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Abstract. In this paper we study the flow of a special second order fluid
(which well approximates the first norma stress difference for a solution of
polyisobuthylene ) in an orthogona rheometer. We prove the existence and
uniqueness of the classical solutions for the set of the approximate flow problems
in an asymptotic development in respect to the Weissemberg number.
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1. Introduction

We consider a second order fluid which has a congtitutive law described by
() T=-pl +nA1+a1A2+a2A12’
where p is the hydrostatic pressure and m, a, and a, are the congtitutive
moduli which can depend on J
) J={trALrAS trA S trA,, trA % A tr (AA, + A A)}

In (1) and (2), As, A, are the well-known Rivlin-Ericksen tensors.

The constitutive law (1) has been analysed from thermodynamic point of
view and in connection with the asymptotic stability of the rest state questions
in [1]-[3]. For particular cases, some flow problems have been discussed in [4]-

6].

= In [2], Dunn proves that a sufficient condition in order to obtain the
asymptotic stability of the rest state is a, © a, (trA,”) . This conclusion together
with the experimental curves giving the first and second normal stress
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differences for a polyisobuthylene (see Larson [7]), have led to the following
formulafor a, (in afirst approximation):

btrA°
© 8=
1+ a(trA,”)
As a consequence, we write the constitutive equation as

(4) T=pl +Te(A,A),
_ btrA® )
Te (ALA) mA1+—1+ A(AD)? A taA

where the constitutive moduli m and a, are supposed to be constant.

For such a fluid we solve the flow problem in an orthogonal rheometer
(which has been treated for a BKZ-fluid in [8]), employing a kinematica
admissible velocity field introduced in [9].

2. TheFlow Problem

An orthogona rheometer is sketched in Fig.1. In the figure, d is the
distance between the two parallel discsand r is
the distance between the two rotational axes.
The two discs which, for mathematical reasons,
are supposed to be of infinite radius, have an
uniform rotation with the constant angular
velocity W. The velocity field employed is (see
[9])

B)v; =-Wy- 9(2)],v, =Wx- f(2)],v;=0,
where v, , v, ,v;are the assumed componentsin WA
X,y and z directions, respectively. Itis easy to

prove that the corresponding motion is with Fig. 1

constant stretch history and then, the Cauchy

stresstensor T is expressed like in (4),. Assuming that the specific body forceis
conservative, the equations of motion are

(6) — B =rWg(2); —=2=rWef(2.
dz dz

These equations have to be solved with standard no-dlip boundary
conditions. We denote with
A(f,g) =4aW(g'2+f'2)2,
We introduce (4) and (5) into equations (6), we employ also the above
mentioned notation and after some long but straightforward calculi we arrive to
the following system

A
z

AAW

'y

<
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i 2bWF (g'2+ f Z)V\Fg":r\/\lzg,
t A(f,9)

and the corresponding boundary value problem is

(8) f(O=1f(d)=0;, g(0)=-r/2, g(d)=r/2

3. The Asymptotic Analysis of the Flow Problem

We introduce the noD—di merIsi onal v_ari ables _and fungti ons by
9) X=rx, y=ry, z=dz f=rf,g=rg.

Use of (9) in the system (7) lead us to the non-dimensional problem

9= +f% | e (99 EL- ACFLQ)]

g"=Ref +2Waf " AWVa :
1+ Af,0) [1+ A(T,9)]?
9P e (99 AT Q)]
1+A(f,0) [1+ A(f,9))

i
:
i
I [ " g
(10)  f''=- Reg- 2Wag
|
:
i
i

f(0)=f@)=0,g(0)=-1/2 g)=1/2

r Wl 2 bWe r
, Wa=—(—)?
a (d) are

where we have dropped the overlines. In (10) Re=

the Reynolds number and the Weissemberg number respectively.

We mention that Wa is classically defined as: Wa° | ,U,/L,, where | | is
amicroscopic relaxation time and L,/U, can be interpreted as a macroscopic
relaxation time. We suppose, in what follows, that Wa<<1 which means that
the considered melt has short macromolecular chains only (see for instance [7],

[10]). Consequently, we look to the solution of the problem (10) in an
asymptotic development in respect to Wa.

¥ ¥
(11) f = Wa"f,; g=§ Wa"g, .
n=0 n=0
We introduce (11) in (10) and after some calculi we arrive to the following
set of approximate problems
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19,"'=Ref, f,"=-Reg,;

12
3 % fo(0) = (D=0 go(0)=-12Z gD =12
: g,"=Ref, + 21,"(9o%+1,"%) + 4(90'9 "+ o' fo") fo'[l'2 A(fo. %) ,
i 1+ A(f;,9) [1+ A(fy,00)]
[P 29"(90+10'%) L H9o'0o"+ o' f0")90T1- Ay, 0o)]
13 f - R = )
(13 1t o 1+ A(f;,9,) i [1+ A(fy,90)]°

% fo(0) = f3(D) =9,(0) =9, () =0,
where A(f,,g,) is 4aW*(r/d)*(g,"?+f,"?)>%.

We simply remark that the general form of the " approximate problem is
given in compact form by

(14) - Y, "+AY, =-F.; Y, (0 =Y, (D=0, n31
Red )
where A=g 0 e% Y, =a@”8 and F, is a known function depending on
g- Re 0 @ gfn @

the first n-1 approximationof f and g.
We are ready now to state the following theorems:
Theorem 1.The problem (12) has a unique solution given by
1 f(2) =€¥(- ¢ 9nq +c,coq) +e9(csing + ¢, coq),
1 9(2) =€ (c, cox +c,sinq) +e9 (¢, cog - ¢,5nq),
where q =+/Re/2z and the constants ¢, ,i =14 are to be determined from the

conditions (12)s.
The proof isimmediate.

(15)

Theorem 2.The genera problem (14) has a unique classical solution.
For the proof we denote by L the corresponding differential operator given

by LY© - dg(Y')+AY.WesimpIy remark that L isself adjoint and
z

(16) (LY,Y)3 p2|Y|’
where we have employed the Friedrichs inequality. That means, by a standard
reasoning, that there is a unique solution of the problem (14) and this coincides
with the classical one: YT C2?((0,1)) C CY[0]].

Remark. We easily evaluate the L® norms of Y, and Y,' employing
Friedrichs inequaity and (14), and we arrive to
(7 A N A i Y

n 2p2 -1 n n 2p2 -1 n
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Final remarks:
a. In order to compute the traction on the inferior disc, for instance,

T =(t,” +t,°)¥2 we evaluate x and y components, t,, t, of the
corresponding force, which in non-dimensional variables give

2
40 WFWB (Y (90 +o(0))?

[1+4aW'(g,(0)+ fo(0)*)*]?

b

Tn>8=(g, (0)2+£,(0)2 {1+

where, g,'(0) =+/Re/ 2(2¢, + 2¢, +0.5), f,'(0) =+/Re/ 2(- 2¢, - 0.5).

b. In Fig.2 we give a plot for the first approximation of the nondimensiona
function g/r, for the Reynolds number Re = 4, where gis given by:

9,(2) =e?2(- 0.0107768 cos(/2z) +0.122113sin(~/22)) +
+ e 22(- 0.489223 cos(/2z) +0.122113sin(+/22)),

0.5

9(2) o m

0 0.5 1
z

Fig. 2.

Like in [8], we obtain an apparently linear graph for the plotted function
(actualy the above formulae for g is essentially non linear). This is not
surprising, if we have in mind the boundary condition and the fact that the
Reynolds number is in the neighbourhood of 1.
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ASUPRA MISCARII UNUI FLUID DE ORDINUL DOI INTR-UN
REOMETRU ORTOGONAL

(Rezumat)

In aceasta lucrare studiem miscarea unui fluid particular de ordinul doi ( care
aproximeaza multumitor prima diferenta a tensiunilor normale pentru o solutie de
poliizobutilena) intr-un reometru ortogonal. Demonstram existenta s unicitatea solutiel
clasice pentru aproximarile problemel de miscare cu conditii la frontiera intr-o dezvoltare
asmptoticain raport cu numarul lui Weissemberg.



