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Abstract. In this paper we study the flow of a special second order fluid
(which well approximates the first normal stress difference for a solution of
polyisobuthylene ) in an orthogonal rheometer. We prove the existence and
uniqueness of the classical solutions for the set of the approximate flow problems
in an asymptotic development in respect to the Weissemberg number.
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1. Introduction

We consider a second order fluid which has a constitutive law described by
(1) ,2
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where p is the hydrostatic pressure and µ , 1α  and 2α  are the constitutive
moduli which can depend on J
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In (1) and (2), A1, A2 are the well-known Rivlin-Ericksen tensors.
The constitutive law (1) has been analysed from thermodynamic point of

view and in connection with the asymptotic stability of the rest state questions
in [1]-[3]. For particular cases, some flow problems have been discussed in [4]-
[6].

In [2], Dunn proves that a sufficient condition in order to obtain the
asymptotic stability of the rest state is )( 2

111 trAαα ≡ . This conclusion together
with the experimental curves giving the first and second normal stress
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differences for a polyisobuthylene (see Larson [7]), have led to the following
formula for 1α  (in a first approximation):
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As a consequence, we write the constitutive equation as
(4) ),,( 21 AATpIT E+=

2
12222

1

2
1

121
)(1

),( AA
trAa

btrA
AAATE αµ +

+
+=

where the constitutive moduli µ  and 2α  are supposed to be constant.
For such a fluid we solve the flow problem in an orthogonal rheometer

(which has been treated for a BKZ-fluid in [8]), employing a kinematical
admissible velocity field introduced in [9].

2. The Flow Problem

An orthogonal rheometer is sketched in Fig.1. In the figure, d is the
distance between the two parallel discs and r is
the distance between the two rotational axes.
The two discs which, for mathematical reasons,
are supposed to be of infinite radius, have an
uniform rotation with the constant angular
velocity Ω . The velocity field employed is (see
[9])
(5) 0)],([)],([ 321 =−Ω=−Ω−= vzfxvzgyv ,
where 1v , 2v , 3v are the assumed  components in
x, y and z directions, respectively.  It is  easy to
prove  that  the   corresponding  motion  is  with
constant  stretch  history  and  then, the  Cauchy
stress tensor T is expressed like in (4)1. Assuming that the specific body force is
conservative, the equations of motion are
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These equations have to be solved with standard no-slip boundary
conditions. We denote with

2224 )''(4),( fgagfA +Ω= .
We introduce (4) and (5) into equations (6), we employ also the above

mentioned notation and after some long but straightforward calculi we arrive to
the following system
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and the corresponding boundary value problem is
(8)  .2/)(;2/)0(;0)()0( rdgrgdff =−===

3. The Asymptotic Analysis of the Flow Problem

We introduce the non-dimensional variables and functions by
(9)  .,;,, grgfrfzdzyryxrx =====

Use of (9) in the system (7) lead us to the non-dimensional problem
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where we have dropped the overlines. In (10) 
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the Reynolds number and the Weissemberg number respectively.
We mention that Wa is classically defined as: 001 / LUWa λ≡ , where 1λ  is

a microscopic relaxation time and 00 /UL  can be interpreted as a macroscopic
relaxation time. We suppose, in what follows, that 1<<Wa  which means that
the considered melt has short macromolecular chains only (see for instance [7],
[10]). Consequently, we look to the solution of the problem (10) in an
asymptotic development in respect to Wa.

(11)  ∑
∞

=
=

0n
n

n fWaf ; ∑
∞

=
=

0n
n

n gWag .

We introduce (11) in (10) and after some calculi we arrive to the following
set of approximate problems
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We simply remark that the general form of the nth approximate problem is

given in compact form by
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 and nF  is a known function depending on

the first n-1 approximation of f  and g .
We are ready now to state the following theorems:

Theorem 1.The problem (12) has a unique solution given by
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where z2Re/=θ  and the constants 4,1, =ic i  are to be determined from the
conditions (12)2.

The proof is immediate.

Theorem 2.The general problem (14) has a unique classical solution.
For the proof we denote by L  the corresponding differential operator given

by AYY
dz
d

LY +−≡ )'( . We simply remark that L  is self adjoint and

(16)  22),( YYLY π≥
where we have employed the Friedrichs inequality. That means, by a standard
reasoning, that there is a unique solution of the problem (14) and this coincides
with the classical one: ]1,0[))1,0(( 12 CCY ∩∈ .

Remark. We easily evaluate the L2 norms of nY  and 'nY  employing
Friedrichs inequality and (14)1 and we arrive to
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Final remarks:
a. In order to compute the traction on the inferior disc, for instance,

2/122 )( yx ttnT +=⋅τrr  we evaluate x and y components, yx tt ,  of the
corresponding force, which in non-dimensional variables give
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where, )5.02(2Re/)0('),5.022(2Re/)0(' 10210 −−=++= cfccg .

b. In Fig.2 we give a plot for the first approximation of the nondimensional
function g/r, for the Reynolds number Re = 4, where g is given by:
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Fig. 2.
Like in [8], we obtain an apparently linear graph for the plotted function

(actually the above formulae for g is essentially non linear). This is not
surprising, if we have in mind the boundary condition and the fact that the
Reynolds number is in the neighbourhood of 1.
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ASUPRA MISCARII UNUI FLUID DE ORDINUL DOI INTR-UN
REOMETRU ORTOGONAL

(Rezumat)

In aceasta lucrare studiem miscarea unui fluid particular de ordinul doi ( care
aproximeaza multumitor prima diferenta a tensiunilor normale pentru o solutie de
poliizobutilena) intr-un reometru ortogonal. Demonstram existenta si unicitatea solutiei
clasice pentru aproximarile problemei de miscare cu conditii la frontiera intr-o dezvoltare
asimptotica in raport cu numarul lui Weissemberg.


