstiness in a more flexible way and is essentially 
peak rate enforced.  
 We carried out the project in three phases. In the first phase we studied 
the behaviour of the system in the absence of any congestion control scheme. In 
the next phase we implemented the standard LB and studied the behaviour of 



the system with LB congestion control. In the last phase we designed and 
implemented our new traffic shaper and studied the behaviour of system 
implementing this new shaper and conclude the phase with comparative study of 
leaky bucket scheme and new shaper.        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.3 Requirements 
 
This project has following Software requirements  
 

♦ Any POSIX compliant C compiler. 
 
♦ Any good debugger with stack tracking feature like GDB and LINT 
 
♦ Windows 9X/Linux platform 
 
♦ Microsoft Office package (preferably 2000)  
 
♦ Mathematica 
 
♦ Adobe Acrobat Reader 

 
My project has no requirements in hardware. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Chapter 2  System Description  
 
2.1  What Is Congestion? 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
Fig 1 Congestion in network 

 
 
 
As seen from figure1, Congestion is abundance of the data or the packets 

on the network than the provided limits of the bandwidth, which results in packet 
loss due to excessive delays or retransmission of packets. In other words we can 
say that when incoming rate of the packets is greater than the rate at which the 
packets can be transmitted out, congestion is said to occur. For e.g., consider the 
communication network as shown in the fig 2. Suppose nodes 1, 2 and 5 send 
packets to node 4 simultaneously and also suppose that the incoming rate of the 
packets is greater than the rate of servicing. In this case the data buffer in node 4 
will build up. If this situation occurs sufficiently long, buffer will eventually become 
full and start rejecting packets. When the destination detects the missing packets 
it may ask the sources to retransmit the packets. This will act as a positive 
feedback to sources and in coming traffic to node 4 will increase many folds. The 
net result that through put of destination will be low as illustrated in fig 2 
(uncontrolled curve).  
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    Fig 2.  A Congested Switch 
   
 
 

 
 
 

Fig 3.  Through put drops when congestion occurs 
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 The purpose of congestion control is to eliminate or reduce congestion. If 
done properly performance should improve (controlled curve). 
 Within a network, any shared resource is a potential point at which 
congestion may occur. If you consider the prototype of a communication network, 
it consists of a number of nodes (switches, routers...) interconnected by 
communication links (in this context, often called �trunks�). End-user devices are 
connected to the nodes through other communication links. there are two places 
where information flows share 
 
Network resources: 
 
1. Links (trunks) 
 
2. Nodes (switches or routers) 
 
Depending on their design, there are different aspects of a node which are 
shared: 
 
• Memory (packet buffer pools) 
 
• I/O processors (scanners, etc.) 
 
• Internal buses or switches 
 
• Central processors 
 
• Network management processors 
  

Many other things depending on the particular node′s design Whenever 
there is sharing of resources between data flows, there is usually (notably not 
always) the temptation for designers to over commit resources. For example, in 
the traditional packet switch architecture of the 1970s and 1980s a shared 
memory was used as a �pool� for intermediate storage of data as it passed 
through the node. This was done because of the immense cost benefit (20 to 1, 
perhaps 100 to 1) by taking advantage of the statistical characteristics of network 
traffic. There are actually many aspects to this, for example, the use of a single 
memory (implying the sharing of access to that memory) instead of multiple small 
memories and the total size of that memory. Another example is the universal 
use of shared trunks, the capacity of which is usually significantly less than the 
total capacity of connected links to end users. Whenever there is a shared 
resource where there is the possibility of contention for the use of that resource 
you have to do something to resolve who gets it. The usual �something� is to 
build a queue in front of the resource. Indeed, a communication network can be 
seen as a network of queues. The presence of a queue implies a delay (a wait 
for service). Because queues vary in length, sometimes very quickly, their 



presence also implies a variation in delay (jitter). It also implies a cost (for 
storage to hold the data, for example). 
But what do you do when the queue gets too long? You could throw the data 
away, you could tell the input devices to stop sending input, you could perhaps 
keep track on the length of the queue and do something to control the input rate 
so that the queue never became too long. These latter techniques are flow 
controls. 
In the networks of the 1970s and 1980s there were usually flow controls built into 
the network protocols. This was (in some contexts still is) a very important 
issue. It was the superiority of the flow controls in IBM SNA that enabled SNA to 
utilize trunk links to very high utilization while maintaining stable network 
operation. This meant that users saved cost on trunk connections. It was this 
aspect that underwrote the enormous success of SNA. 
 
 
Queue Behavior 
 
Figure shows a very famous (but not intuitive) result. 
 

 
 

Fig 4.  Queue Length versus Resource Utilization 
 
 

This applies to queuing in general, not only in communications. If you 
have a shared resource (such as a supermarket checkout) where transactions 
(customers) arrive randomly (whatever definition of randomness you like to use) 
you get a queue forming. A critical aspect of this is the rate of arrivals at the 
shared resource (server) and the rate at which transactions are processed. 
There is a surprising (and critical) result here: As the average rate of arrivals 
approaches the average rate of transaction processing the length of the queue 



will tend to infinity. This hinges on randomness of arrivals and is influenced by 
randomness in service times (that is, the number of items in the basket in a 
supermarket or the length of a block of data in a communication network). 

Another way of stating the above is to introduce the concept of utilization 
of the server. Utilization is just the average arrival rate multiplied by the average 
time it takes to service a transaction expressed as a proportion of total time. 
Utilization is usually quoted as the percentage of time that the server is busy. 
Many books have been written on queuing theory! An important thing to note is 
that there are many variables here that affect the position of the curve in 
Figure 90. The precise arrival pattern is very important. If arrivals are at exact 
intervals and all transactions take exactly the same time to process, then the 
curve shifts to the right so that there is almost no queue at all until we reach 
100% utilization. Different patterns of randomness 54 result in the curve shifting 
to the left of where it is shown. 
 

The point is that as you increase the loading on any shared facility you 
reach a point where, if you add any more traffic, you will get severely increased 
queue length and problems with congestion. 
 
Effect of Network Protocols 
 

Figure 91 shows what happens in different kinds of networks when the 
load offered to the network (potential traffic that end-user devices want to send) 
is increased beyond the network′s capacity to handle it. The curve on the left is 
typcal of Ethernet (and ATM with some traffic types). As load is increased, the 
network handles it fine until a point is reached where the traffic can no longer be 
handled. Network throughput actually decreases very quickly when this point is 
reached. In fact, in the case of Ethernet, the network collapses and no data at 
all gets through. This is because collisions take capacity away from the network, 
as load increases collisions increase and capacity decreases which itself 
increases the probability of more collisions! 

 
 
 
 

Fig5. ATM Network Throughput under Increasing Load Conditions 
 



It must be pointed out that Ethernet works perfectly well in many 
situations, mainly as a result of the flow controls imposed by network protocols at 
higher layers (that is, external to Ethernet itself). The same is true of IP (TCP flow 
control stabilizes it) and (many would assert) will be true of ATM. 

The curve on the right shows what happens in well controlled networks. 
Once full throughput is reached, the network continues to operate at full capacity. 
There are queues, of course, but these are mainly in the end-user devices to 
avoid an overflow of the queues in the network. This comes at the higher cost of 
token-based access control (in TRN and FDDI) or extensive flow controls and the 
necessary processing hardware (in SNA). �Ya pays yer money and ya takes yer 
choice.� 
  
Deadlocks 

 
• The first router cannot proceed until the second router does something, 

and the   second router cannot proceed until the first router does 
something 

• Both routers come to a complete halt and stay that way forever 
 
1. Store and Forward Lockup 

• Direct Store and Forward Lockup Types of deadlock 
• Indirect Store and Forward Lockup 

 
2. Reassembly Lockup 
 
Direct Store and Forward Lockup 
Simplest lockup between two routers 
 
Example: 

Suppose router A has five buffers, all of which are queued for output to 
router B Similarly, router B has five buffers, all of which are queued for output to 
router A If there is flow control on the link between routers A and B, then neither 
router can accept any incoming packets from the other. They are both stuck.                 

 



 
 

Fig 6. Indirect Store and Forward Lockup 
 

If we view the network as a graph with nodes and edges  
 
 
 
               
 
 

 
 
 
 
 
 
 
 
 

 
Fig7. Cycles in a Dependency Graph 

                                                   
 
A deadlock occurs when There is a cycle of dependencies in the graph 
 
Reassembly Lockup 

In some network layer implementations, the sending router must split 
messages into multiple network layer packets. Receiving routers reassemble split 



up packets into a single packet If the receiving router�s buffer fills up with 
incomplete packets, it cannot reassemble any more packets 

 

Fig 8. Buffer flow in a congested network 
 

         
 
2.2  Exploring various causes of Congestion 
 

There are several misunderstandings about the cause and the solutions of 
congestion control. Congestion is caused by the shortage of buffer space. The 
problem will be solved when the cost of memory becomes cheap enough to allow 
very large memory. Larger buffer is useful only for very short-term congestion 
and will cause undesirable long delays. Suppose the total input rate of a switch is 
1Mbps and the capacity of the output link is 0.5Mbps, the buffer will overflow 
after 16 second with 1Mbyte memory and will also overflow after 1 hour with 
225Mbyte memory if the situation persists. Thus larger buffer size can only 
postpone the discarding of cells but cannot prevent it. The long queue and long 
delay introduced by large memory is undesirable for some applications.  
 
Congestion is caused by slow links. The problem will be solved when high-speed 
links become available. It is not always the case; sometimes increases in link 
bandwidth can aggravate the congestion problem because higher speed links 
may make the network more unbalanced.  
 
Congestion is caused by slow processors. The problem will be solved when 
processor speed is improved. This statement can be explained to be wrong 
similarly to the second one. Faster processors will transmit more data in unit 



time. If several nodes begin to transmit to one destination simultaneously at their 
peak rate, the target will be overwhelmed soon.  
 
 
2.3  What Is Congestion Control? 
 

It is the control on the congestion by providing a smoothly running traffic 
on an effective bandwidth to improve the performance. 
 
 

2.4  What is expected from Congestion Control? 
 

Objectives  
 

The objectives of traffic control and congestion control for ATM are: 

Support a set of QoS parameters and classes for all ATM services and minimize 

network and end-system complexity while maximizing network utilization.  

 

Selection Criteria  
 

To design a congestion control scheme is appropriate for ATM network and 

non-ATM networks as well, the following guidance is of general interest.  
 

Scalability  
 

The scheme should not be limited to a particular range of speed, distance, 

number of switches, or number of VCs. The scheme should be applicable for 

both local area networks (LAN) and wide area networks (WAN).  

 

Fairness  

 

In a shared environment, the throughput for a source depends upon the 

demands by other sources. There are several proposed criterion for what is 

the correct share of bandwidth for a source in a network environment. And 



there are ways to evaluate a bandwidth allocation scheme by comparing its 

results with an optimal result.  

 

Fairness Criteria 
 

1. Max-Min  

The available bandwidth is equally shared among connections. 

 

1. MCR plus equal share  

The bandwidth allocation for a connection is its MCR plus equal share 

of the available bandwidth with used MCR removed.  

 

2. Maximum of MCR or Max-Min share  

The bandwidth allocation for a connection is its MCR or Max-Min 

share, which ever is larger.  

3. Allocation proportional to MCR  

The bandwidth allocation for a connection is weighted proportional to 

its MCR. 

4. Weighted allocation  

The bandwidth allocation for a connection is proportional to its pre-

determined weight. 

 

Fairness Index  
 

The share of bandwidth for each source should be equal to or 

converge to the optimal value according to some optimality criterion. We 

can estimate the fairness of a certain scheme numerically as follows. 

Suppose a scheme allocates x1, x2, ..., xn, while the optimal allocation is 

y1, y2, ..., yn. The normalized allocation is zi = xi / yi for each source and 

the fairness index is defined as following:  

 

Fairness = sum(zi) * sum(zi) / sum(zi * zi)  



 

• Robustness 

The scheme should be insensitive to minor deviations such as slight 

mistuning of parameters or loss of control messages. It should also isolate 

misbehaving users and protect other users from them. 

 

• Implement ability  

The scheme should not dictate particular switch architecture. It also should 

not be too complex both in term of time or space it uses. 

 
 
2.5 Classification of Congestion Control 
 

Based on the place where congestion is controlled, Congestion Control is 
classified into two broad classes 

 
• Source End Control 
• Network Control (Switches and Routers) 
 

Based on the procedure by which the congestion is controlled we can 
classify Congestion Control algorithms as 

 
• Open loop control algorithms 
• Closed loop control algorithms 

 
2.5.1 Open Loop Control 

 
Open-loop algorithms prevent congestion from occurring by making sure 

that the traffic flow generated by the source will not degrade the performance of 
the network below the specified QoS. If the QoS cannot be guaranteed, the 
network has to reject the traffic flow. The function that makes the decision to 
accept or reject the traffic flow is usually called an admission control. Thus open-
loop algorithms involve some type of resource reservation. 

Open loop congestion control does not rely on feedback information to 
regulate the traffic flow. Thus this technique assumes that once a source is 
accepted, its traffic flow will not overload the network. 

Open loop congestion control does not rely on feedback information to 
regulate the traffic flow. Thus this technique assumes that once a source is 
accepted, its traffic flow will not overload the network. 

 



 
 

  Fig 9. Demonstration of open loop 
 

 
 
 

For delay-sensitive, multi-media traffic in high-speed networks (e.g. 
ATM), for which feedback control of congestion not feasible. 
May be used in the Internet architecture (traditionally �best-effort�) to provide high 
quality service (�quality of service� or QoS guarantee). 

  
 

 
2.5.1.1 Admission control 

 
Admission control is an open loop preventive congestion control scheme.  

Admission control typically works at the connection level but can also work at the 
burst level. The analogy of a connection in datagram networks is a flow. At 



connection level the function is called a connection admission control (CAC). At 
the burst level, it is called a burst admission control. The main idea of CAC is 
very simple. When a source requests a connection setup, CAC has to decide 
whether to accept or reject the connection. If the QOS of all the sources  
(including the new one) that share the same path is satisfied, the connection is 
accepted otherwise it is rejected. The QoS can be expressed in terms of 
maximum delay, loss probability, delay variance etc.,  
 

For determining QOS requirements CAC has to know the traffic flow of 
each source. Thus each source specifies a set of parameters called traffic 
parameters called the traffic descriptors. A traffic descriptor may contain peak 
rate, average rate, maximum burst size, and so on and is supposed to 
summarize the traffic flow compactly and accurately. 
Based on the characteristics of the traffic flow, CAC has to decide how much 
bandwidth it has to reserve for source. The amount of bandwidth typically lies 
between peak rate and average rate and is called effective bandwidth of the 
source.      

 
2.5.1.2 Policing 

 
The process of monitoring and enforcing the traffic flow is called traffic 

policing. When the traffic violets the agreed-upon the contracts, the network may 
choose to discard or tag the nonconforming traffic. The tagged traffic will be 
carried by the network but will be given lower priority. If there is any traffic 
downstream, the tagged traffic is the first one to be lost. 

  
The process of monitoring and enforcing the traffic flow is called traffic 

policing. When the traffic violets the agreed-upon the contracts, the network may 
choose to discard or tag the nonconforming traffic. The tagged traffic will be 
carried by the network but will be given lower priority. If there is any traffic 
downstream, the tagged traffic is the first one to be lost. 



Check if a packet stream obeys its descriptor, and if it violates its descriptor, give 
penalty! 
� Drop packets that violate the descriptor 
� Give low priority to them 
 
� Leaky and token buckets are widely used policing techniques 
� They can monitor average (and sustainable) rate, peak rate and burst size. 
 
 
 
Flow control 
 
 � Sliding Window Flow Control 
 
Let X, t0 and W be the single packet transmission time, the time required for a 
packet to be acknowledged and the window size (maximum number of 
outstanding packets) respectively 
The throughput is given by �=min (1/X, W/t0) packets/unit time, assuming that 
the packet loss probability is negligible. 
Transmission speed can be indirectly controlled by changing the window size  W. 
                                                                          

 
 

                                                            
 
 
 
 
    
 
 
 
 
 
 
 

Fig 12.  Flow control 
 
Flow control with explicit feedback 

 
� A packet may collect the state information along the path it is traveling, and the 
information can be feed backed to the transmitter. 
� ABR congestion control for ATM 
 
� Special cells (packets) called Resource Management (RM) cells collect the 
network state information, and are sent back to the transmitter 



 

 
 

  Fig 13. Flow control 
 
 
2.5.2   Closed Loop Controls 
 

Closed loop algorithms, on the other hand, react to congestion when it is 
already happening or is about to happen, typically by regulating the traffic flow 
according to the state of the network. These algorithms are called closed loop 
because the state of the network has to be fed back to the point that regulates 
the traffic, which is usually the source. Closed loop algorithms typically do not 
use any reservation. 

The Active Congestion Control project is applying Active Networking 
techniques to feedback congestion control. Feedback congestion control is a 
very effective system for sharing network bandwidth when the bandwidth delay 
product of the network is low, but loses its effectiveness in high bandwidth-delay 
networks. Using Active Networking techniques ACC seeks to increase the range 
over which feedback is effective. ACC allows internal network nodes to take 
action immediately in times of congestion, as opposed to endpoint congestion 
control systems that require all action to be taken at endpoints. It takes time for 
an endpoint to deduce that there is a problem and to take corrective action. By 
taking action at the congested node, ACC avoids that delay.  

 



 
 
 Fig 14. Closed Loop 
 
Intelligent Load Shedding 
 
Discarding packets does not need to be done randomly 
  
Router should take other information into account 
 
Possibilities: 
 
Total packet dropping 
 
Priority discarding 
 
Age biased discarding 
 
Total Packet Dropping 
 

When the buffer fills and a packet segment is dropped, drop all the rest of 
the segments from that packet, since they will be useless anyway Only works 
with routers that segment and reassemble packets 
 
Priority Discarding 
 

Sources specify the priority of their packets. When a packet is discarded, 
the router chooses a low priority packet Requires hosts to participate by labeling 
their packets with priority levels 
 
Age Biased Discarding 



 
When the router has to discard a packet, it chooses the oldest one in its 

buffer. This works well for multimedia traffic, which requires short delays. This 
may not work so well for data traffic, since more packets will need to be 
etransmitted 
 
Random Early Detection 
 
TCP detects packet loss and slows the sending rate accordingly. When the 
router queues start to fill, randomly drop some packets  
 
Choke Packets 
 

Each router monitors the utilization of each of its output lines. Associated 
with each line is a variable u, which reflects the utilization of that line. Whenever 
u moves above a given threshold value, the output line enters a �warning state�  
Each newly arriving packet checks if its output line is in the warning state. If so, 
the router sends a choke packet back to the source .The data packet is tagged 
(by setting a bit in its header) so that it will not generate any more choke packets 
at downstream routers. When the source host receives the choke packet, it is 
required to reduce its traffic generation rate to the specified destination by X% 
Since other packets aimed at the same destination are probably already on their 
way to the congested location, the source host should ignore choke packets for 
that destination for a fixed time interval. After that, it resumes its response to 
choke packets. 
 
Choke Packets: Example 

 
 Fig 15. Choke Packets 



 
 
• Open-loop versus Closed-loop 

� Open-loop: no feedback from the network or destination 
� Closed-loop: explicit or implicit feedback from the network or destination 

 
• Rate versus Window 

� Rate control: directly controls the transmission rate at 
the source 
� Window size control: indirect controls the transmission rate by changing the 
window size (outstanding number of packets or bytes) 

 
 
2.6  Why Do We Need Congestion Control? 
 

The assumption that statistical multiplexing can be used to improve the 
link utilization is that the users do not take their peak rate values simultaneously. 
But since the traffic demands are stochastic and cannot be predicted, congestion 
is unavoidable. Whenever the total input rate is greater than the output link 
capacity, congestion happens. Under a congestion situation, the queue length 
may become very large in a short time, resulting in buffer overflow and cell loss. 
So congestion control is necessary to ensure that users get the negotiated QoS.  
The final objectives of any sort of traffic control and congestion control are: to 
support a set of QoS parameters and classes for all network services offered and 
minimize network and end-system complexity while maximizing network 
utilization.  
   
2.7  Quality of Service (QoS) 
 

A set of parameters is negotiated when a connection is set up on any 
networks. These parameters are used to measure the Quality of Service (QoS) of 
a connection and quantify end-to-end network performance at data link layer. 
The network should guarantee the QoS by meeting certain values of these 
parameters. These parameters may include mean delay, mean delay variance, 
jitter delay (in case of video), throughput etc. 
 The above discussion leads to an important conclusion: Different kinds of 
network traffic require different service characteristics from the network. These 
service characteristics52 may be summarized in three critical parameters of 
which two are illustrated in Figure 87. 
 



 
 

Fig 16. Latency and Jitter 
 
 
 
Latency is the delay in time between when the stream is transmitted and when it 
is presented to the end user. This is more than propagation delay because of 
staging delay within transit nodes, the need for buffering, etc. at the end-user 
device. 
 
Jitter is variation in latency over time. This causes erratic presentation of 
information to the end user. When you introduce buffering in the receiver 
to smooth out the presentation, then the presence of the buffers increases 
the network latency. 
 
Skew is the difference in time of presentation to the end user of related things 
(such as a video of someone speaking and the related sound). This is the critical 
problem for m Overrun and Underrun are perhaps not predominantly network 
issues. This is where the video or voice signal is generated at a different rate 
from the rate at which it is played out. In the case of overrun, information is 
generated faster than it can be displayed and, at some point, information must be 
discarded. Underrun is where the playout rate is greater than the rate of signal 
generation and therefore �glitches� will occur when data must be presented but 
none is there. 
 
In order to avoid these effects you need to provide end-to-end network 
synchronization. This involves propagating a network clock throughout the 
ATM network. The importance of each of these factors varies with the 
application, but skew is both the most important for the multimedia application 
and the greatest challenge for the network (and incidentally for the workstation 
itself). 
 



 
Interactive Applications 
 

Applications such as videoconferencing (personal or group) have the 
same requirements as regular voice. That is, a maximum latency of about 150 
ms is tolerable. Jitter must be contained to within limits that the system can 
remove without the user knowing (perhaps 20 ms is tolerable). Skew (between 
audio and video) should be such that the audio is between 20 ms ahead and 120 
ms behind the video. 
 
One-Way Video Distribution 
 

In this application a delay of several seconds between sender and 
receiver is quite acceptable in many situations. This largely depends on whether 
the user expects to watch a two-hour movie or a 20-second animated segment in 
a training application. The delay really only matters because it is the time 
between the user requesting the information and when it starts being presented. 
For a movie, perhaps 30 seconds would be tolerable,  but for a short segment, 
one second is perhaps the limit. Jitter and skew, however, have the same limits 
as the interactive applications above. 
 
Audio with Image Applications 
 

These are applications such as illustrated lectures and voice-annotated 
text where still images are annotated by voice commentary. Depending on the 
application, latency may need to be less than 500 ms (between the request for 
the next image and its presentation), but the skew (audio behind the image) 
could be perhaps as long as a second or so. 

 
 



 
 
Fig  17.  Jitter and Cell-Loss Tolerance of Some Application  Types 

 
 
You need: 
 
1. Adequate (high) data rates (to keep latency low and to allow sufficient 
capacity to service the application) 
 
2. Low latency 
 
3. Very low jitter 
 
4. Very low skew 
 
5. End-to-end control through propagation of a stable clock 
 
Quality-of-Service Classes 
 

Quality of service in an ATM network is a concept that attempts to 
describe the important parameters of the network service provided to a given end 
user. These parameters include: 
 
• End-to-end delay 
 
• Delay variation (delay jitter) 
 
• Cell loss ratio 



 
This is a very difficult thing to guarantee in a network that handles any kind of 
bursty traffic. These characteristics vary quite widely with the load on the 
network. In some situations, tight control of these parameters is a major issue. 
Voice, video, and CBR traffic need to know these parameters so as to decide on 
the size of playout buffer queues, etc. 
 
The following QoS classes have been defined in the standards: 
 
QoS Class 1 (Service Class A Performance Requirements) 
 
This QoS class applies to circuit emulation and constant bit rate traffic 
(CBR video and voice for example).53 These are to be set such that the 
result should provide performance comparable to current digital private 
lines. 
 
QoS Class 2 (Service Class B Performance Requirements) 
 
This is not yet fully defined but should provide suitable conditions for 
packetized video and audio in teleconferencing and multimedia 
applications. 
 
QoS Class 3 (Service Class C Performance Requirements) 
 
This is intended for interoperation of connection-oriented data services 
such as frame relay. 
 
QoS Class 4 (Service Class D Performance Requirements) 
 
This is intended for connectionless services such as LAN emulation, IP, 
or SMDS services. 
 
A particular QoS class has specified performance parameters attached to it, and 
it may have two different cell loss ratios. A different cell loss ratio is appropriate 
for cells with CLP=0 to that for those cells with CLP=1. There is also a QoS 
class with no specified performance parameters (unspecified QoS class). Each 
connection may have its own unique QoS class attached to it. 
 

Practical networks may support one or many specified QoS classes, as 
well as traffic with unspecified QoS. 
 
 
Traffic Management 
 
Service Categories 
 



The ATM Forum has specified five �service categories� in relation to traffic 
management in an ATM network.  
 
These categories are: 
 
Constant Bit Rate (CBR) 
 

CBR traffic includes anything where a continuous stream of bits at a 
predefined constant rate is transported through the network. This might be voice 
(compressed or not), circuit emulation (say the transport, unchanged, of a T1 or 
E1 circuit), or some kind of video. Typically you need both short transit delay and 
very low jitter in this service class. 
  
Real-Time Variable Bit Rate (rt-VBR) 
 

This is like CBR in the sense that we still want low transit delay but the 
traffic will vary in its data rate. We still require a guaranteed delivery service. The 
data here might be compressed video, compressed voice with silence 
suppression, or HDLC link emulation with idle removal.  
 
Non-Real-Time Variable Bit Rate (nrt-VBR) 
 

This is again a guaranteed delivery service where transit delay and jitter 
are perhaps less important than in the rt-VBR case. An example here might be 
MPEG-2 encoded video distribution. In this case, the information may be being 
retrieved from a disk and be one-way TV distribution. A network transit delay of 
even a few seconds is not a problem here. But we do want guaranteed service 
because the loss of a cell in compressed video has quite a severe effect on the 
quality of the connection. 
 
Unspecified Bit Rate 
 

The UBR service is for �best effort� delivery of data. It is also a way of 
allowing for proprietary internal network controls. A switch using its own (non-
standard) internal flow controls should offer the service as UBR class. You send 
data on a UBR connection into the network and if there is any congestion in any 
resource, then the network will throw your data away. In many cases, with 
appropriate end-to-end error recovery protocols this may be quite acceptable. 
This should be workable for many if not most traditional data applications such as 
LAN emulation and IP transport.  
 
Available Bit Rate (ABR) 
 

The concept of ABR is to offer a guaranteed delivery service (with minimal 
cell loss) to users who can tolerate a widely varying throughput rate. The idea is 
to use whatever bandwidth is available in the running network after other traffic 



utilizing guaranteed bandwidth services has been serviced. One statement [2] of 
the primary goal of the ABR service is for �the economical support of applications 
with vague requirements for throughputs and delays�. 
In an operational network, there may be bandwidth �allocated� to a particular user 
but in fact going unused at this particular instant in time. Either by providing 
feedback from the network to the sender or by monitoring the network′s behavior, 
the ABR service can change the bit rate of the connection dynamically as 
network conditions change. The end-user system must be able to obey the ABR 
protocol and to modify its sending rate accordingly. Many people believe that 
ABR service requires the use of complex flow and congestion controls within the 
network. Others disagree very strongly. 

 
 
2.8 Smoothness of a General Stream 
 
 A generalized stream of is defined to be (n1,T1:n2,T2;�.nk,Tk) smooth if, 
over any time period of duration T1, number of packets <= n1, over any time 
period of duration T2number of packets <= n2, over any time period of duration 
Tk, number of packets <= nk, where k is denoting the no. of windows for 
characterizing the smoothness of the stream. 
  
 

2.9  What is traffic shaping? 
 

Traffic Characteristics 
 

In ATM we wish to integrate many kinds of network traffic onto the same 
network and share the network′s facilities between them. Each type of network 
traffic has its own peculiar characteristics and, therefore, needs to be treated 
differently from the others. 
 
 The traffic types may be summarized as follows: 
 
• Traditional data traffic 
 
• Voice and high-quality sound 
 
• Full-motion video and interactive multimedia 
 
Traditional data networks were built to handle both interactive and batch data 
but were not built to handle image, voice, or video traffic. The new types of 
traffic put a completely new set of requirements onto the network. 
 
Throughput Demand 



 

 
 
Fig 18.  Application Throughput Requirements 

 
One of the most important factors in considering traffic is the amount of 
throughput required. Some of the computer applications for high-speed 
communications can be seen easily from Figure 82. (Note that here the x-axis is 
using a logarithmic scale.) 
 

 
Traffic shaping is a mechanism that forces the traffic to conform to a 

certain specified behavior. Usually, the specified behavior is a worst case or a 
worst case plus average case (i.e. at worst, this application will generate 100 
Mbits/s of data for a maximum burst of 2 seconds and its average over any 10 
second interval will be no more than 50 Mbits/s). It is about regulating the 
average rate (and burstiness) of data transmission. Traffic shaping reduces 
congestion and thus helps the carrier live up to its promise. Such agreements are 
not so important for file transfers but are of great importance for real-time data, 
such as audio and video connection, which do not tolerate congestion well. 

By traffic shaping, we could achieve better network efficiency while 
meeting the QoS objectives (such as the smallest cell-loss, etc.). Meanwhile, 
traffic shaping ensures conformance at a subsequent interface. So it could 
reduce congestion by forcing the packets to be transmitted at a more predictable 
rate. 



Desirable Properties of a Traffic Shaper 
The traffic envelope it enforces on the following property 

• It should be simple to implement and easy to police 
• It should be able to capture a wide range of traffic characteristics: difficult 
• Example 
• Traffic envelope captures the characteristics of the original source as 

close as possible 
� Peak rate approximation of the source: no delay in the shaper but network 
underutilization 
� Average rate approximation of the source: high network utilization but higher 
shaper delay 
u Traffic envelopes enforced by a single LB, MW, JW are too simple for an 
accurate characterization of bursty sources. -> can do better multiple shapers to 
shape a traffic source 

 
 
Composite Shapers 

• Shapers: enforce a specific rate constraint on a source; a declared peak 
or average rate 

 
• Most applications: generate bursty traffic 

� Enforcing average rate -> higher delay in shaper buffer 
� peak rate enforcement -> over allocation of system resource 
 

• To solve the problem: multiple shapers to enforce multiple rate 
constraints 

� enforce a traffic envelope that is close to the original shape of the traffic 
� simple to specify and monitor 

 
• Example: 

� dual moving window: w1 = 4ττττ, m1=|I| + |P| +2|B|, w2 = ττττ, m2=|I| 
» first shaper: enforces the longer term average 
» second shaper: controls the short term peak rate 

� dual moving window: w1 = 4ττττ, m1=|I| + |P| +2|B|, w2 = 2ττττ, m2=|I| + |B|, w3 
= ττττ, m3=|I| 

 
Composite Leaky Bucket 
� Worst case behavior of a Leaky Bucket: traffic envelope that starts with a burst 
that is 
equal to the bucket size, followed by a straight line of slope equal to the rate of 
token 
generation. 
 
 Example:  
» LB4: redundant component 
» essential set: (b1, t1), (b2, t2), � .(bn, tn), bi>bj, ti>tj, for I>j 



� n component composite LB 
» Bk = ∞ ∞ ∞ ∞ k=0 
» Bk =     (bktk - bk+1*tk+1) / (tk - tk+1)     k = 1, 2, � .. n 
» Bk = 0 k = n+1 
» a(I) = ∑∑∑∑(I-bk+1)tk[U(I-Bk) - U(I-Bk-1)], I=1, 1, � . ∞∞∞∞    

» CI = (1/tk) * tk + bk 
 

 
 

Composite Moving window 
 
 Example:  
» MW1 = (w1, m1), MW2 = (w2, m2), MW3=(w3,m3) where w1 = 3 x w2, w2 = 4 
x w3, 
m1 = 2x m2, m2 = 2 x m3 
» Moving window MW2 determines the burst size distribution within w1 
� n component composite MW 
» (wk, mk), k=1,� n where wi > wj, mi > mj and mi/wi < mj/wj, for 1 < I < j < n 

» a(I) = ∑∑∑∑(     i / mk     -     i / mk-1     * (mk-1 / mk))wk, I=1, 1, � . ∞∞∞∞    
    

Composite Jumping window 
 
� Example:  
» JW1 = (w1, m1), JW2 = (w2, m2), JW3=(w3,m3) where w1 = 3 x w2, w2 = 4 x 
w3, 
m1 = 2x m2, m2 = 2 x m3 
» In a single moving window shaper, two full-size bursts are always separated by 
at least one window length. In a jumping window shaper, two bursts can appear 
next to each other. 

• component composite MW 
» (wk, mk), k=1,� n where wi > wj, mi > mj and mi/wi < mj/wj, for 1 < I < j < n 
» a(I) = ∑∑∑∑(     (i / mk)+1     -  ( i / mk-1)+1     * (mk-1 / mk))wk, 0 < I < m1 

» a(I) = ∑∑∑∑(     i / mk    -     i / mk-1     * (mk-1 / mk))wk, m1 < I < ∞∞∞∞    
    

Shaping and BW Allocation 
 

• Larger token arrival rate reduces the access delay at the policer: 
� but needs a larger bandwidth allocation 
� (λλλλp / r) < λλλλt < λλλλbw < λλλλp 

• λλλλo = ∑λ∑λ∑λ∑λbw(I) for m streams multiplexed to the same output; 
� large statistical multiplexing gain is possible only if λλλλt is near the average arrival 
rate λλλλa = (λλλλp / r) 

• Small λλλλt means larger access delay and/or violation probability incurred by 
the source 



• Trade-off between the access delay introduced by the policer and the 
network delay; (lenient enforcement policy increase the delay at the 
switching node) 

• Effect of input rate control 
� Total delay = access delay + network delay. The policer transfers the network 
delay on to the input side, thereby avoiding overflow losses/delays within the 
network. Unless the source has a large buffer and can tolerate excess delay 
(many RT application not), the 
input rate control as performed by the LB can hardly improve the network 
performance  
� Stringent input rate control may increase the user end to end delay 
� The minimum total average delay is achieved when no traffic enforcement is 
invoked. 
Network bandwidth is greater than the source rate: smoothed by statistical 
mixing. 

Nevertheless, input policer is needed to check excessive burstiness & rate 
violation 
• Reducing the access delay; more short term burstiness subject to 

– Max. burst size should be bounded and burst arrival must be peak rate 
enforced 
� Number of arrivals over a larger time duration to be bounded at the average 
policing rate 

• LB: token buffer b . OA: average policing rate 
• EWMA: dynamic response, implementation complexity 

 
 
 

� Similar to policing, but done at user�s side 
 
� Not to violate the traffic descriptor agreed upon 
� Pass the packet stream through a traffic shaper before they are 
actually transmitted to the network (or the policing unit) 
 
� Implementations of traffic shaping 
� Leaky Bucket Traffic Shaper 
 



 
Fig 19.   Congestion diagram for slots 

 
 

Then, what is traffic shaping? Traffic shaping is a mechanism that forces 
the traffic to conform to a certain specified behavior. Usually, the specified 
behavior is a worst case or a worst case plus average case (i.e. at worst, this 
application will generate 100 Mbits/s of data for a maximum burst of 2 seconds 
and its average over any 10 second interval will be no more than 50 Mbits/s). It is 
about regulating the average rate (and burstiness) of data transmission. Traffic 
shaping reduces congestion and thus helps the carrier live up to its promise. 
Such agreements are not so important for file transfers but are of great 
importance for real-time data, such as audio and video connection, which do not 
tolerate congestion well. 
 
 
2.10  Leaky Bucket Algorithm 
 

Most implementations of traffic policing use the leaky bucket algorithm. To 
understand how a leaky bucket can be used as a policing device, imagine the 
traffic flows to a policing device as water being poured into a bucket that has a 
hole at the bottom. The bucket has a certain depth and leaks at the constant rate 
when it is not empty. A new container (that is, packet) of water is said to be 
conforming if the bucket does not overflow when the water is poured in the 
bucket the bucket will spill over if the amount of water in the container is too large 
or if the bucket is nearly full from prior containers. The bucket depth is used to 
absorb the irregularities in the water flow. If we expect the flow to be very 
smooth, then the bucket can be made very shallow. If the flow is bursty, the 
bucket should be deeper. The drain rate corresponds to the traffic rate that we 
want to police. 
 
 
 



 
   
  Fig 20. Leaky Bucket 
 
 
Basically leaky bucket can be divided in two parts: - 

• First is the host is allowed to put one packet per clock tick onto the 
network. 

• The second is the leaky bucket holds tokens generated by a clock at the 
rate of one token every delta t seconds. For a 
Packet to be transmitted, it must capture and destroy one token. This is 
mostly used to allow saving upto maximum size of bucket, n. This means 
that burst of upto n packets can be sent at once, allowing some burstiness 
in the output stream and giving fast response to sudden burst of data. 
 

  



 

 
 
  Fig21.  Demonstrations of flow in LB 
 
� If packets arrive faster than the rate �for a long period, the buffer will 
overflow and packets causing the overflow will be penalized 
 
� A traffic source can transmit packets at an average rate not larger than 
�and burst transmission of packets is allowed only temporarily 
� �enforces the long-term transmission rate 
� L determines the maximum size of the burst packet arrivals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 

 
 
 
 Fig 22. (Leaky) Token Bucket Traffic Shaper 
 

 
Let b = token bucket size in bytes, r = token rate in bytes/s 

Then in any time interval of length T, the maximum number of bytes out of the 
token bucket shaper is (b + Tr) bytes. Token-bucket shaped traffic will undergo 
no drops and a maximum delay of no more than b/R (end-to-end) if network 
nodes transmit at a rate of R>r bytes/s and have at least b bytes of buffer. 
�If network nodes use weighted fair queuing then R is the guaranteed 
rate that the flow gets at a node. In practice, if the WFQ is implemented 
on max. size packets of size M bytes, additional max. delays of M/R may 
occur at each node. Trans. delays will also accumulate over a multi-hop 
network. 
A node can check if traffic conforms to a leaky token bucket flow by 



passing it through a leaky token bucket with the same parameters for its 
token bucket operation (r and b). If the flow is conforming, it undergoes 
0 delay. 
 

The following algorithm will summarize the LB. At the arrival of the first 
packet, the content of the bucket X is set to 0 and the last conforming time (LCT) 
is set to the arrival time of the 1st packet. The depth of the bucket is L+I, where L 
depends on the maximum burst size.  At the arrival of kth packet, the auxiliary 
variable X` records the difference between bucket counter at arrival of LCT and 
the inter arrival time between LCT and the  kth packet. If auxiliary variable is 
greater than L, the packet is non conforming else packet is confirming. The 
bucket content and arrival time of the packet are then updated. 
 
 
 

 
 
 
 
  Fig23.  General Algorithm of Leaky Bucket 
 
 
 



 
As an example of a leaky bucket, imagine that a computer can produce 

data at 25 MB/sec (200 Mbps) and that the network also runs at this speed. 
However, the router can handle this data rate only for short intervals. For long 
intervals, they work best at rates not exceeding 2 MB/sec. Now suppose data 
comes in 1-million-byte bursts, one 40-msec burst every second. To reduce the 
average rate to 2 MB/sec, we could use a leaky bucket with ρ = 2 MB/sec and a 
capacity, C, of 1 MB. This means that bursts of up to 1 MB can be handled 
without data loss, and that such bursts are spread out over 500 msec, no matter 
how fast they come in. 
 
 

 
 

Fig 24. Behavior of leaky bucket 
 
 
 
2.11  Exponentially Weighted Moving Average Scheme 
 
 EWMA is windows based scheme where the maximum number of cells 
permitted within a fixed time window is limited. If we consider connection time to 
consist of consequent windows of same size, the maximum number of cells 
accepted in the ith window Ni is a function of the mean number of the cells per 
window N and an exponentially weighted sum of the cells accepted in the 
preceding windows is 
   
  Ni = ((N - (1-λ) (λNi-1 + �� + λ i-1Ni))- λSo) / (1-λ) 
Where So is the initial value for EWMA. 



 
  A no zero value of λ permits more burstiness. Thus larger value of 
λ increases reaction time and thus the dynamic behavior of EWMA is the worst. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3.  Window Based Traffic Shaper 
(Functional description) 

 
 
3.1 Leaky Bucket Scheme 
   

In the generalized scheme as shown n figure, tokens are generated at a 
fixed rate as long as the token buffer of size b is not full. When a packet size 
arrives from the source, it is released into the network if and only there is at least 
1 token in the token buffer. This scheme enforces token arrival rate λ l..  

 

 
  Fig 25. Functional view of Leaky Bucket 

 
 

Clearly token generation rate should lie between avg. arrival rate and peak 
rate. An arriving packet finding the input buffer full is said to be violating packet 
and can be dropped. A space limiter is embedded into LB. When a burst of 
packets arrive at the source even if the token buffer is not empty, these packets 
are not transmitted immediately but are delayed by InterCellTime τ ( τ= 1/λp).  
For the LB defined here, maximum burst size at output is b`=b/(1- λl /λp). 
 
 
 
 
 



3.2 Shift Register Traffic Shaper (SRTS) 
  

One serious drawback in the leaky bucket algorithm is that number of 
packets in it over any time duration T starting from 0 is bounded by λ t token 
generation rate. So for both long burstiness as well as short burstiness it delays 
the traffic to its token generation rate and thus introduceses an appreciable 
amount of access delay at the node. This large amount of access delay is 
unacceptable for Real time traffic as well as Multimedia traffic. So we try to 
design a traffic shaper, which will have following features: 

 
• It should permit short-term burstiness but bounds the long term 

burstiness. 
• It should be able to incorporate variable burstiness up to a certain 

level. 
• It is peak rate enforced 
• It is a window-based shaper with two (initially) windows. More the 

no. of windows more will be flexibility. 
• It is designed using a Shift register and two counters and hence 

can easily be implemented in hardware. 
 
3.3 Description of new scheme (SRTS) 
  
 SRTS make use of the temporal profile (history) of packet stream admitted 
by the shaper over past N time slots (each slot  = τ=1/λp ). This history is 
maintained by a Shift Register with 1 bit corresponding to every packet. The shift 
register is shifted to 1 bit every time slot τ. The entry into the register is made as 
per following:  

 
o A 1 is shifted when fd = 1 and fa =1 . 
o A 0 is shifted otherwise 

 
Where, 
 
 fd = 1 if Data buffer is not empty and 0 otherwise and 
 
 fa denote the admit function defined as fa = (n(T1)<n1) & (n(T2)<n2) .. depending 
on no. of windows 
 
 Thus the bit contents of the shift register at any instant give a snapshot of 
the packets send. To determine the no. of packets send in any time duration, a 
counter is used. It is incremented when a �1� is enters the shift register and 
decrements when a �1� is leaves the right edge of shift register. 
 
 Figure drawn below describes an enforcement scheme using two 
windows. This scheme generates an (n1,T1;n2,T2) smooth traffic, which means 



that over any period of time duration T1, the number of packets n(T1) <= T1 , and 
over any period of time duration T2, the number of packets n(T2) <= T2. Further 
flexibility is possible in moulding the burstiness using appropriate number of 
windows. 

 
 
 
 
 
 

   
 Fig 26.  SRTS with 2 windows 
 

 One limitation that arises in the above arrangement is due to discretization 
of the time slots of τ. A slot is termed active if a cell is transmitted into that slot 
and idle, otherwise. Since packet arrival need not synchronize with the packet 
transmission, the cell arriving in between the slot will have to wait till its end. 
 This limitation is removed by using soft discretization. If a slot arrives in an 
ideal slot , say after τ` elapses out of τ., idle slot is frozen and an active slot is 



generated immediately. At the termination of this active slot if either the data is 
absent or the admit function is false, the residual slot of τ-τ` is completed. 
 

This is illustrated as a Finite State Machine with two states Idle and Active 
in the following diagram.  

 
The 3 window models also shown in the next figure. 

  
 

 
 
Fig 27. FSM for discretization of slots 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 Fig 28. Three window SRTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 4 Functional Details and Source Code 
 
 
Source model used for traffic Shaping 

  
 The source model used for measuring performance is the ON-OFF bursty 
model. The ON-OFF model is characterized by interspersed ON and OFF 
periods each exponentially distributed with mean TON and TOFF respectively. 
During an On period, the packets are periodically transmitted with mean TON at 
the rate of λp. The average rate λa is 

λa = λp. TON /( TON + TOFF) 
And the burstiness is R= ( TON + TOFF) /TON. The effective bandwidth requirement 
for this source λeff  is such that λa<=λeff<=λp. 

 

Process Model used 
 
Source is characterized by a peak rate λp average rate λa rate and mean 

ON duration TON. Packets are modeled on  Poison distribution with controlling 
parameter as λp for incoming traffic and λs for outgoing traffic. 

 
 
 

4.1 Source Code of module 1 
 
 

////////////////////////////////////////////////// MODULE 1 /////////////////////////////////////////////////////////// 
 
/*******************************************************************************************/ 
/***********************************    Date : 12-4-2002 *********************************/  
/***********************     Author�s name: Nikhil Bhargava ***************************/   
/******************************************************************************************/ 
 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* 
   Simulation of simple network data layer showing   

congestion. We assume ideal channel with no loss during 
transmission. Probability of loss is 0.0. No Congestion 
control what so ever is applied. The sole aim of this 
program is to show the behaviour of packets lost under no 
congestion control scheme at the data link layer. 

*/ 
 
 



// Header files included  
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <time.h> 
#include <dos.h> 
 
#define TRUE 1 
#define FALSE 0 
 
#define BLACK -100.00 
#define PAC_MAX 100   // Max number of packets  
#define INPUT_QUEUE_SIZE 30  // Max data buffer size 
#define LAMBDA_P 100   // Peak rate of traffic 
#define LAMBDA_S 40   // Service rate of traffic 
#define RANDOM_MAX 100 
 
/* 
  QOS chosen here to be ratio of packets rejected to 

packets produced. Weight of 2 out of     10 means 20 % 
*/          
 
#define QOS 0.2     
#define PROCESS_DELAY 40 // 20 millisecond delay for            

rejected packets 
 
struct packet 
{ 
 int packet_no; 
 float time_reject; 
 int reject_flag; 
 int delay_flag; 
 struct time time_stamp; 
 struct packet *next; 
}; 
struct packet *root,*rej; 
struct packet *del; 
 
int source_queue=0; 
 
int packet_produced=0; 
int packet_rejected=0; 
int packet_send=0; 
 
struct bt 



{ 
 float birthtime; 
 int head_no; 
}birth[PAC_MAX]; 
 
struct dt 
{ 
 float deathtime; 
 int head_no; 
}death[PAC_MAX]; 
 
float clk_time_gen=0.0; 
float clk_time_send=0.0; 
 
// function for generating the packet 
 void gen_packet(void); 
 
// function for transmitting the packet at destination end 
 void send_packet(void); 
 
// This function checks the performance of the system in 
terms of congestion 
 int performance_check(void); 
 
void free_list(); 
 
float myrand(); 
 
void record_result(void); 
 
int packets_match(int i,int o); 
 
void main() 
{ 
 struct packet *p=NULL; 
 struct packet *r=NULL; 
 
 int i=0; 
 
/* Generate the root packet for reference of generated 
packet linklist */ 
 
 p=(struct packet *)calloc(1,sizeof(struct packet)); 
 if(p==NULL) 
 { 
 printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n"); 
 getche(); 



 exit(0); 
 } 
 else 
 { 
 gettime(&(p->time_stamp)); 
 p->time_reject=BLACK; 
 p->reject_flag=FALSE; 
 p->delay_flag=FALSE; 
 p->packet_no=0; 
 p->next=NULL; 
 root=p; 
 p=p->next; 
 } 
 
/* Generate the root for rejected packet linklist */ 
 
 r=(struct packet *)calloc(1,sizeof(struct packet)); 
 if(r==NULL) 
 { 
 printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n"); 
 getche(); 
 free_list(); 
 exit(0); 
 } 
 else 
 { 
 gettime(&(r->time_stamp)); 
 r->time_reject=BLACK; 
 r->reject_flag=TRUE; 
 r->delay_flag=FALSE; 
 r->packet_no=0; 
 rej=r; 
 r->next=NULL; 
 r=r->next; 
 } 
 
 gen_packet();  // start with generation process 
 while(performance_check()==TRUE) 
 { 
 if(clk_time_gen<clk_time_send) gen_packet(); 
 else send_packet(); 
 //tck[i]=clk_time_gen<clk_time_send?clk_time_gen:clk_t
ime_send; 
 //i++; 
 if(packet_produced==PAC_MAX) break; 
 } 
 record_result(); 



 free_list(); 
} 
 
void free_list() 
{ 
 struct packet *dummy,*a; 
 
/* For the list of generated packets */ 
 
 dummy=root->next; 
 while (dummy->next!=NULL) 
 { 
 root->next=dummy->next; 
 a=dummy; 
 dummy=dummy->next; 
 free(a); 
 } 
 if(dummy->next==NULL) 
 { 
 root->next=NULL; 
 free(dummy); 
 free(root); 
 } 
 
/* For the discarded packets list */ 
 
 dummy=rej->next; 
 while (dummy->next!=NULL) 
 { 
 rej->next=dummy->next; 
 a=dummy; 
 dummy=dummy->next; 
 free(a); 
 } 
 if(dummy->next==NULL) 
 { 
 rej->next=NULL; 
 free(dummy); 
 free(rej); 
 } 
 
} 
 
void gen_packet() 
{ 
 struct packet *p,*r,*d,*t; 
 float x=0.0; 



 
 static int num=1; 
 
 p=root; 
 r=rej; 
 
 while (p->next!=NULL) p=p->next; 
 //if(p->next==NULL) p=p->next; 
 
 while (r->next!=NULL) r=r->next; 
 //if(r->next==NULL) r=r->next; 
 
/*  
   Check the data buffer first 
*/ 
  
 If(source_queue>=INPUT_QUEUE_SIZE) 
 { 
  /* The packet which is going to be produced will be 
rejected */ 
 
 t=(struct packet *)calloc(1,sizeof(struct packet)); 
 if(t==NULL) 
 { 
  printf("\n\aNOT ENOUGH MEMORY AVAILABLE!\n"); 
  getche(); 
  free_list(); 
  exit(0); 
 } 
 else 
 { 
  gettime(&(t->time_stamp)); 
  t->reject_flag=TRUE; 
  t->delay_flag=FALSE; 
  t->time_reject=clk_time_gen+PROCESS_DELAY; // x/2 
is arbit amount of time 
  t->packet_no=num; 
  num++;   // Increase the num for 
header 
 
  t->next=NULL; 
  r->next=t; 
  r=r->next; 
  r->next=NULL; 
 
  birth[packet_produced].birthtime=clk_time_gen; 
  birth[packet_produced].head_no=r->packet_no; 



 
  packet_rejected++; 
  packet_produced++; 
 
  /* 
   Calculate time for the next packet to send 
  */ 
 
  x=(float)myrand(); 
  x=1.00-x; 
  x=1000*(log(1.0/x)/LAMBDA_P); 
  clk_time_gen+=x; 
 } 
 } 
 
 else  // Queue is not full 
 { 
 
 /* Check whether any rejected packet is scheduled to 
come in the queue 
    prior to this new packet. 
 */ 
 
 /* 
    If yes than enter the First rejected process and 
continue to do this 
    till spawn time of rejected process is < clk_spawn. 
Then generate this 
    packet and put it in rejected queue. 
 */ 
 
 /* 
    Else generate a new packet and store it in ready 
queue 
 */ 
 
 if(p!=root) 
 { 
  p=root->next; 
  while(p->next!=NULL) p=p->next; 
 } 
 r=rej->next; 
 
 if ((r!=NULL) && (r->time_reject<clk_time_gen)) 
 { 
  while((r!=NULL) && (r->time_reject<clk_time_gen)) 
// scope of a min function 



  { 
   rej->next=r->next; 
   r->next=NULL; 
 
   p->next=r; 
   p=p->next; 
   p->next=NULL;  // Last node should be 
NULL 
   p->time_reject=0; 
   p->reject_flag=FALSE; 
 
   source_queue++; 
   r=rej->next; 
  } 
 
 
  /* The packet which is going to be produced will 
be rejected */ 
 
  while (r->next!=NULL) r=r->next; 
 
  t=(struct packet *)calloc(1,sizeof(struct 
packet)); 
  if(t==NULL) 
  { 
   printf("\n\aNOT ENOUGH MEMORY 
AVAILABLE!\n"); 
   getche(); 
   free_list(); 
   exit(0); 
  } 
  else 
  { 
   gettime(&(t->time_stamp)); 
   t->reject_flag=TRUE; 
   t->delay_flag=FALSE; 
   t->time_reject=clk_time_gen+PROCESS_DELAY; 
   t->packet_no=num; 
   num++;   // Increase the num for 
header 
   t->next=NULL; 
   r->next=t; 
   r=r->next; 
   r->next=NULL; 
  
 birth[packet_produced].birthtime=clk_time_gen; 
   birth[packet_produced].head_no=r->packet_no; 



 
   packet_rejected++; 
   packet_produced++; 
 
   /* 
    Calculate time for the next packet to 
send 
   */ 
 
   x=(float)myrand(); 
   x=1.00-x; 
   x=1000*(log(1.0/x)/LAMBDA_P); 
   clk_time_gen+=x; 
  } 
 } 
 else 
 { 
  /* 
     Generate new packet and store it ready queue 
  */ 
 
  t=(struct packet *)calloc(1,sizeof(struct 
packet)); 
 
  if(t==NULL) 
  { 
   printf("\n\aNOT ENOUGH MEMORY 
AVAILABLE!\n"); 
   getche(); 
   free_list(); 
   exit(0); 
  } 
  else  // t is not null 
  { 
   gettime(&(t->time_stamp)); 
   t->reject_flag=FALSE; 
   t->delay_flag=FALSE; 
   t->time_reject=BLACK; 
   t->packet_no=num; 
   num++;   // Increase the header 
number 
   p->next=t; 
   p=p->next; 
   p->next=NULL; 
  
 birth[packet_produced].birthtime=clk_time_gen; 
   birth[packet_produced].head_no=p->packet_no; 



   packet_produced++; 
   source_queue++; 
 
   /* 
      Calculate time for the next packet to 
send 
   */ 
 
   x=(float)myrand(); 
   x=1.00-x; 
   x=log(1.0/x); 
   x=(1000*x)/LAMBDA_P; 
   clk_time_gen+=x; 
  } 
 } 
 } 
} 
 
void send_packet() 
{ 
 struct packet *mov=NULL; 
 float y=0.0; 
 struct time t; 
 
 randomize(); 
 y=myrand(); 
 y=1.00-y; 
 y=1000*(log(1.0/y)/LAMBDA_S); 
 clk_time_send+=y; 
 
 //gettime(&t); 
 mov=root->next; 
 death[packet_send].deathtime=clk_time_send; 
 death[packet_send].head_no=mov->packet_no; 
 packet_send++; 
 source_queue--; 
 
 /* record the difference of time 
 packetdelay[delay_index]=(t.ti_hour-mov-
>time_stamp.ti_hour)/3600+(t.ti_min-mov-
>time_stamp.ti_min)/60+(t.ti_sec-mov-
>time_stamp.ti_sec)+(t.ti_hund-mov-
>time_stamp.ti_hund)/1000; 
 delay_index++;*/ 
 
 root->next=mov->next; 
 mov->next=NULL; 



 free(mov); 
} 
 
int performance_check() 
{ 
 float n=0.0; 
 n=(float)(packet_rejected)/packet_produced; 
 if(n>QOS) return(FALSE);   // QOS ratio of packet are 
rejected then performance is below par; 
 else return(TRUE); 
} 
 
// Now only thing to be resolved is time calculation 
 
void record_result() 
{ 
 int j=0,i=0,o=0; 
 float m=0.0; 
 
 clrscr(); 
 //getche(); 
 for ( ;j<packet_send;j++) 
 { 
 i=o; 
 while(packets_match(i,o)!=TRUE) 
 { 
  o++; 
 } 
 if(packets_match(i,o)==TRUE) 
 { 
  m+=(death[o].deathtime-birth[i].birthtime); 
  i++; 
  o++; 
 } 
 } 
 printf("\nPACKETS PRODUCED = %d",packet_produced); 
 printf("\nPACKETS SEND = %d",packet_send); 
 printf("\nPACKETS REJECTED = %d",packet_rejected); 
 printf("\nMAXIMUM CAPACITY OF DATA BUFFER = 
%d",INPUT_QUEUE_SIZE); 
 printf("\nmean delay=%f",m/packet_produced); 
 getche(); 
} 
 
int packets_match(int i,int o) 
{ 
  if (birth[i].head_no==death[o].head_no) return (TRUE); 



  else return(FALSE); 
} 
 
float myrand() 
{ 
 float a; 
 randomize(); 
 a=random(RANDOM_MAX); 
 a=a/(float)(RANDOM_MAX); 
 if(a<.3 && a>0.7) a=fabs(a-0.5); 
 return(a); 
 //return(0.5); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.2 Source Code for module 2 
 
////// definition file for module 2 /////////////////////// 
 
/* Parameters used in the Simulation of std Leaky bucket */ 
 
/* Peak rate of packet generation */ 
 #define LAMBDA_P 100 
 
/* Service rate of node */ 
 #define LAMBDA_S 40 
 
/* Token generation rate of node */ 
 #define LAMBDA_L 40 
 
/* Maximum Buffer size of the node */ 
 #define DATA_BUFFER_MAX  40 
 
/* Maximum Size of Token Buffer */ 
 #define TOKEN_BUFFER_MAX 18 
 
 
#define INTERCELL_ARRIVAL_TIME 10 // it is = 1/LAMBDA_P 
#define T_ON  100 // 20 here means 20 milliseconds 
#define T_OFF 800 
 
 /* System Parameters */ 
 
#define TRUE 1 
#define FALSE 0 
#define RANDOM_MAX 10 
#define PACKET_LIMIT 1000 
#define LIMIT 300 
 
/* 
 

long int packet_produce; // counter for the no. of 
packets produce 

  long int packet_send; // counter for the no. of 
packets send 

   int source_queue=0; 
 
*/ 
 
float clk_spawn=00.00; 
float clk_send=00.00; 
 



int token[LIMIT]; 
 
////////////////////////// MODULE2 //////////////////////// 
/*********************************************************/ 
/*********************************************************/ 
/**************** Date : 12-4-2002 ***********************/  
/**************** Author’s name: Nikhil Bhargava *********/   
/*********************************************************/ 
 
///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////// 
/*  
 Static Simulation of standard Leaky Bucket Congestion          
Control algorithm  

*/ 
///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////
////////////////////////////////////////////////////////// 
 
 
/*  

The aim of this program is Simulation of Leaky Bucket 
Algorithm (which works at Data Link Layer) which 
basically manages Flow Control (it is an open loop 
Congestion Control technique) 

*/   
 
///////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////// 
 
// Include header files 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <time.h> 
#include <dos.h> 
#include 
"C:\mydocu~1\\study_~1\\my_fin~1\\my_code\\defleak2.h" 
 
 
 
 
/*  



We assume ideal channel whose maximum capacity is equal  
to peak rate of packet generation at source end  

*/ 
 
/* 

We are using ON-OFF Bursty model with An ON period which  
is exponenetially distributed over a truly generated 
random variable with mean as Ton and during which the 
packets are produced i.e bursty as well as streamy data 

   is generated and transmitted out 
*/ 
 
/* 
   While in the OFF period,there is transmission of  
   packets. 
*/ 
 
 
 
 
/* 
   We are modelling time of generation of packets as  

poisson's distributed function on a truly generated 
random variable according to equation : 

   t=(1/Lambda)ln(1/(1-truly generated random variable by   
rand variable)) 

*/ 
 
/* 

All parameters of the standard leaky bucket have been 
defined in another file 

*/ 
 
 int source_queue=0; 
 long int packet_produce=0; // counter for the no. of 
packets produce 
 long int packet_send=0; // counter for the no. of packets 
send 
 
/* 
   Declarations of functions used in this program 
*/ 
 
float myrand(); 
void result(); 
float minimum(float a, float b); 
 



void send_packet(int i,int count); 
void produce_packet(); 
 
void main() 
{ 
 int i,j,k; 
 
 float a=0.0; 
 float t_on[LIMIT],t_off[LIMIT]; 
 
 /* 

generate array for t_on statically (this time not  
dynamically) 

 */ 
 
 clrscr(); 
 for(i=0;i<LIMIT;i++) 
 { 
 a=myrand(); 
 if(i==0)   t_on[i] = T_ON * 2.303* log10(1.0/(1.0-a)); 
 else 
 t_on[i] = (T_ON * 2.303 * log10(1.0/(1.0-a)))+t_on[i-
1]; 
 } 
 
 /* 
   generate array for t_off statically (this time not   

dynamically) 
 */ 
 
 for(i=0;i<LIMIT;i++) 
 { 
 a=myrand(); 
 if(i==0)   t_off[i] = T_OFF * 2.303 * log10(1.0/(1.0-
a)); 
 else 
 t_off[i] = (T_OFF * 2.303 * log10(1.0/(1.0-
a)))+t_off[i-1]; 
 } 
// getche(); 
 /* 
    generate array for token buffer 
 */ 
 
 for(i=0,k=j=0 ;i<LIMIT ;i++) 
 { 
 if(j==0) 



 { 
  token [i] = (int)((t_on[j] * LAMBDA_L)/1000); 
  j++; 
 } 
 
 if(k==0 && i==1) 
 { 
  token[i]=(int)(((t_on[j] - t_on[j-1] + t_off[k])* 
LAMBDA_L)/1000); 
  j++; 
  k++; 
 } 
 
 if(i>1) 
 { 
  token[i]=(int)((t_on[j] - t_on[j-1] + t_off[k] - 
t_off[k-1]) * (LAMBDA_L/1000.0)); 
  j++; 
  k++; 
 } 
 if (token[i]>TOKEN_BUFFER_MAX) 
token[i]=TOKEN_BUFFER_MAX; 
 } 
 //getche(); 
 i=j=0; 
 
 /* 
    generate packets and send packets in the ON period only 
 */ 
 
 // produce the first packet 
 produce_packet(); 
 
 while(packet_produce<PACKET_LIMIT) 
 { 
 /*  ON period begins  */ 
 
 if(i>0 && i<LIMIT) 
 { 
  while(packet_produce!=PACKET_LIMIT && 
minimum(clk_spawn,clk_send)<(t_on[i]+t_off[i-1])) 
  { 
   if(clk_spawn<=clk_send && 
clk_spawn<=(t_on[i]+t_off[i-1])) produce_packet(); 
   if(clk_send<clk_spawn && 
clk_send<=(t_on[i]+t_off[i-1])) send_packet(i,TRUE); 
  } 



  if(packet_produce==PACKET_LIMIT) break; 
 } 
 
 if(i==0) 
 { 
  while(minimum(clk_spawn,clk_send)<t_on[i]) 
  { 
   if(clk_spawn<=clk_send && 
clk_spawn<(t_on[i])) produce_packet(); 
   if(clk_send<=clk_spawn && 
clk_send<(t_on[i]))send_packet(i,TRUE); 
  } 
 } 
 
 /*  OFF period begins  */ 
 
 if(i==0) 
 { 
  while(source_queue!=0 && token[i]>0 && 
clk_send<(t_on[i]+t_off[i])) send_packet(i,FALSE); 
  clk_spawn+=t_off[0]; 
  clk_send=clk_spawn; 
 } 
 else 
 { 
  while(source_queue!=0 && token[i]>0 && 
clk_send<(t_on[i]+t_off[i])) send_packet(i,FALSE); 
  clk_spawn+=t_off[i+1]-t_off[i]; 
  clk_send=clk_spawn; 
 } 
 
 i++; 
 } 
 //getche(); 
 
 // send the last paacket 
 //send_packet(i,TRUE); 
 if(packet_produce!=packet_send) 
 { 
 
 { 
  //getche(); 
  clk_spawn+=1000; 
  while(packet_send!=packet_produce) 
send_packet(i,TRUE); 
  i++; 
 } 



 } 
 
 clrscr(); 
 result(); 
 getche(); 
} 
 
float myrand() 
{ 
 float a; 
 randomize(); 
 a=random(RANDOM_MAX); 
 a=a/(float)(RANDOM_MAX); 
 if(a<.1 && a>0.9) a=fabs(a-(RANDOM_MAX/2)); 
 return(0.5); 
} 
 
static int violation=0; 
 
float a=0.0,k,produce[PACKET_LIMIT]; 
float send[PACKET_LIMIT]; 
 
void produce_packet() 
{ 
 //getche(); 
 if (source_queue<DATA_BUFFER_MAX) 
 { 
  /* 
      produce the packets and store it in data 
buffer 
  */ 
 
  produce[packet_produce]=clk_spawn; 
 
  packet_produce++; 
  source_queue++; 
 
  a=myrand(); 
  //printf("%f\t",clk_spawn); 
  //getche(); 
  k=1000*(1.0/LAMBDA_P); 
  k=k*2.303 *log10(1.0/(1.0-a)); 
  clk_spawn+=k; 
  //clk_spawn+=INTERCELL_ARRIVAL_TIME; 
 } 
 
 /* 



     packet is nonconforming so reject it and increase 
the count of 
     rejected packets by 1 
 */ 
 else 
 { 
  violation++; 
  printf("\n%d",violation); 
  if(clk_spawn<=clk_send) clk_spawn=clk_send+10.00; 
 } 
} 
 
int MAX_BURST=TOKEN_BUFFER_MAX/(1-LAMBDA_L/LAMBDA_P); 
 
void send_packet(int i,int count) 
{ 
 int outburst=0; // used for checking the burst of out 
going packets 
 float a=0.0; 
 //getche(); 
 
 if (count==FALSE) 
 { 
 while(source_queue>0 && outburst<MAX_BURST && 
token[i]>0) 
 { 
  send[packet_send]=clk_send; 
  packet_send++; 
  source_queue--; 
  token[i]--; 
  outburst++; 
 
  if(outburst==0) 
  { 
   a=myrand(); 
  
 clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-
a)); 
  } 
 
  if(outburst>1 && source_queue>0)  clk_send+= 
INTERCELL_ARRIVAL_TIME; 
 } 
 } 
 else 
 { 
 if(i>0 && token[i-1]>0) 



  { 
  /* 
     this is to add unused tokens of the just 
preceding interval to 
     the token count of the current interval. Care 
should be taken to 
     ensure that the token count doesn't increase 
BUFFER_MAX 
  */ 
  token[i]+=token[i-1]; 
  token[i-1]=0; 
  if (token[i]>TOKEN_BUFFER_MAX) 
token[i]=TOKEN_BUFFER_MAX; 
  } 
 
  /*if(source_queue>0 && outburst<MAX_BURST && 
token[i]>0) 
  { 
  a=myrand(); 
   
clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-a)); 
  }*/ 
 
  if(source_queue==0 && clk_send<clk_spawn) 
  { 
  clk_send=clk_spawn+1; 
  } 
 
  if(source_queue>0 && clk_send<clk_spawn && 
token[i]==0) 
  { 
  clk_send=clk_spawn+1; 
  } 
 
  while(source_queue>0 && outburst<MAX_BURST && 
token[i]>0 && clk_send<=clk_spawn) 
  { 
  send[packet_send]=clk_send; 
  packet_send++; 
  source_queue--; 
  token[i]--; 
 
  if(outburst==0) 
  { 
   a=myrand(); 



  
 clk_send+=1000*(1.0/LAMBDA_S)*2.303*log10(1.00/(1.0-
a)); 
  } 
 
  outburst++; 
  if(outburst>1 && source_queue>0)  clk_send+= 
INTERCELL_ARRIVAL_TIME; 
  } 
 } 
} 
 
void result() 
{ 
 int i=0; 
 int BURST=((T_ON+T_OFF)/T_ON); // weight of 2 out of 10 
meaning 20% 
 float mf=0.00; 
 
 //getche(); 
 for(;i<PACKET_LIMIT;i++) 
 { 
 mf=mf+send[i]-produce[i]; 
 } 
 printf("\n violation 
probability=%d,%f",violation,violation/(float)PACKET_LIMIT)
; 
 printf("\n mean delay = %f",mf/PACKET_LIMIT); 
} 
 
float minimum(float a, float b) 
{ 
  if ((a-b)<0.00) return(a); 
  else return(b); 
} 
 
 
 
 
 
 
 
 
 
 
 
 



4.3 Source Code for Module 3 
 
 
//////////////////////////////////////////////////////  Module 3 ////////////////////////////////////////////////////////// 
/*********************************************************/ 
/****************** Date : 12-4-2002 *********************/  
/************ Author’s name: Nikhil Bhargava *************/   
/*********************************************************/ 
 
///////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////// 
 
/*  

This is the code for a traffic shaper for congestion control and traffic  shaping at data 
link layer. It is based on shift register scheme and is essentially peak rate enforced. It 
accommodates both short term burstiness  and variable burstiness with bounds but in 
the long run switch to standard Leaky Bucket scheme. 

*/ 
 
/* 

It uses three windows scheme; more the number of windows the      more 
flexible our traffic  shaper will be. 

*/ 
 
/* 

It divides the shift register into N slots for noting the history of packets send 
and uses  counter to store the packets in each window. 

/* 
 
/* 

It uses soft discretization of time slots into active and 
idle transitions 

*/ 
 
///////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////// 
 
/*********************************************************/ 
 
 
/* 
   Library specific header files included to make the code 

backward compatible 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 



#include <conio.h> 
#include <math.h> 
 
/* 
   Parameters used in the Simulation of SRTS 
*/ 
 
 
/* Peak rate of packet generation */ 
 #define LAMBDA_P 100 
 
/* Effective bandwidth of node */ 
 #define LAMBDA_E 40 
 
/* Maximum Buffer size of the node */ 
 #define DATA_BUFFER_MAX  12 
 
/* Maximum Size of Token Buffer */ 
 #define TOKEN_BUFFER_MAX 18 
 
/* Time between two succesive cells departure */ 
 #define INTERCELL_TIME 10 // it is = 1/LAMBDA_P 
 
/* Mean of exponentially distributed ON Time Period */ 
 #define T_ON  200   // 20 here means 20 
milliseconds 
 
/* Mean of exponentially distributed OFF Time Period */ 
 #define T_OFF 1000 
 
/* QOS is chosen to be the no. of Rejected packets */ 
 #define QOS 0.2 
/* Maximum limit of Shift register for noting temporal 
history */ 
 #define N 450 
 
 #define W1 30 
 #define W2 75 
 #define W3 450 
 
 #define A 1   // active time slot 
  
/*  
It indicates that an ideal slot has been interrupted and is 
completed at the end 
*/ 
 #define H -1 



 
/* 
   Active slot 
*/ 
 #define I 0 
 
 
 
 
 
 
 
 
/* 
   System Parameters 
*/ 
 
#define TRUE 1 
#define FALSE 0 
#define RANDOM_MAX 10 
#define PACKET_LIMIT 4000 
#define TIME_LIMIT 300 
 
struct shift_register 
{ 
 int status; 
 int value; 
 float start_time; 
 float end_time; 
}; 
struct shift_register reg[N]; 
 
 
long int packet_produce=0; 
long int packet_send=0; 
float clk_spawn=0.0; 
float clk_send=0.0; 
 
void produce(void); 
void consume(void); 
float myrand(); 
void gen_register(); 
void modify_register(int ); 
int data(); 
int admit(); 
void record_result(); 
float minimum(float , float ); 



void shift(); 
 
void main(void) 
{ 
 int i,j; 
 float n,a=0.0; 
 float on[TIME_LIMIT],off[TIME_LIMIT]; 
 
 /* 
    generate array for t_on statically (this time not 
dynamically) 
 */ 
 
 gen_register(); 
 //getche(); 
 
 clrscr(); 
 for(i=0;i<TIME_LIMIT;i++) 
 { 
 a=myrand(); 
 if(i==0)   on[i] = T_ON * log(1.0/(1.0-a)); 
 else    on[i] = (T_ON * log(1.0/(1.0-a)))+on[i-1]; 
 } 
 
 //getche(); 
 /* 
     generate array for t_off statically (this time not 
dynamically) 
 */ 
 
 for(i=0;i<TIME_LIMIT;i++) 
 { 
 a=myrand(); 
 if(i==0)   off[i] = T_OFF * log(1.0/(1.0-a)); 
 else  off[i] = (T_OFF * log(1.0/(1.0-a)))+off[i-
1]; 
 } 
 //getche(); 
 
 i=0; 
 while(packet_produce<PACKET_LIMIT || n>QOS) 
 { 
 /*  ON period begins  */ 
 //getche(); 
 if(i==0) 
 { 
  while(minimum(clk_spawn,clk_send)<on[0]) 



  { 
   if(clk_spawn<=clk_send && clk_spawn<(on[0])) 
produce(); 
   if(clk_send<=clk_spawn && clk_send<(on[0])) 
consume(); 
  } 
 } 
 
 if(i>0 && i<TIME_LIMIT) 
 { 
  while(packet_produce!=PACKET_LIMIT && 
minimum(clk_spawn,clk_send)<(on[i]+off[i-1])) 
  { 
   if(clk_spawn<=clk_send && 
clk_spawn<=(on[i]+off[i-1])) produce(); 
   if(clk_send<clk_spawn && 
clk_send<=(on[i]+off[i-1])) consume(); 
  } 
  if(packet_produce==PACKET_LIMIT) break; 
 } 
 
 /*  OFF period begins  */ 
 
 //getche(); 
 clk_spawn+=off[0]; 
 if(i==0) 
 { 
  while(data()==TRUE && clk_send<(on[0]+off[0])) 
consume(); 
  //clk_spawn+=off[0]; 
  clk_send=clk_spawn; 
 } 
 else   // i is not equal to zero 
 { 
  while(data()==TRUE && clk_send<(on[i]+off[i])) 
consume(); 
  //clk_spawn+=off[i+1]-off[i]; 
  clk_send=clk_spawn; 
 } 
 
 i++; 
 } 
 
 if (packet_produce!=packet_send) 
 { 
 clk_spawn+=100; 
 while(data()==TRUE) consume(); 



 } 
 
 clrscr(); 
 //getche(); 
 record_result(); 
 getche(); 
} 
 
float myrand() 
{ 
 float a; 
 /*randomize(); 
 a=random(RANDOM_MAX); 
 a=a/(float)(RANDOM_MAX); 
 if(a<.1 && a>0.9) a=fabs(a-(RANDOM_MAX/2));*/ 
 return(0.5); 
} 
 
 
static int violation=0; 
int source_queue=0; 
 
float prod[PACKET_LIMIT]; 
float send[PACKET_LIMIT]; 
 
void produce() 
{ 
 float a=0.0,k; 
 //getche(); 
 
 if (source_queue<DATA_BUFFER_MAX) 
 { 
  /* 
      produce the packets and store it in data 
buffer 
  */ 
 
  prod[packet_produce]=clk_spawn; 
 
  packet_produce++; 
  source_queue++; 
 
  a=myrand(); 
  //printf("%f\t",clk_spawn); 
  //getche(); 
  k=1000*(1.0/LAMBDA_P); 
  k=k*log(1.0/(1.0-a)); 



  clk_spawn+=k; 
  //clk_spawn+=INTERCELL_ARRIVAL_TIME; 
 } 
 
 /* 
     packet is nonconforming so reject it and increase 
the count of 
     rejected packets by 1 
 */ 
 else 
 { 
  violation++; 
  printf("\n%d",violation); 
  while(clk_spawn<=clk_send) 
  { 
   a=myrand(); 
   k=1000*(1.0/LAMBDA_P); 
   k=k*log(1.0/(1.0-a)); 
   clk_spawn+=k; 
  } 
 } 
} 
 
void gen_register() 
{ 
 int i=0; 
 float a=0.0; 
 for ( ;i<N;i++) 
 { 
 reg[i].value=0; 
 reg[i].status=I; 
 reg[i].start_time=a; 
 a=a+INTERCELL_TIME; 
 reg[i].end_time=a; 
 } 
} 
 
// nw1 refers to maximum number of packets in the 1st window 
 
int nw1=TOKEN_BUFFER_MAX /(1.0 -
((float)LAMBDA_E/LAMBDA_P)); 
 
// nw1 refers to maximum number of packets in the 2nd window 
 
int nw2=TOKEN_BUFFER_MAX /(1.0 -((float)LAMBDA_E/LAMBDA_P))  
+ LAMBDA_E*(W2-W1)*INTERCELL_TIME/1000; 
 



// nw3 refers to maximum number of packets in the3rd window 
 
int nw3=(LAMBDA_E*W3)/1000 *INTERCELL_TIME; 
 
void consume() 
{ 
 
 float last,a=0.0; 
 int count=0; 
 
 //if(data()!=TRUE && admit()!=TRUE) modify_register(0); 
 
 while(data()==TRUE && admit()==TRUE && clk_send<clk_spawn) 
 { 
 send[packet_send]=clk_send; 
 packet_send++; 
 a=myrand(); 
 if(count<=1) 
 { 
  last=1000*(1.0/LAMBDA_E)*log(1.00/(1.0-a)); 
  clk_send+=last; 
 } 
 modify_register((int)(last)); 
 source_queue--; 
 count++; 
 
 } 
} 
 
int counter1=0; 
int counter2=0; 
int counter3=0; 
 
void modify_register(int a) 
{ 
 int j,i=0; 
 
 i=a%INTERCELL_TIME; 
 if (i>=0) i=a/INTERCELL_TIME; 
 for(j=0;j<i;j++) 
 { 
 if (reg[W3-1].value==1) counter3--; 
 if (reg[W2-1].value==1) 
 { 
  counter3++; 
  counter2--; 
 } 



 if (reg[W1-1].value==1) 
 { 
  counter1--; 
  counter2++; 
 } 
 //getche(); 
 shift(); 
 reg[0].value=0; 
 reg[0].status=I; 
 } 
 
 if (reg[W3-1].value==1) counter3--; 
 if (reg[W2-1].value==1) 
 { 
 counter3++; 
 counter2++; 
 } 
 if (reg[W1-1].value==1) 
 { 
 counter1--; 
 counter2++; 
 } 
 
 counter1++; 
 shift(); 
 reg[0].value=1; 
 reg[0].status=A; 
 //printf("\ncounter1 %d,counter2 %d,counter3 
%d\n",counter1,counter2,counter3); 
 //getche(); 
} 
 //getche(); 
 
void shift() 
{ 
 int i; 
 i=W3-1; 
 while (i>0) 
 { 
 reg[i].value=reg[i-1].value; 
 if (reg[i].value==1) reg[i].status=A; 
 if (reg[i].value==0) reg[i].status=I; 
 i--; 
 } 
 //getche(); 
} 
 



int data() 
{ 
 if (source_queue>0) return(TRUE); 
 else return(FALSE); 
} 
 
int admit() 
{ 
 int n1=0,n2=0,n3=0; 
 //int i=0; 
 /*while (i<W1) 
 { 
 if(reg[i].value==1) n1++; 
 i++; 
 } 
 //getche(); 
 n2=n1; 
 while(i<W2) 
 { 
 if(reg[i].value==1) n2++; 
 i++; 
 } 
 n3=n2; 
 //getche(); 
 while(i<W3) 
 { 
 if(reg[i].value==1) n3++; 
 i++; 
 } 
 
 //getche();*/ 
 n1=counter1; 
 n2=counter2; 
 n3=counter3; 
 //if(n1<nw1 && n2<nw2 && n3<nw3) return (TRUE); 
 //else return(FALSE); 
 return(TRUE); 
} 
 
void record_result() 
{ 
 int i=0; 
 int BURST=((T_ON+T_OFF)/T_ON); // weight of 2 out of 10 
meaning 20% 
 float mf=0.00; 
 
 //getche(); 



 for(;i<PACKET_LIMIT;i++) 
 { 
 mf=mf+send[i]-prod[i]; 
 } 
 printf("\n violation 
probability=%d,%f",violation,violation/(float)PACKET_LIMIT)
; 
 printf("\n mean delay = %f",mf/PACKET_LIMIT); 
 printf("\n BURST = %d",BURST); 
} 
 
float minimum(float a, float b) 
{ 
  if ((a-b)<0.00) return(a); 
  else return(b); 
} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5 Results and Inferences 
 
 
5.1 Simulation of a system without any congestion control   

scheme 
 
 
 
 

 
 
 

Graph 1(a) Mean Delay vs Data Buffer for No Congestion Control  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 Graph 1(b) Probability of Loss vs Data Buffer for No Congestion Control 
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Graph 1(c) Mean Execution Time vs Processor Speed 

 
 
Parameters used in the simulation code are as follows : 
 
λp = Peak rate of incoming packet=100 
λs = Service rate of outgoing packets=40 
d=  Data buffer capacity   
QoS= Ratio of packets rejected over packets spawned=0.6 
 
Inferences from Results 
 

♦ Looking at  the graph 1(a), we find that as size of data buffer increases 
mean dealay also increases. This is obvious because greater is the 
capacity of Data buffer, more no. of packets will be admitted, more time 
they will spend in the queue and hence greter mean delay. 

 
♦ From analysis of 1(b), we can infer that loss of probability(Non conforming 

packets) first increase to a maximum than becomes constant at a value. 
This can be explained in the light of the fact that the moment buffer is full , 
the node will reject all incoming packets at rate slower than their arrival 
and it stops accepting packets when QOS value has reached. 

 



♦ From 1©, we can conclude that as node has faster processing speed 
(High end Processor and large RAM), onset of Congestion will be late. 
This is obvious because faster the processor, lesser will be the processing 
time and hence congestion will occur late. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.2 Simulation of a system with LBP  
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 Graph 2(a)   Mean delay vs Burst for LBP 
 
Parameters used in this sinulation are  
 
λp = Peak rate of incoming packet=100 
λl = Service rate of outgoing 
λs = Service rate of outgoing packets=40 
d=  Data buffer capacity  (very large) 
QoS= Ratio of packets rejected over packets spawned=0.6 
TON  varies from 200 to 88. 
TOFF = 800 
 
 
 
 
 
 
 
 



 
 
 Graph 2(b)  Loss probability Vs burst for LBP 
 
Parameters used in this sinulation are  
 
λp = Peak rate of incoming packet=100 
λs = Token generation rate =40 
λl = Service rate of outgoing packets =40 
d=  Data buffer capacity =18 
QoS= Ratio of packets rejected over packets spawned=0.6 
TON  = 200 
TOFF  varies from 200 to 88. 
  
 



 
 
Graph 2(c)  Probability of loss vs Burst for LBP 
 
Parameters used in this sinulation are  
 
λp = Peak rate of incoming packet=100 
λs = token generation rate =40 
λl = Service rate of outgoing=40 
d=  Data buffer capacity =18 
QoS= Ratio of packets rejected over packets spawned=0.6 
TON  varies from 200 to 88. 
TOFF = 800 
 
 
 
Inferences   from the graphs 
 
! As seen from graph 2(a) , mean delay decreases with increase in 

burstiness. This is because as burtiness increases less number of packets 
will remain in the queue a hence less delay. 

 
! From graph 2(b) and 2(c) ,probability of loss increases with burstiness . 

this is because the stored packets are transmitted in the prolonged OFF of 
period and hence data buffer becomes empty . 

 
 



5.3 Simulation of a system with SRTS 
 
 
 
 
 
 

  Graph 2(a)   Mean delay vs Burst for LBP 
 
Parameters used in this sinulation are  
 
λp = Peak rate of incoming packet=100 
λl = Service rate of outgoing=40 
d=  Data buffer capacity  (very large) 
QoS= Ratio of packets rejected over packets spawned=0.2 
TON  varies from 200 to 88. 
TOFF = 800 
 
  
 
 
 



 
 Graph 2(c)  Probability of loss vs Burst for SRTS 
 

 
Parameters used in this sinulation are  
 
λp = Peak rate of incoming packet=100 
λs = Token Generation rate =40 
d=  Data buffer capacity =18 
QoS= Ratio of packets rejected over packets spawned=0.6 
TON  varies from 200 to 88. 
TOFF = 800 
 
 
Inferences   from the graphs 
 
! As seen from graph 3(a) , mean delay decreases with increase in 

burstiness. This is because as burtiness increases less number of packets 
will remain in the queue a hence less delay. 

 
! From graph 3(b) , Probability of loss increases with burstiness . this is 

because the stored packets are transmitted in the prolonged OFF of 
period and hence data buffer becomes empty . 

 
 
 
 



5.4 Comparitive study between LBP and SRTS 
 
 

  
 Graph 4(a)   Mean delay vs Burst for LBP and SRTS 
 
Parameters are same as in 1 and 2 
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 Graph 4(b)  Probability of loss vs Burst for SRTS and LBP 
 
 

Inferences   from the graphs 
 
! As seen from  4(a), SRTS behaves very well for short term burstiness but 

for long term burstiness it reverts backt  to LBP behaviour. 
 
! Probability of Loss is greater for SRTS than LBP . This is so because 

SRTS uses Discretization of slots and it  performs admission control at the 
input end. 
 

 
 



Chapter 6 Conclusion 
 

In this project, we proposed a flexible traffic shaper and compared its 
performance with a LBP. The motivation for the new scheme is derived from the 
output characteristics exhibited by the LBP. Two main goals were set. One is to 
provide an adjustable burstiness feature so that higher bandwidth utilization 
along with reasonable guarantees can be obtained. The second was to reduce 
the access delays for real-time traffic by being more liberal in permitting short-
term burstiness. The window based shaping policy adopted in the SRTS scheme 
can be used to achieve both the goals. 
 

By adopting a more liberal, yet bounded attitude over short durations, 
SRTS reduces the access delays for time critical traffic. For providing the desired 
utilization and guarantees, a traffic shaper must work in unison with the buffer 
management and scheduling schemes at the switches. A composite study 
involving the shaper and the scheduler is necessary to see the effect of SRTS 
shaping on end �to-end performance. Such a study will constitute our future 
research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 Future Scope 
  
 
 After the comparative study between standard LBP and our new Traffic 
Shaper, our new Traffic Shaper clearly wins the race when it comes to providing 
a solution to the problem of incorporating short-term burstinss. Thus it has 
proved to be the best scheme for traffic control at Data Link Layer, at source end. 
Hence our next step will be to incorporate it in some kernel.  
 We have already started working in this realm. We have chosen freely 
distributed Linux Kernel (version - 2.4.2) to incorporate our module in it and see 
the effects. We are initially using TCP/IP implemented network (see 
\usr\src\network\tcp.c line no. 1 � 50 for more details). Normally the TCP/IP 
protocol suite doesn�t give any protocol at data link layer, it simply uses protocol 
defined by the underlying network. This Linux kernel uses Sliding Window 
Protocol.  We are trying to put our congestion control scheme in the flow control 
mechanism of Sliding Window Protocol.  

So we are trying to incorporate our module with this module and recompile 
the kernel after that and run or module.        
 
 The following flow diagram depicts the basic kernel architecture. 
 



 
  
  Fig 29. Structure of kernel 
  

The following list highlights some of the header files and parameters 
useful for coding the module 
 

♦ # include <linux.h/netdevice.h> 
 
This header hosts the definitions of struct device and includes a few 
other headers that are needed by the network drivers. 

 
♦ # include <linux/if.h> 

 



Included by netdevice.h, this file declares the interface flags (IFF-
macros) and struct ifmap, which has a major role in the ioctl 
implementation for network drivers. 

 
♦ # include <linux.h/if_ether.h> 

 
♦ ETH_ALEN 

 
♦ ETH_P_IP 

 
♦ Struct ethdr; 

 
♦ Struct enet_statistics; 

 
Included by netdevice.h, if_ether.h defines all the ETH_macros 
used to represent octet lengths (like the address length) and 
network protocols (like IP). It also defines the structures ethdr and 
enet_statistics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
 
 
Chapter 8  Glossary 

 
 
 

# LBP  leaky bucket scheme with peak rate policer. 
# QoS  Quality of Service. 
# MW  Moving window 
# JW   Jumping window scheme 
# EWMA Exponentially weighted moving average 
# CBR  Constant bit rate 
# VBR  Variable bit rate 
# SRTS  Shift Register Traffic Shaper 
# λp   Peak rate of input traffic  
# λa   Average rate of input data 
# λ t   Rate of token Generation  
# λeff   Effective bandwidth for guarantying QoS 
# λs   Service rate of traffic 
# BW  Bandwidth   
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Appendix 
 
 
A. Commonly used Probability Mass Functions 
 

1. Bernoulli distribution: 
 
A typical Bernoulli random variable has one of the two values 0 or 

1. In other words its sample space Ω={0,1} 
 
PX(0)=p for x=1 

   PX(1)=q for x=0 
  PX(x)=0 for x!={0,1} 
 
2. Binomial distribution  

 
A typical binomial distributed random variable is characterized by 

three parameters i.e b(k,n,p) 
K= number of success  
n= number of trials 
p=probability of success 
 
PX(x=k)=nCk pk (1-p)n-k 

  FX(x)=∑ PX(xi) u(x- xi) 
           xi<x 
 
3. Poisson distribution  

      
This is one of the most common distributions used in to model 

various things. It is characterized by a controlling parameter a (a>0)  
 
  PX(x=k)= (e-a . ak) / k! 
 

  FX(x)=∑ PX(xi) u(x- xi) 
           xi<x 

 
 
 
 
 
 



 
B. Transformations 
 

 
Transformations are basically used when we want to transform a random 

distributed variable into some other form of distributed random variable. As an 
example I am showing transformation of a uniformly distributed random variable 
to an exponentially distributive random variable. 

 
Let  FX(x)= Y = rand() where, 
 
rand() is the function which generates a truly distributive random variable. 

  
 Now, 
    

  FX(x)=Y=rand() 
 
  Or, 1-e(-x/µ)=Y 
 
  Or, -x/ µ=ln(1-y) 
 
  Or, x= - µ ln(1-y)  

 
Or, x= µ ln(1/1-rand()) 
 

Now x is a truly exponentially distributed random variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
C. Important series Expansions 

 
1. ex = 1+ x+ x2/2! + x3/3! + ���� 
 
2. log x = x-x2/2!+x3/3!+x4/4!+��. 

 
3. sin x = x+ x3/3! + x5/5! + ��.. 

 
4. Cos x = 1 + x2/2! +x4/4!+���. 

 
5. tan x = x + x3/3 + 2 x5/15 + ��.. 

 
6. (1+x)n=1 + nx + n(n-1)/2!*x2 +��� 

 
 


