HWL0304
A Monte Carlo Simulation Accelerator using FPGA Devices
[image: image1.wmf]S

T

t

<

£

LHW0304 Final Year Project Report
A Monte Carlo Simulation Accelerator using FPGA Devices
by

Ng Kin Fung
Supervisor : Professor LEONG, Heng Wai Philip

April 2004
Abstract

Brace-Gatarek-Musiela (BGM) Model is commonly used by economists, academics, risks managers and traders in describing the interest rate movement so as to understand, manage and control the interest rate risk. Some of the works included are computational expensive and thus an implementation with higher performance is needed. Besides, the flexibility of the system is also emphasized.
The objective of this project is to implement the BGM model using FPGA technology with soft-core microprocessor. The most computational expensive part was implemented by VHDL as a user core while the post-processing calculation was done using the Xilinx Microblaze soft-core microprocessor. Fast simplex link bus was set up for the transmission of data from the BGM core to the Microblaze.
The whole system was successfully simulated using the ModelSim simulator. It was found that the performance of the system was greatly improved. Besides, the transmission of data using the FSL Bus was found to be more efficient than some common transmission media because it can achieve can achieve higher bandwidth with lower latency and it is easier to use. In addition to this, the system also facilitates rapid development and retains the advantages of FPGA technology and that of the soft-core microprocessor.
Acknowledgement

I would like to take this opportunity to express my gratitude to those people who have given advices, help and supports in this final year project.

I would like to thank my final year project supervisor, Prof. LEONG, Heng Wai Philip for his help and guidance on the project.

I would like to thank Prof. WU, Yu Liang David for his suggestions and to be my project marker.

I would also like to thank Dr. Zhang, Guang Lie and Mr Ng, Kwok Tong for their great partnerships and advices.

Contents
I
Abstract

1

II
Acknowledgement

2

III
Contents

3

IV
List of Figures

5

V
List of Tables

6
1 Introduction

9
1.1 Motivations

9
1.2 Objectives

10
1.3 Contributions

10
1.4 Report outline

11
2 Field Programmable Gate Array and Soft Core Microprocessor

12
2.1 Introduction

12
2.2 Field Programmable Gate Array

13
2.3 Soft Core Micro-Processor

14
2.4 Conclusion

15
3 Brace-Gatarek-Musiela (BGM) Model

16
3.1 Interest rate model

16
3.2 BGM model

17
3.3 Implementing BGM Model using FPGA and

18
Soft Core Microprocessor

4 System Design

19
4.1 System Design Overview

19
4.2 System Component

20
4.2.1 Microblaze

21
4.2.2
User Core – BGM

22
4.2.3
Fast Simplex Link (FSL)

22
4.2.4 On-Chip Memory, Local Memory Bus and Memory Bus
28
Controller

4.2.5 On-Chip Peripheral Bus (OPB Bus)

29
4.2.6 Universal Asynchronous Receiver-Transmitter (UART)

29
4.2.7 OPB Timer

31
4.2.8 General Purpose Input Output (GPIO)

31
4.3 System Detail

32
5 Experimental Results

35
5.1 Resources

35
5.2 Performance

36
5.3 Transmission Bandwidth

37
6 Conclusion

39
7 Future Development

40
Appendix

41
I
Xilinx Microblaze

41
I.1
Introduction

41
I.2
Microblaze Architecture

42
I.2.1
Instruction

42
I.2.2
Register

43
I.2.3
Pipeline

44
I.2.4
Load/Store Architecture

44
I.2.5
Interrupts, Exception and Break

45
I.2.6
Cache

46
I.2.7
Fast Simplex Link

47
I.3
Bus Interface

48
I.3.1
Bus Configuration

49
II
Hardware, Tools and Development Flow

51
II.1
Introduction

51
II.2
Development Board

51
II.3
Xilinx Virtex II XC2V1000-4FG456C FPGA

53
II.4
Xilinx Microblaze Soft Core Microprocessor

53
II.5
Xilinx Embedded Development Kit

53
II.6
Development Flow

55
II.6.1
Hardware Design Flow

55
II.6.2
Software Design Flow

56
II.6.3
Implementation

57
II.6.4
Downloading

57
II.6.5
Simulation

58

III
Bibliography

59
List of Figures

2.2.1 Solving problem in FPGA (in parallel)

13

2.2.2 Solving problem in processor (in serial)

13

4.1.1 System Design Overview

19

4.2.1 System Connection Overview

20
4.2.2 Connection of System Components

20
4.2.3.1 FSL Interface

23
4.2.3.2 FSL Bus Write Operation

25
4.2.3.3 FSL Bus Read Operation

26
4.3.1 Flow chart of system operation (I)

32
4.3.2 Flow chart of system operation (II)

33
5.2.1
Comparison of performance for the running of BGM core

36
in FPGA and in PC

5.2.2
The comparison of performance for the running the

36
BGM core in FPGA and PC with different number
of paths generated.

5.2.1
Simulation showing performance of Microblaze system

37
5.3.1
Simulation showing the transmission speed

38
I.1

Pipeline technology in Microblaze

44
I.2

Big Endean Data Type (Halfword as example)

45
I.3

The Data Cache Organization

47
I.4

Block diagram of the Xilinx Microblaze Core

48
I.5

Bus Configurations

49
II.1
Top View of Celoxica RC200 Development

51
and Evaluation Board
II.2
Connection between devices in the Celoxica RC200

52
Development and Evaluation Board
II.3
Common EST software utilities and their interaction

54
with XPS

II.4
Design Flow of Microblaze System

54
II.5
The JTAG chain of the Celoxica RC200 Development

58
and Evaluation board

List of Tables
4.2.1 Speed of Microblaze across different devices

21
4.2.3.1
FSL Signal

24
5.1.1
Device utilization summary in Synthesis of BGM core

35
5.3.1
Comparison of Transmission Bandwidth of Common

37
Transmission Media and that of FSL Bus

I.1
Speed of Microblaze across different devices

42
I.2
Machine status register in Microblaze

43
Chapter 1
Introduction

1.1 Motivation
Understanding, managing and controlling the interest rate risk is a very important task, especially to economists, academics, risks managers and traders. People usually find tools and models to help them to describe the interest rate movement for their works.

Interest rate model provide quantitative framework for the solutions. Traditionally, these types of models are implemented in software. However, with the increase in the complexity of calculation process and scenario, the performance of the existing implementations becomes unsatisfactory. There is a need for another implementation so as to improve the performance
Field Programmable Gate Array (FPGA) is a potential solution to this problem. FPGA has higher performance compared to a software-only implementation. It is because functions can be performed in parallel by using specialized hardware implemented on FPGA. The design can also be optimized for specific purpose.

FPGA is also reconfigurable, different functions can be implemented into the FPGA by simple reconfiguration processes. This flexibility allows late design change.

The introduction of hardware description language (HDL), which is high level program-like description, also enables the designer to synthesis, simulate and debug the circuits. This simplifies the design process and shortens the time to market. Large amount of system can be implemented in short period of time.

On the other hand, soft processors have recently gained a lot of popularity. “Soft core” refer to cores delivered as a technology dependent gate-level netlist or synthesizable source code. Soft core microprocessor can be embedded into FPGA. Using this technique can shorten the design time and simplify the development flow. Besides, software can often be upgraded easily by simply reconfiguring the FPGA with the new design.

In addition to this, as the soft core microprocessor is placed inside the FPGA. Traditionally, most system use Personal Computer and FPGA accessed through PCI bus. This becomes a bottleneck for the entire system as the transmission bandwidth and the latency of PCI bus are not satisfactory. The transmission of data between the microprocessor and the core implemented in VHDL can, on the other hand, achieves higher bandwidth with lower. So the performance can be improved.

1.2 Objectives

The Objectives of this final year project is to implement the Brace-Gatarek-Musiela (BGM) Model using the Field Programmable Gate Array (FPGA) technology with Xilinx Microblaze as the soft core microprocessor. The Microblaze and the BGM core is connected by the Fast Simplex Link (FSL)Bus. The BGM core is responsible for the most computational expensive part. It is designed in VHDL and add in the system as an user core. The Microblaze is responsible for the post processing calculation. The resources required, the performance of the system as well as the transmission overhead of the FSL is studied. A comparison is made between the existing system and the system developed.
1.3 Contributions

This system is developed with the co-operation of Dr. Zhang. The BGM core is designed and implemented by Dr. Zhang. The responsible of our group is to design the Microblaze system. This includes the following tasks.
First, there is a need to prepare the BGM core such that it can be added to the Microblaze system as a user core.
Second, there is a need to design the BGM system for the post processing calculation of the BGM model.

Third, there is a need to study the IP of the Microblaze so that the system can be more complete.

Fourth, there is a need to simulate the system for verification

Fifth, there is a need to study the performance of the system as well as the transmission overhead of the data between the Microblaze and BGM core through the FSL Bus.
Sixth, there is a need to compare the existing system with the Microblaze system in terms of performance and transmission bandwidth and latency.

1.4 Report Outline

This report is organized as follow. Chapter 2 is about the FPGA and soft core microprocessor. The advantages, disadvantages as well as the co-operation between them are discussed.
In chapter 3, the BGM Model is described. Knowledge related and its applications are detailed.

Chapter 4 is about the system design. The overview of the system is presented first followed by the discussion of the system components. Finally, the system operation is presented
The experimental results are presented in chapter 5. This includes the resources, performance and the comparison of the data transmission bandwidth and latency.

The report is ended by a brief conclusion in chapter 6 and a discussion on future development in chapter 7.
Chapter 2
Field Programmable Gate Array and

Soft Core Microprocessor

2.1 Introduction

Traditionally, People choose to solve their problem by software means running in Personal Computer or Mainframe Computer. There are many advantages in this approach. First, it is easy to develop as many people are already very familiar with the programming languages required. They can easily develop the application by using JAVA, C, C++ or other programming languages. Second, the applications can be easily run on any Personal Computer or Mainframe Computer by correctly setting up the platform required. For example, JAVA is provided with the JAVA virtual machine which enables the easy running of JAVA application in different operating systems like Windows and LINUX.
However, there are also disadvantages in this approach. First, the performance requirement may not be satisfied. By running the instructions in processors, the instructions are executed in sequence with the intermediate results being stored in registers or memory. If the problem being solved is computational expensive, the time of running may be very large. Second, there is a lack of ability to control whether the specific hardware should be active or not. The user has no ability to switch off the unused hardware modules and thus the power consumption can not be saved.
This lead to the approach of solving the problems in solely in hardware or solving the most computational expensive part of the problems in hardware.
2.2 Field Programmable Gate Array (FPGA)

There are two development approaches in solving problems by hardware means. One is to develop an Application Specific Integrated Circuit (ASIC) and the other one is to use the Field Programmable Gate Array (FPGA).
Traditional way is using the ASIC technology, but this methodology has many disadvantages. First, there is a high small volume cost. There is a need to do every process even though there is only a small volume of production. The cost to volume ratio is thus much higher. Second, there is a long design time. As the debug process is more difficult, and sometimes the errors occur at the later part of the design cycle, the design time and thus time to marker is usually long. Third, there is a lack of reconfigurability and reuseability. The design is only specific in solving that specific problem.
Nowadays, FPGA is becoming more and more popular in system design. The reasons can be summarized as follow.

[image: image29.png]Data Address Bits

3031

Tag Address

Cache Line

Addr

Addr

Tag

BRAM

Data

Load_Instruction

Cache data

Cache_Hit

BRAM

[image: image30.png]ta-sice
U5 interface

o= — oty

o e Ny
| I | T T [T

RegsieFie
nsmeton|] :
[y et | By e

LYkt
@

Figure 3.2.1
Solving problem in FPGA (in parallel) (left)

Figure 3.2.2
Solving problem in processor (in serial) (right)

Compared to Microprocessor, FPGA has the following advantages. First, higher degree of parallelism can be achieved. The computing elements of the FPGA can all operate in parallel. Multiple data can be processed in one cycle. Second, FPGA is explicitly hardwired to perform a certain operation and does not require decoding of an instruction stream stored in memory as in a microprocessor. This leads to higher performance to silicon area ratio and more computation per clock cycle as there is an elimination in the overhead of the instruction storage, instruction decoding. Third, there is ability for user to control the hardware. Hardware modules that are of no use can be switched off so as to save the power. Fourth, FPGA can operate at a bit level which is an advantage when the data is organized in smaller than word units.
Compared to ASIC, FPGA has the following advantages. FPGA based systems have a much shorter design time and are easier to develop. With the help of development tools and the Very High Speed Integrated Circuit Hardware Description Language (VHDL), designers can be able to simulate and synthesize the circuits from a high level program-like description. As the design can be simulated earlier in the design cycle, the debugging can be facilitated. In addition to this, the FPGA can be reconfigured by downloading different bit stream. The same hardware can be used to solve many different problems in an easy way. The HDL code is also retargetable. The design can be reused and retargeted for new technologies and new FPGA devices.

In this project, the Xilinx Virtex II XC2V1000 is used to obtain the above advantages in system design and development.
2.3 Soft Core Microprocessor

Almost all applications can be implemented in ASIC or FPGA without the need of processor or software. However there are reasons for the utilization of processor core and run software on it. First, software is often easier to develop. Software can be partially tested and verified in other environments before they are implemented in a particular processor architecture. Second, software can often be upgraded during operation without system downtime. The time for upgrade is usually a few microseconds. Compared to few second to a couple of minutes of that of FPGA, the time is really short and thus it is more flexible. Third for the system with soft core processor in FPGA, retain the advantage of using FPGA alone. The hardware can be optimized for different purpose more easily, only useful hardware is added to the system. This can achieve significant power saving and thus lengthening the battery life. Fourth, the soft core microprocessor systems are re-targetable. If later on, the performance of the FPGA becomes not satisfactory, the design can be target to another better FPGA.
One way of co-operation between processor and FPGA is by connecting the FPGA board to a Personal Computer by some ways, likes serial cable, parallel cable, PCI interface, memory interface. In most case, the FPGA and the Personal Computer is connected through PCI bus. It is because it has the highest bandwidth with lower latency when compared with some other external data transmission interface. However, this may also become a bottleneck for the whole system as the time required for data transmission between FPGA and PC is the largest compared to any other job.
The solution to this problem is to use soft core microprocessor. Soft core microprocessor is delivered as technology dependent netlists or HDL source code for synthesis. Xilinx Microblaze is one of the soft core microprocessors. It is designed in VHDL and is designed to use standard FPGA device resources. As a result, everything is implemented in FPGA. As the transmission of data is within the FPGA board, a higher transmission bandwidth and lower latency can be achieved.
2.4

Conclusion
As a conclusion, the most ideal case of solving problems is by implementing the most computational expensive task in VHDL targeted to FPGA and the other parts in software implemented in soft core microprocessor targeted for FPGA. In this way, the advantages of high performance, low power consumption, reconfigurability, simplicity and high bandwidth with low latency data transmission can all be achieved.
Chapter 3

Brace-Gatarek-Musiela (BGM) Model

3.1 Interest Rate Model

There are many kind of economic activity. Borrowing is one of the fundamental one. The behavior of the interest rates may vary significantly over time. There are not only day-to-day fluctuations but also regime shifts from time to time. It is very important to be able understand, manage and control the interest rate risk. There is thus a huge demand for tools to control and reduce the exposure to interest rate movements.

Interest rate models provide quantitative framework for describing interest rate movements and valuing and hedging interest rate products. It enables the exploitation of current market data as well as the extraction of its information content and thus enables the discovery the dynamics of interest rates and the way that interest rates and derivative prices relate together.

Interest rate models are needed for three main purposes.

First, it allows economists and academics to explain interest rate movements in terms of an underlying model and thus enhance the understanding of how economic variables relate to interest rates. This makes the decision on economic policy more systematical.

Second, it allows risk managers to simulate market behavior with historical parameter values. Limits can be put on the range of future values that a deal or portfolio of deals.

Third, it allows traders to obtain prices and hedges. When a simple deal is hedged, a similar or identical offsetting deal is entered into, whose cash flows and potential cash flows are opposed to those of the first deal. So it is important to lock in the value of the combined ‘deal plus hedge’ portfolio, so that thereafter its value is fixed, or earning a fixed rate of return.

To have a practical application, an interest rate model should provide a statistical description of how the state variables in the model change through time, and it should provide a procedure to price interest rate derivatives from the statistical description. There are many types of interest rate model. This include Affine yield models, Whole yield curve models, Market models, Price kernel models, Positive models, Consol models.

3.2 Brace-Gatarek-Musiela (BGM) Model
Brace-Gatarek-Musiela (BGM) Model is one of the most popular interest rate models. It belongs to the class of Market models.

The Market model arose from the general framework of Health-Jarrow-Morton (HJM). Rather than working on the instantaneous forward rates as in the HJM model, Market model took the forward term rates as the model primitives. The forward term rate is assumed to follow lognormal process under forward measure, such that the Black formula is recovered for the price of a European-style interest rate options.

The Black formula is the market standard for calculating prices of European-style interest rate option while the forward rate at time which applies between times T and S (
[image: image37.png]e

2« Axtl
12+ t2+B
2 12x11
g—1t2+C

)is defined as
[image: image2.wmf])

,

(

)

,

(

log

1

)

,

,

(

S

t

P

T

t

P

T

S

S

T

t

F

-

=

.The forward rate arises within the terms of a forward contract. Under such a contract it is agreed at time t that investment of £1 at time T in return for
[image: image3.wmf])

,

,

(

)

(

S

T

t

F

T

S

e

-

 at time S. In other words the interest rate between times T and S is fixed in advance at time t.
3.3 Implementing BGM Model using FPGA and Soft Core Microprocessor

In the BGM model, the forward rate is assumed to be log-normal. The forward rate Fn is a martingale under neutral measure, M[P(t, Tn+1)] i.e.
[image: image4.wmf]1

)

(

)

(

)

(

+

·

=

n

n

n

n

T

W

d

t

t

F

t

dF

r

v

s

When changing to measure M[P(t, Tm)], the drift of the forward rate change

[image: image5.png]dFa(t)
Fult)

=Gn(t) - (B — bui1)dt + Fut) - IV

nF1(H)ai(t)
AR

=Flt) dt + Gy (t) - WV

Ty -1

This part required many loops of computation. If it is done in software, the performance can not be satisfied. To solve this problem, FPGA technology is used. The looping content is done by in FPGA by designing a VHDL core. In this way, the advantages of the FPGA technology can be obtained.

On the other hand, there is still some post processing calculation required for example in calculating the average and the standard error of the resulting data. This kind of job is done by the Microblaze processor. It is because this part is rather simple and require less processing. Besides, the data generated by the user core can be used by other purposes. The software can be updated easily for other application. In this case, it is more flexible.
Chapter 4
System Design
4.1 System Design Overview
[image: image6.jpg]FPGA

BGM
Modual

FSL
Interface

Microblaze

Figure 4.1.1
System Design Overview

Figure 4.1.1 show the overview of the system design. Everything is designed to target the FPGA. The Xilinx Microblaze is used as the soft core microprocessor. The BGM model is designed in VHDL and is added into the Microblaze system as a user core. The BGM module is responsible for the computational expensive task while the Microblaze is responsible for the post processing calculation. The Microblaze communicates and performs data transmission with the BGM module with the Fast Simplex Link interface which can achieve higher bandwidth and lower latency for the data transmission between the two modules.

4.2 System Component
[image: image7.jpg]BGM Model

FSL

Microblaze

OPB

LMB

BRAM

GPIO

Timer

UART

Figure 4.2.1 System Connection Overview
[image: image8.jpg]ey ez o] et
[feiv20 8] s 1] B mb] fopb_buz] feonn 3| feonn_i]

Figure 4.2.2
Connection of System Components

4.2.1 Microblaze
The MicroBlaze embedded soft core is a reduced instruction set computer (RISC). Rather than based on a large variety of complex instruction, RISC is a processor whose design is based on the execution of a sequence of simple instructions rapidly.

Microblaze core is designed in VHDL which is therefore more structural, hierarchical, parameterized and optimized. It is specially optimized for Xilinx FPGAs. The optimizations include the following. First, The Microblaze maximizes the Look Up Table (LUT) utilization. It fills most LUTs with 4 inputs and even hard code the LUT inputs to utilize Virtex II fast connect. Second, the embedded block multiplier is used for Virtex II version. As a result, multiplication is done in hardware rather than using Library Software in the Virtex FPGA Families. This ensures faster calculation.

Instead of constructed in Application Specific Integrated Circuit (ASIC), the MicroBlaze circuit is constructed in a Xilinx FPGA where FPGAs are programmable silicon devices.
The MicroBlaze design uses standard FPGA device resources. There is no dedicated silicon and it is highly flexible because it will only have the peripherals that needed but not the one that are useless. This is one of the important issues to achieve power saving as useless peripherals waste power.

Table 4.2.1 shows the speed of Microblaze across different Xilinx FPGA family. The results were obtained by using the industry accepted Dhrystone 2.1 benchmark in 2001. This shown that the Microblaze could achieve 101 D-MIPS in maximum.

[image: image9]
4.2.2 User Core – BGM
The BGM model is added to the Microblaze system as a user core. In order to add the BGM model to the Microblaze system and connect with the FSL, several things are needed to be prepared.

First, the timing and the signal of the BGM need to satisfy with that of the FSL Bus. The timing of the FSL Bus will be discussed in next section.

Second, a microprocessor description (MPD) file is needed. The Microprocessor Peripheral Definition (MPD) file defines the interface of the peripheral.

An MPD file has the following characteristics. It lists ports and default connectivity for bus interfaces. It lists parameters and default values.
Third, a Peripheral Analyze Order file is needed. A Peripheral Analyze Order (PAO) file contains a list of HDL files that are needed for synthesis, and defines the analyze order for compilation.
After that, the BGM Core can be added to the Microblaze system by updating the Microprocessor Hardware Specification (MHS) file which defines the hardware component and other files related.

Connecting to both side of the FSL Bus is master and slave module. A peripheral connected to the master ports of the FSL bus pushes data and control signals onto the FSL. A peripheral connected to the slave ports of the FSL bus reads and pops data and control signals from the FSL. In this project, the Microblaze acts as the master while the BGM module acts as the slave.

4.2.3 Fast Simplex Link (FSL)
MicroBlaze contains eight input and eight output 32 bits wide FSL interfaces. The FSL channels are dedicated unidirectional point-to-point data streaming interfaces. Transmission and reception of either data or control can be performed on the same FSL channels with the help of a separate bit which indicates whether the transmitted (received) word is control or data information. The performance of the FSL interface can reach up to 300 MB/sec. This throughput is on the target device dependent. The FSL bus system is ideal for MicroBlaze-to-MicroBlaze or streaming I/O communications. To be short, FSL has the following features:
· Uni-directional point to point communication
· Unshared non-arbitrated communication mechanism
· Control and Data communication support
· FIFO based communication
· Configurable data size
· 600 MHz standalone operation

FSL Interface

The FSL bus is driven by one master and drives one slave. FSL peripherals may be created as a Master or a Slave to the FSL bus. A peripheral connected to the master ports of the FSL bus pushes data and control signals onto the FSL. A peripheral connected to the slave ports of the FSL bus reads and pops data and control signals from the FSL.
[image: image10.jpg]Master
Module

{ g S\ CLKauu]

[SSL M DATARES]

¢ TN »

FIFO

L 5L S DATARSH]
¢ ENNET |

Slave
Module

Figure 4.2.3.1
FSL Interface

FSL Signal
	FSL_Clk
	Input clock signal to the FSL bus.

	SYS_Rst
	Input system reset signal to the FSL bus.

	FSL_Rst
	Output reset signal generated by the FSL reset logic which is used by any peripherals connected to the FSL bus to operate the peripheral reset.

	FSL_M_Clk
	Non-synchronous FSL master clock signal to asynchronously control the master writes to the FSL channel

	FSL_M_Data
	The data bus written to the FSL FIFO

	FSL_M_Control
	Single bit control signal that is transmitted together with the data at each clock edge

	FSL_M_Write
	Input signal used to controls the write enable signal of the FIFO. The values of FSL_M_Data and FSL_M_Control are pushed into the FIFO on a rising clock edge when the value of it is set to ‘1’.

	FSL_M_Full
	Output signal from the FIFO indicating that the FIFO is full.

	FSL_S_Clk
	Non-synchronous FSL slave read clock to asynchronously read the FSL FIFO.

	FSL_S_Data
	Output bus that indicates the data available at the read end of the FIFO

	FSL_S_Control
	Output signal that indicates the control bit associated with the data at the read end of the FIFO

	FSL_S_Read
	Input signal used controls the read acknowledge signal of the FIFO. The values of FSL_S_Data and FSL_S_Control are popped from the FIFO on a rising clock edge when the value of it is set to ‘1’.

	FSL_S_Exists
	Output signal indicating that FIFO contains valid data.

Table 4.2.3.1
FSL Signal
FSL Bus Operation

FSL Bus Write Operation
[image: image31.png][

DoPe

DoPe

[

[image: image32.jpg]

[image: image33.emf]Xilinx Platform Studio

Libgen (Library Generator)

Platgen (Platform Generator)

Data2BRAM

XFlow

Mb-gcc

IMPACT

[image: image34.emf]MHS file

Microblaze IP core Custom IP core

Generate netlist

bmm file

*.ngc, *.vhd

MSS file

Generate library

Compile and link

User C File

Generate bitstream

Elf file

Update bitstream

bitstream

Ucf file

(XPS)

bitstream

Project Navigator

(ISE)

Download to board

[image: image35.emf]CPLD

XC95144XL

tq100

Xilinx Virtex II

XC2V1000-4FG456C

SAA7113H

Video Input

TDI

TDO

[image: image36.png]

[image: image11.png]FSL_CLK

FSL_M_DATA

FSL_M

FSL_M_WRITE

FULL

FSL.

D1/D0

00

Z
y

Circ

<0

FIFO_DATA

FIFO_CONTROL

Figure 4.2.3.2
FSL Bus Write Operation
To write data or control signals from the master side to the FSL channel, the FSL_M_Write signal should be set to ‘1’. The data and control signals, that is FSL_M_Data and FSL_M_Control will then be pushed onto the FSL FIFO on the next rising clock edge. When the FSL FIFO is full, the FSL_M_Full signal is set to ’1’.
The above figure shows the scenario that data signal D0, D1 and control signal C0, C1 are to be pushed onto the FSL FIFO by the master side. At time=1, data D0 and control C0 are ready while at time=3 data D1 and control C1 are ready. On the rising clock edge at time=2, FSL_M_Write=’1’, so, on next rising clock edge, that is at time=4, data D0 and control C0 are pushed onto the FSL FIFO. Finally, on the next rising clock edge, that is at time=5, data D1 and control C1 are pushed onto the FSL FIFO in a First-In-First-Out approach.
FSL Bus Read Operation

[image: image12.png]B S
i A
HRE ENE
HEE
v & g s 4 @
4 5 g 5 g &
4 ¢ 2 g 2 B
2 ¢ §]
£ 3 4 8 o
2 R

Figure 4.2.3.3
FSL Bus Read Operation
The read end of the FIFO always contains the last unpopped data and control signals, FSL_S_Data and FSL_S_Control. When the FIFO is empty the FSL_S_Exists signal is set to ’0’ else it is set to ’1’. When the slave side peripheral of the FSL has finished reading the data, the FSL_S_Read acknowledge signal must be set to ’1’ for one clock cycle. The data and control values are then popped out of the top of the FIFO.

The above figure shows the scenario that the slave read data and control from the FSL FIFO. To do so, the slave side should first check to see if the FSL FIFO is empty by checking the signal FSL_S_EXISTS. If data or signal exists, the slave side read the data or control from the FSL FIFO. After reading the data the FSL_S_READ signal is set to ‘1’ for acknowledgement at time=1. The data D0 and control C0 are then popped out of the top of the FIFO at time=2. Similar operation is taken for reading data D1 and control C1. Finally, at time=4, the FSL FIFO becomes empty. The signal FSL_S_EXISTS is set to ‘0’ at a result.

FSL Interface Macros

There are two types of predefined macros for the communication between the Microblaze and the FSL channel. The Read macros are used when data or control is read from an input FSL channel into a MicroBlaze register while the Write macros are used when data or control is written to an output FSL channel from a MicroBlaze register. There are 4 types of put instructions.

FSL Read Macros

microblaze_bread_datafsl(val, id)

This macro performs a blocking data get function on an input FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.

microblaze_nbread_datafsl(val, id)

This macro performs a non-blocking data get function on an input FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.

microblaze_bread_cntlfsl(val, id)

This macro performs a blocking control get function on an input FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.

microblaze_nbread_cntlfsl(val, id)

This macro performs a non-blocking control get function on an input FSL of MicroBlaze. Id is the FSL identifier and can range from 0 to 7.
FSL Write Macros

microblaze_bwrite_datafsl(val, id)

This macro performs a blocking data put function on an output FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.

microblaze_nbwrite_datafsl(val, id)

This macro performs a non- blocking data put function on an output FSL of MicroBlaze. Id is the FSL identifier and can range from 0 to 7.
microblaze_bwrite_cntlfsl(val, id)

This macro performs a blocking control put function on an output FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.

microblaze_nbwrite_cntlfsl(val, id)

This macro performs a non-blocking data control function on an output FSL of MicroBlaze. id is the FSL identifier and can range from 0 to 7.
The FSL provides the mean of connection between Microblaze and BGM model. In this way, the data can be transmitted from the BGM to Microblaze for the post-processing calculation.
4.2.4 On-Chip Memory, Local Memory Bus and Memory Bus Controller
There is a need to storage medium for the data and instruction. On-Chip memory enables higher performance than off-chip one as it can minimize the transmission overhead between the Microblaze and the memory.
The Local Memory Bus provides single-cycle access to on-chip dual-port block RAM. It provides simple synchronous protocol for efficient block RAM transfers and guaranteed performance of 125 MHz for local memory subsystem.

The LMB BRAM Interface Controller is the interface between the LMB and the bram_block peripheral. A BRAM memory subsystem consists of the controller along with the actual BRAM components that are included in the bram_block peripheral.

In this system design, there are two memory bus controllers. One is connected to the data memory (DLMB_BRAM_IF_CNTLR) through the Data Local Memory Bus (DLMB) and other is connected to instruction memory (ILMB_BRAM_IF_CNTLR) through the Instruction Local Memory Bus (ILMB).
With the help of these modules and buses, the microblaze should be able to utilize the on-chip Block Ram for the storage of the data and instructions.
4.2.5 On-Chip Peripheral Bus (OPB Bus)
The OPB module is used as the OPB interconnect for Xilinx FPGA based embedded processor systems. It is responsible for the connection between the main system and the peripherals and thus makes the Microblaze system to be more functional. The bus interconnect in the OPB specification is essentially a distributed multiplexer implemented as an "and" function in the master or slave driving the bus and an OR to combine the drivers into a single bus. This OPB module can support multiple peripheral.
4.2.6 Universal Asynchronous Receiver-Transmitter (UART)
The UART LITE core is attached to the On-Chip-Peripheral Bus (OPB). UART stands for universal asynchronous receiver-transmitter. It is a computer component that handles asynchronous serial communication. Every computer contains a UART to manage the serial ports which conform to the RS232 standard, and some internal modems have their own UART.

UART LITE is the light version of UART with the following features.

· Supports 8-bit bus interfaces
· Support full duplex operation with one transmit and one receive channel (full duplex)
· Existence of 16-character transmit FIFO and 16-character receive FIFO
· Support configuration of Number of databits in a character
· Support both even and odd Parity
· Support configuration baud rate
Libgen allows the mapping of standard input and output, for example printf, scanf, and so forth, to an I/O peripheral in your design. UART LITE is one of these. Besides the printf, scanf and other standard input and output functions, some macros are provided and defined in the xuartlite_1.h which enables the use of more powerful instructions.

UART LITE Macros

Below are some commonly used macros in this project which are defined in xuartlite_l.h and can be included in the source C program.
void XUartLite_SendByte(Xuint32 BaseAddress, Xuint8 Data);

Send a byte of data Data to the device with base address equals to BaseAddress.

Xuint8 XUartLite_RecvByte(Xuint32 BaseAddress);

Receive a byte fo data from the device with base address equals to BaseAddress.

XUartLite_mIsReceiveEmpty(BaseAddress);

Check to see if the receiver is empty where BaseAddress is the base address of the device.

XUartLite_mIsTransmitFull(BaseAddress);

Check to see if the transmitter is full where BaseAddress is the base address of the device.

This UART Lite module enables the communication between the Microblaze system and the user. The user can thus send input to the Microblaze system and get the result from it.

Example

The following is an example demonstrates the use of UART for the communication between Microblaze and User in front of a Personal Computer.

int read_char(Xuint32 uart_base)

{

if(XUartLite_mIsReceiveEmpty(uart_base))

return -1;

else

return (int) XIo_In32(uart_base + XUL_RX_FIFO_OFFSET);

}

The above example read a character from the RS232 interface with base address specified by uart_base to the Microblaze. The interface is checked to see if empty to prevent reading error. In this way, the user input can be obtained by the user inputting in the Hyper Terminal which is connected to the RS232 interface. In this example XUL_RX_FIFO_OFFSET is the location of the receive FIFO.

4.2.7 OPB Timer

In order to facilitate the measurement of the performance of the Microblaze system, the timer module is added. It is attached to the OPB bus. Driver can be generated to facilitate the use of the timer. The header file “xtmrctr.h” and “xstatus.h” should be included in the source C file and the following functions can be used.

XStatus XTmrCtr_Initialize (XTmrCtr * InstancePtr, Xuint16 DeviceId)

This initializes a specific timer/counter instance/driver. It initialize fields of the XTmrCtr structure, then reset the timer/counter

void XTmrCtr_Start (XTmrCtr * InstancePtr, Xuint8 TmrCtrNumber)

This starts the specified timer counter of the device such that it starts running. The timer counter is reset before it is started and the reset value is loaded into the timer counter.

void XTmrCtr_Stop (XTmrCtr * InstancePtr, Xuint8 TmrCtrNumber)

This stops the timer counter by disabling it.
Xuint32 XTmrCtr_GetValue (XTmrCtr * InstancePtr, Xuint8 TmrCtrNumber)

Get the current value of the specified timer counter. The timer counter may be either incrementing or decrementing based upon the current mode of operation.

4.2.8 General Purpose Input Output (GPIO)
There is one problem concerning with the FSL Bus is that the Reset signal is connected to Ground. That is by connecting the BGM model with the Microblaze system through the FSL Bus, there is no way to reset the Microblaze by the FSL interface provided.

One solution to this problem is to use the General Purpose Input Output module. The reset signal is connected to the GPIO and every time the Microblaze system rerun, the BGM model is reset.
4.3 System Detail

[image: image13.jpg]ves

———{ | BGMp

Microblaze System
start

v

BGM Core is reset

Startthe timer

!

Process.

Any more data ?

v
BGM System carry out
the post-processing.
calculation of the mean
and standard error

v

Stop the timer

Print out the
result

End of Micrablaze
tem

Figure 4.3.1 Flow chart of Microblaze system operation (I)
[image: image14.jpg]Stat of BGM process.

v

BGM Core in process of
‘geneating path

v

Data ransfer rom BGM
Model o Microbiaze System

v
Data format wansform rom.
EEE floating point
representation (o floating
point representaton for C
programming

Temporary stoe the data.

End of BGM process

Figure 4.3.1 Flow chart of Microblaze system operation (II)

Figure 4.3.1 and figure 4.3.2 show the system operation flow. After the start of the Microblaze system, the BGM model will be reset. This is done by setting the correct pre-defined bit of the GPIO module which is connected to the Microblaze system by the OPB Bus. The timer will start timing at the same time.

Then the whole system will enter into a loop. The BGM core will start the process of generating the paths. After this, the data will be transmitted from it to the Microblaze processor. As the data received is in IEEE floating point representation, the data is transformed to the flowing point representation for the C programming before they are stored. The technique of “union” is used. This is make use of the technique that the data is stored in the same memory space and represented by two different data type.
union int2float

{
int int32;

float fp32;

} inData;
The data is stored by “inData.int32 = bgmData” and is taken out by “SumData = inData.fp32”.

The looping will stop after all the required data is transmitted from the BGM module to the Microblaze system. The microblaze system will then carry out the post-processing calculation to obtain the mean and the standard error.

Finally, the timer will stop counting and the result is print out to the screen by the UART Lite module which is connected between the Microblaze system and the serial port of the user Personal Computer. The microblaze system will end afterward.
Chapter 5
Experimental Results
5.1 Resources
Originally, the whole system is designed to be downloaded to the Celoxica RC200 Development Board. This board is built-in with a Xilinx XC2V1000-4FG456C Virtex II FPGA. But after the synthesis of the BGM core alone, it is found that it is not possible to do so as the resource is not allow. Below is the report generated in the synthesis of the BGM core with the device utilization summary being shown.

Table 5.1.1
Device utilization summary in Synthesis of BGM core:
	Selected Device : 2v1000fg456-4

	Device
	Used number
	Total Number
	Percentage

	Slices:
	6455
	5120
	126% (*)

	Slice Flip Flops
	5768
	10240
	56%

	4 input LUTs
	10974
	10240
	107% (*)

	bonded IOBs:
	42
	324
	12%

	MULT18X18s
	37
	40
	92%

	GCLKs
	3
	16
	18%

	DCMs
	1
	8
	12%

It can be found that both the slices and the 4 input look up table are not enough for the BGM core alone. So it is impossible to put the whole system to the board. As a result, simulation is done instead to show the feasibility and performance of the system.

5.2 Performance
[image: image15.png]Time(ms)
ocB853843

63

3171

BOFPGA
mpC

50
Number of P aths.

Table 5.2.1 Comparison of performance for the running of BGM core in FPGA and in PC (By Dr. Zhang)
[image: image16.png]Time(ms)

1400
1200
1000
800
600
400
200

50

100 500
Number of Paths.

L e |

1000

——FPGA
—=PC

Figure 5.2.2 The comparison of performance for the running the BGM core in FPGA and PC with different number of paths generated. (By Dr. Zhang)
Figure 5.2.1 and figure 5.2.2 shows the related performance comparison between FPGA implementation and software implementation of the BGM core alone. It can be shown that the performance of the FPGA implementation is much higher than that of software implementation. The time required for the generating of 50 paths is 3.171ms in FPGA. This is very fast compared to that in PC which is 63ms.
In addition to this, when the number of paths generated increased, the time required to generate all the paths is stable in FPGA while the time required to generate all the paths increase greatly in PC. This is the result of the localization of memory in FPGA. In PC, there is a need of transmit the temperate data from the processor to off-chip memory. The time required is much higher than the case in FPGA as the transmission of temperate data is within the FPGA.

[image: image17.png]il

i

il

[image: image18.png]2368053624 pe-

Figure 5.2.1 Simulation showing performance of Microblaze system

The Microblaze system with the BGM core is also simulated using the Modelsim simulator. In order to simplify the simulation, a “0” is printed out when the Microblaze system start while a “1” is printed at the end of the Microblaze process. As a result, the appearance of “1” implies that the Microblaze system has end its processing. By simulation, it appears at the time 2871060200ps, that is 2.871ms. The time is in the same significant as the result of running the BGM module in FPGA alone. The performance is highly greater than that required for running in PC.

5.3 Transmission Bandwidth
	Transmission Media
	Transmission Bandwidth

	Serial Port
	15KB / SEC

	Parallel Port
	150KB / SEC

	10M Ethernet
	1.2MB / SEC

	USB
	1.5MB / SEC

	10M Ethernet
	12MB / SEC

	PCI Bus
	133MB / SEC

	FSL Bus
	300MB / SEC

Table 5.3.1
Comparison of Transmission Bandwidth of Common Transmission Media and that of FSL Bus
Table 5.3.1 shows the comparison of transmission bandwidth between some common transmission and FSL Bus. It can be shown that the transmission bandwidth of FSL bus is about 300MB/Sec. This high bandwidth enables the minimization of overhead for the transmission of data from the BGM core and the Microblaze system and thus enables a higher performance of the application.
[image: image19.png]MAAAAAAAANAANARANARAARNT N1

Figure 5.3.1 Simulation showing the transmission bandwidth
From the simulation result, 32 bit of data is sent by about 40000ps. The time is calculated between the time the master BGM core raises the write signal to the FSL channel and the time the slave Microblaze raises the acknowledgement. By simple calculation, the transmission bandwidth is around 100MB per second. This is in the same significant as stated in the specification. The value is lower than that stated in the specification because of the fact that it may not be the peak value.

Chapter 6
Conclusion
A hardware implementation of the Brace-Gatarek-Musiela (BGM) Model was developed in the Microblaze system. The most computational expensive part was implemented as a VHDL core which is then added to the Microblaze system as a user core. The Microblaze was responsible for the post-processing computation. The Fast Simplex Link Bus was used as the data transmission channel between the Microblaze and the BGM core.
By comparing with the performance of the software-based implementation, a speed up factor 21.94 has been found when using the FPGA technology with the embedded soft core microprocessor.
In addition to this, the transmission bandwidth of the FSL Bus was also greater than some common transmission media. The speed up factor for the peak transmission bandwidth is 3 as stated in the specification. This minimizes the data transmission time between the micro-processor and the user core and hence improves the system performance.
It can also be verified that the advantages in using FPGA technology and soft core micro-processor can be obtained. This includes the high performance, the parallelism of execution of instruction, the reconfigurability and reuseability and the short development time of the FPGA based system as well as the flexibility, convenience and the retargetability of the soft-core microprocessor system.
It is better to develop FPGA based system with soft-core microprocessor in developing applications which put high performance and short developing time as the main criteria because of the great speed up factor.
Chapter 7
Future Development
There are still many improvements.
First, because of the lack of resources in the current FPGA for the FYP project, it is not possible to put the whole system into the FPGA. Only simulation can be done to show the functionality and the performance of the system. There are two approaches to solve the problem.

· To reduce the resource used for the system by carrying out optimization.

· To find another FPGA board which have enough resources for the system.

As the price of the FPGA is some how proportional to its power. Of course, it is possible to find a FPGA which have enough resources for the system, there is a trade off. Effort should be put, at the same time, to reduce to system resources required by optimization so as to reduce the requirement of the power of the FPGA.

Second, other applications can be implemented using the same technology. In this case, the applications which put high performance and short developing time as the main criteria should be the first choice.

Third, there are still lots of different hardware module which are useful but not yet tried in this project. Some effort can be put on studying the functionality and related issue in using them. In this way, the system can be improved.
Appendix I

Xilinx Microblaze

I.1
Introduction
The MicroBlaze embedded soft core is a reduced instruction set computer (RISC). Rather than based on a large variety of complex instruction, RISC is a processor whose design is based on the execution of a sequence of simple instructions rapidly.

Microblaze core is designed in VHDL which is therefore more structural, hierarchical, parameterized and optimized. It is specially optimized for Xilinx FPGAs. The optimizations include the following. First, The Microblaze maximizes the Look Up Table (LUT) utilization. It fills most LUTs with 4 inputs and even hard code the LUT inputs to utilize Virtex II fast connect. Second, the embedded block multiplier is used for Virtex II version. As a result, multiplication is done in hardware rather than using Library Software in the Virtex FPGA Families. This ensures faster calculation.

Instead of constructed in Application Specific Integrated Circuit (ASIC), the MicroBlaze circuit is constructed in a Xilinx FPGA where FPGAs are programmable silicon devices.
The MicroBlaze design uses standard FPGA device resources. There is no dedicated silicon and it is highly flexible because it will only have the peripherals that needed but not the one that are useless. This is one of the important issues to achieve power saving as useless peripherals waste power.

Table 2.1 shows the speed of Microblaze across different Xilinx FPGA family. The results were obtained by using the industry accepted Dhrystone 2.1 benchmark in 2001. This shown that the Microblaze could achieve 101 D-MIPS in maximum.

[image: image20]
In the rest of this chapter, the Microblaze Architecture as well as its Bus Interface will be introduced.

I.2
Microblaze Architecture
This section will be focused on the architecture of Microblaze. The instruction, register, pipeline technique, the load and store architecture, the cache and the handling on interrupt, exception, and break will be discussed.
I.2.1
Instruction
All Microblaze instructions are of 32-bit long. There are two different types of instruction. Type A instruction has up to two source register operands and one destination register operands. Type B instruction has one source register operand and one 16-bit immediate operand which can be extended to 32 bits by preceding the Type B instruction with an IMM instruction.

Example of type A instruction :
ADD Rd,Ra,Rb
Rd := Rb + Ra

GET Rd,FSLn
Rd := FSLn (blocking data read)

Example of type B instruction:
ADDI Rd,Ra,Imm
Rd := s(Imm) + Ra

MULI Rd,Ra,Imm
Rd := Ra * s(Imm)

I.2.2
Register
Microblaze has two types of register; each register is of 32 bit long. One is the general purpose register and the other one is the special purpose register. There are total of 34 registers with 32 of them belong to the former group and 2 of them belong to the latter group.

The general purpose registers are named from R0 to R31, except R0, in which its value is always zero, others can be used for general purposes accessing.
The two special purpose registers are the program counter and the machine status register. The program counter is used to store the next instruction word that is going to be executed.
Another special purpose register is the machine status register. It indicates the machine status by setting one or more bits. The bit position, name and the description are shown in table 2.2.

I.2.3
Pipeline
Microblaze pipeline is a three-stage parallel pipeline with each stage takes one clock cycle. The three stages are fetch stage, decode stage and execute stage. In each clock cycle, three instructions can run simultaneously, that is, one instruction in fetch stage, one in decode stage and the other one in execute stage. This parallel pipeline can ensure high throughput. Without the pipeline three instructions need 9 clock cycles to finish, but now only 5 is needed.

Microblaze resolves pipeline hazards by hardware means. There is no need to write strange assembler unless it is a prescheduled branch delay. As for branch instruction, the coming two instructions may be wrong due to branching occur. Instead of just flushing the instructions and stalling the pipeline, Microblaze only compulsory flush the instruction in fetch stage and allow some kinds of instructions, which are denoted by a “D” in the instruction mnemonic, to be executed in the delay slot before the control is transferred to the branch. This technique of predicting branch not happen can save one cycle for stall when compared with the original method which flush all the instruction in fetch and decode stage. This works in the case that branching may not always needed after the checking of branching conditions.
I.2.4
Load/Store Architecture
Memory access of Microblaze is data-sized aligned. There are three types of data size, byte which is of 8 bit, halfword which is of 16 bit and word which is of 32 bit. Another important point is that Microblaze is a big-endian processor in which the most significant bit is stored in the lowest storage address. Take the halfword as an example, the most significant bit is store in lowest storage address.
[image: image21]
I.2.5
Interrupt, Exception, Break
Microblaze handles interrupt, exception and break.

For interrupt, Microblaze first checks to see if Interrupt and Break In Progress are enabled. This can be checked by checking bit 30 (Interrupt Enable IE) and bit 28 (Break In Progress BIP) of the machine status register (MSR). If there is no break in progress and interrupt is enabled, then, Microblaze will execute the following pseudo instruction for interrupt handling. Break in progress is checked since it has a higher precedence than the interrupt; no interrupt can occur if there is break in progress.

[image: image22]
The above pseudo instruction means that the current instruction will be stored into general purpose register 14 first. Then, Microblaze will branch to address 0x00000010. Finally, the interrupt enable bit of the machine status register will be set 0 to disable further interrupt before the end of the current one.
After the interrupt is finished, the instruction word will be loaded back from R14 and the interrupt enable bit of the machine status register will be set 1 to enable the interrupt again.

Similar to interrupt, Microblaze stop the execution of the current instruction to handle exception. Instead of R14, R17 is used to store the value of PC. Instead of branching to address 0x00000010, it will branch to address 0x00000008.

Finally, talking about break, there are two kinds of break, software break and hardware break. Software break is internal which can be performed by using some instructions like brk or brki.

Hardware break is external, when external break signal is received. Microblaze will check the BIP bit of the MSR to see if there is break in progress. If there is no break in progress, then, the current instruction word will be stored in general purpose register 16. Microblaze will then branch to address 0x00000018. Finally the BIP bit of the MSR will be set to 1 to disable further break.

[image: image23]
I.2.6
Cache
Microblaze enables optional data and instruction cache. The advantage of this is that the performance can be improved. Accessing the memory outside the Local Memory Bus range, that is, external memory, usually takes longer time. The instruction and data caches are separated, each with the sizes ranging from 4Kbytes to 64Kbytes.
The cacheable address is split into two parts. One is the cache line which is used for looking up both the tag address in the tag RAM, and the actual data in the data store. The other part is the tag address which tells the system which of the possible memory locations that share the cache line is currently using it.

Take data cache as an example. For the load instruction, figure 2.2 shows the data cache organization. The address from the cache is used to get the data from data BRAM and the tag address from the Tag BRAM. If it can get the tag address from the tag BRAM, the tag address is as same as the one specified in the cacheable address and it is a load instruction, then the cache hit will become one and the data is obtained from the cache. The data will be stored in the cache when there is a store instruction. If the address is within the cacheable address segment, the data cache is updated with the new data.

[image: image24]
The organization of the instruction cache is similar to that of the data cache except that it should always be a load instruction. In the fetch cycle, Microblaze writes instruction address to the address bus and requests both the On-Chip Peripheral bus (OPB) which connects to the peripherals and the Local Memory Bus (LMB) which connects to local BRAM. If LMB acknowledge, then the instruction access from the LMB is ignored. If the address is non-cacheable, LMB and OPB are allowed to fulfill the request, else, similar operation as the data loading are carried out.

I.2.7
Fast Simplex Link Interface
The fast simplex link interfaces are dedicated for uni-directional point-to-point data streaming. Microblaze provides 8 input and 8 output interfaces which are of 32-bit wide. Signal and data can be transmitted using the same channel provided that the additional bit indicates whether the transmitting stuff is data or signal is set.

For obtaining data or control from the FSL input to the Microblaze register, the get instruction is used while to write data from the register to the fast FSL output, the put instruction is used. There are four modes for each of the instruction, two for the data and the other two for the control. The blocking mode will stall the Microblaze pipeline during the process until the data or control are available on the FSL in get, or the data and control can be written to the FSL in put. In the non-blocking mode, there will not be stall in the Microblaze pipeline.
I.3
Microblaze Bus Interface

[image: image25]
Microblaze is organized as a Harvard Architecture. This is a design philosophy where there are separated bus interfaces for instruction and data. It can be found from the about figure that there are 4 kinds of buses, two for data and the other two for instruction. LMB stands for Local Memory Bus. It provides a mean for the access of the block RAM. The access is usually fast and it is single-cycle. OPB stands for IBM CoreConnect On Chip Memory Bus. It provides a mean for the connection with the on-chip and off-chip peripheral without the limit in numbers. Microblaze also provide 8 inputs and 8 outputs interface to Fast Simplex Link (FSL). MFSL is the Master Fast Simplex Link while SFSL is the Slave Fast Simplex Link.

I.3.1
Bus Configuration
There are 6 types of bus configuration available. They will be introduced in this section.

[image: image26]
The first Microblaze bus configuration supports memory model with large external data and instruction memory as well as fast internal data and instruction memory access.

The second Microblaze bus configuration supports memory model with large external data and instruction memory as well as fast internal data memory access.

The third Microblaze bus configuration supports memory model with large external data memory as well as fast internal data and instruction memory access.

The fourth Microblaze bus configuration supports memory model with large external data and instruction memory as well as fast internal instruction memory access.
The fifth Microblaze bus configuration supports memory model with large external data and instruction memory.

The sixth Microblaze bus configuration supports memory model with large external data memory as well as fast internal instruction memory access.

They should be used according to the system design.
Appendix II
Hardware, Tools and Development Flow

II.1
Introduction
In this chapter, the hardware platform and tools used for development are introduced. The development flow is also explained in detail.

II.2
Development Board
In this project, the Celoxica RC200 Development and Evaluation Board is used. It provides a desktop environment specially designed for the development and evaluation of soft core microprocessor and FPGA applications.

In summary, this board has the following features. First, the board consists of a Xilinx XC2V1000-4FG456C Virtex II FPGA for the development of FPGA applications. Second, it consists of 2 bank of ZBT SDRAM providing a total of 4Mbytes of external memory. Third, it consists of Complex Programmable Logic Device (CPLD) for the configuration and reconfiguration of the FPGA and smart media management. Fourth, it supports the configuration of FPGA through the parallel, smart media and JTAG connector. Fifth, it consists of momentary contact switches, LEDs as well as seven-segment display which facilitate the testing of the board. Sixth, it consists of RS232 port, PS/2 keyboard and mouse port, Ethernet MAC/PHY with 10/100 baseT socket for the connection with other devices. Seventh, it provides video input and output support, AC97 compatible audio support which allow functional improvement during development. Eighth, it consists of a Programmable Clock Generator which is programmed to generate different clock signal. Finally, it consists of 50-pin expansion header with 33 general I/O pins, 3 power pins (+12V, +5V, +3.3V) and 2 clock pins which also allow functional improvement.

[image: image27.emf]Xilinx Virtex II

XC2C1000-4FG356C

FPGA

AC 97 Compatible Audio

Line in Mic in Line out

2Mbytes

ZBT SRAM

2Mbytes

ZBT SRAM

Seven-

Segment

Display

10/100

Ethernet

MAC/PHY

Contact

Switches

LEDs

Video

Composite

video

Camera

VGA

S video

RS232

PS/2 keyboard

PS/2 mouse

CPLD

JTAG

Parallel Port Smart Media

Reset

50 pin

Expansion

Figure II.2 Connection between devices in the Celoxica RC200 Development and Evaluation Board
II.3
Xilinx XC2V1000-4FG456C Virtex II FPGA
In this project, Xilinx XC2V1000-4FG456C Virtex II was used as the FPGA. It is built inside the Celoxica RC200 Development and Evaluation Board mentioned above.

“Virtex II” is a family of the Xilinx FPGA. “XC2V1000” is a device type in Virtex II family. “-4” specifies the speed grade. “FG” specifies the package type. “456” specifies the number of pins. “C” means commercial product, temperature range from 0 to +80 degree Celsius.

As the soft core microprocessor Microblaze is optimized for implementation in Xilinx FPGA. This FPGA well suits this project.

II.4
Xilinx Microblaze Soft Core Microprocessor
In this project, the Xilinx Microblaze was used as the soft core microprocessor. Its detail has been explained before and will be skipped here.

II.5
Xilinx Embedded Development Kit
The Xilinx Embedded Development Kit composed of the Embedded System Tools (EST) suite and Hardware IP for the Xilinx embedded processors and some standard peripherals. It was the main software package that used for the embedded system development in this project.

A GUI Interface, Xilinx Platform Studio (XPS) is provided for the project management and EST software utilities call and setup. The figure below indicates the interaction between XPS and some common EST software utilities used in this project. Their functions and the interactions between will be explained in detail in next section.

3.1 Development Flow

[image: image28]
II.6
Development Flow
In this section the Microblaze system design flow will be explained in detail. Figure 3.4 showed the summary of the flow. The design flow can, in fact, be separated into four phases, namely, hardware design flow, software design flow, implementation and downloading.

II.6.1
Hardware Design Flow
The first step of the hardware design flow was to define the target device. This defined the architecture (Virtex II), device size (XC2V1000), package (fg456) and speed grade (-7). They were the parameter of the FPGA.

The second step was to create the Microprocessor Hardware Specification (MHS) file. This file defined the embedded system hardware and describes the following.

· Embedded processor, that is the soft core Microblaze processor in this project
· Peripherals and their associated address spaces
· Bus architecture
· Overall connectivity of the system
· Interrupt priority
The third step was to prepare the Microprocessor Peripheral Definition (MPD) files. Each system peripheral has a corresponding MPD file which is a symbol of the embedded peripheral to the MHS schematic of the embedded system. It describes the following.

· The available port of the peripheral
· The hardware parameter for the peripheral
The fourth step was to run the Platform Generator (Platgen). This tool takes the MHS file as input, and performs the following.

· Generate Microblaze NGC netlist which is the microblaze custom core

· Generate all netlist for the peripheral

· Create HDL wrapper file and ties them together

· Synthesis top level design and create system netlist

· Create the Block RAM’s HDL instantiation template

· Create the Block RAM Memory Map (.bmm), which Specifies the on-chip memory map

The last two steps are important steps for the Block RAM management.
II.6.2
Software Design Flow
The software design flow is described as follow.

First, the Microprocessor Software Specification (MSS) file was needed to be created. MSS file has the follow functions.

· Assigns software drivers to each peripheral in the system

· Assigns different initialization files to different processor modes (for example executable or debug)

· Assigns interrupt software functions to peripherals

· Allocates which peripherals are mapped as STDIN & STDOUT devices which can be used to interact with the user.

The MSS file was then used as the input of the Library Generator (Libgen) which is a tool to configure libraries and device drivers. It has the following functions.

· Generates the system drivers

· Compiles drivers for the peripheral

· Generates C libraries for your system

· Maps STDIN/STDOUT to the devices specified

· Maps interrupt routines to a particular interrupt signal

· Allocates address map details to the peripheral drivers

The MHS file is also needed in this step as the MSS file has dependences on the MHS file.

After running the libgen, the source C programs and header files were needed to be created. These programs used the functions and parameters in libraries that produced. They are written to configure the system to carry out different tasks.

The GNU tools mb-gcc was then run which compile and link the source C programs. This translated the C CPU’s high level instruction set into the Microblaze instruction set.

First, object code, which is a set of MicroBlaze specific instructions for the execution of own CPU in machine language was created by Assembler. The object code was linked with other library elements and generates the Executable Link Format (ELF) file by the Linker/Loader.

II.6.3
Implementation
After the hardware and software design flow, the design needed to be implemented. It was carried out by the Xilinx Implementation Tool. XFlow, which could implement the design and create the bit file, was used. The function of it is to place and route the top level design made by Microblaze. But before this, the User Constraints File (UCF) was needed to be prepared. The functions of this file are as follow.

· Defines the pin assignments

· Defines the timing constrains

The tool data2bram was called during the process. Data2BRAM incorporates CPU software images into FPGA Bit stream. This allows CPU software to be executed from Block RAM-built memory, from within a FPGA bit stream.
II.6.4
Downloading
The final step was to download the bit stream to the board and configure the FPGA.

In performing this task, there was a small trick. The Celoxica RC200 Development and Evaluation Board provided with a download program FTU2 which used the parallel cable for the downloading of bit stream. Experience has shown that this method fail if the bit stream was generated by the Xilinx Embedded Development Kit instead of the Celoxica DK. The configuration process never reached the finish state.

As a result, another method was tried. In this method the bit stream was downloaded with parallel cable III connected to the JTAG connector of the board. The IMPACT program provided by Xilinx was called. In order to simplify the process, a download script was written to accomplish this task.

There were five modes for the configuration of the Virtex II FPGA. This included the Master Serial Mode, Slave Serial Mode, Master Selectmap Mode, Slave Selectmap Mode and Boundary Scan Mode. Boundary Scan Mode was chosen in this project. Figure 3.5 shows the JTAG chain of the board. The download script was written to define the configuration mode, the port connected to the computer and the devices inside the JTAG chain. It also functioned as starting the downloading process.

In adding the devices, the configuration file of each device needed to be specified. The Xilinx Virtex II was configured with the bit stream created. The CPLD and Video Input were configured with the corresponding Boundary Scan Description File (BSDL or BSD) file. The BSDL file provides IMPACT with necessary Boundary Scan information that will allow a subset of the Boundary Scan operations to be available for that device.

After all this, the designed function can be run on the board.

II.6.5
Simulation

The Simulation Model Generator (SimGen) creates and configures various VHDL and Verilog simulation models for a specified hardware. It takes a Microprocessor Hardware Specification (MHS) file as input that describes the hardware. SimGen is also capable of creating scripts for a specified vendor simulation tool. The scripts compile the generated simulation models. The Modelsim software can then be run for the simulation. This is a very important step in verifying the system function correctness and measuring system performance.
Appendix III
Bibliography
Xilinx MicroBlaze Processor Reference Guide Embedded Development Kit. Pages 11-52

Xilinx Embedded System Tools Guide Embedded Development Kit

Xilinx Device Drivers Documentation Pages 995-1079

Xilinx Fast Simplex Link Channel Product Specification DS449 (v1.1) Aug 06, 2003
Xilinx On-Chip Peripheral Bus v2.0 with OPB Arbiter (v1.10b) Product Overview DS401 (v2.6.2) September 18, 2003
Xilinx OPB General Purpose Input/Output (GPIO) (v3.00a) Product Overview DS466(v1.0) November 4, 2003
Xilinx OPB UART Lite Product Overview DS422 (v2.5.1) July 29, 2003

Xilinx OPB Timer/Counter Product Overview DS465 (v1.11.3) November 25, 2003

Xilinx LMB Block RAM (BRAM) Interface Controller Product Overview DS452 (v1.5) November 17, 2003
Hans-Peter Rosinger, Xilinx Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast Simplex Link (FSL) Channel XAPP529 (v1.1) Dec. 19, 2003

Yuen Pui Ho, The BGM model and its implementation February 20, 2003

Igor Grubiˇsi´c, INTEREST RATE THEORY BGM MODEL MAY 2002

Jessica James and Nick Webber, Interest rate modeling, Chichester, West Sussex, England; New York: John Wiley & Sons, 2000.
Andrew J.G. Cairns, Interest rate models : an introduction, Princeton, N.J. : Princeton University Press, c2004.
Peter Waldeck, Neil Bergmann. “Dynamic Hardware-Software Partitioning on Reconfigurable System-on-Chip” Pages 1-3

Kees A. Vissers. “Reconfigurable Computing” slides of the presentation of BWRC talk, December 6: Pages21-26

Jim Turley. “Design Your Own Microprocessor” article in Magazine Circuit Cellar

Neil W Bergmann. “Enabling Technologies for Reconfigurable System-on-Chip”
Stephan Wong Stamatis Vassiliadis, Sorin Cotofana. “Future Directions of Programmable and Reconfigurable Embedded Processors” Pages 2-10

Warren Miller. “Speed up Verification of Long Transaction Sequences with MicroBlaze Soft Processor” articale in Fall/Winter 2001
Brandon Blodget, Scott McMillan. “A lightweight approach for embedded reconfiguration of FPGAs”. 1530-1591/03 in IEEE 2003
Reiner Hartenstein. “Are we Really Ready for the Breakthrough”
Anna Goman. “Waveform Generator Implemented in FPGA with an Embedded Processor” master thesis, Pages 19-32
1 2 3 4

1 2 3 4 5

Virtex™ -II Pro (-6)�
150 MHz�
101 D-MIPS�
�
Virtex-II (-5)�
125 MHz�
82 D-MIPS�
�
Virtex-E (-7)�
75 MHz�
49 D-MIPS�
�
Spartan-IIE (-6)�
75MHz�
49 D-MIPS�
�
Spartan™ -II (-4)�
65 MHz�
43 D-MIPS�
�
Table 4.2.1 Speed of Microblaze across different devices

From Xilinx Statistics

Virtex™ -II Pro (-6)�
150 MHz�
101 D-MIPS�
�
Virtex-II (-5)�
125 MHz�
82 D-MIPS�
�
Virtex-E (-7)�
75 MHz�
49 D-MIPS�
�
Spartan-IIE (-6)�
75MHz�
49 D-MIPS�
�
Spartan™ -II (-4)�
65 MHz�
43 D-MIPS�
�
Table I.1 Speed of Microblaze across different devices

From Xilinx Statistics

Bit �
Name�
Description�
�
0�
CC�
Copy of arithmetic carry (bit 29)�
�
1-23�
--�
Reserved�
�
24�
DCE�
0 –Data cache is disabled

1 –Data cache is enabled �
�
25�
DBZ�
0 – No division by 0 has occurred

1 – Division by 0 has occurred�
�
26�
ICE�
0 – Instruction cache is disabled

1 – Instruction cache is enabled�
�
27�
FSL�
0 – No error on FSL get/put

1 – Mismatch in instruction type and value type for get/put�
�
28�
BIT�
0 – No break in progress

1 – Break in progress�
�
29�
C�
0 – No arithmetic carry (Borrow)

1 – Arithmetic carry (no borrow)�
�
30�
IE�
0 – Interrupt disabled

1 – Interrupt enabled�
�
31�
BE�
0 – Buslock disabled on data-side OPB

1 – Buslock enabled on data-side OPB�
�
Table I.2 machine status register in Microblaze

Clock cycle 1�
Clock cycle 2�
Clock cycle 3�
Clock cycle 4�
Clock cycle 5�
�
Fetch instruction 1�
Decode instruction 1�
Execute instruction 1�
�
�
�
�
Fetch instruction 2�
Decode instruction 2�
Execute instruction 2�
�
�
�
�
Fetch instruction 3�
Decode instruction 3�
Execute instruction 3�
�
Figure I.1 Pipeline technology in Microblaze

Figure I.2 Big Endean Data Type (Halfword as example)

Byte address�
N�
N+1�
�
Byte label�
0�
1�
�
Byte significant�
Most significant byte�
Least significant byte�
�
Bit label�
0 15�
�
Bit significant�
Most significant bit Least significant bit�
�

R14 (PC

PC (0x00000010

MSR[30] (0

R17 (PC

PC (0x00000008

R16 (PC

PC (0x00000018

MSR[28] (1

�

Figure I.3 The Data Cache Organization

�

Figure I.4	Block diagram of the Xilinx Microblaze Core

From Xilinx MicroBlaze Processor Reference Guide

�

Figure I.5 Bus Configurations (From Xilinx MicroBlaze Hardware Reference Guide)

�

Figure II.1 Top View of Celoxica RC200 Development and Evaluation Board

� EMBED Visio.Drawing.6 ���

Figure II.3 Common EST software utilities and their interaction with XPS

� EMBED Visio.Drawing.6 ���

Figure II.4 -- Design Flow of Microblaze System

� EMBED Visio.Drawing.6 ���

Figure II.5 The JTAG chain of the Celoxica RC200 Development and Evaluation board

Page 18 of 60

_1142796345.unknown

_1142796554.unknown

_1142867426.unknown

_1131004854.vsd
Xilinx Platform Studio�

Libgen (Library Generator)�

Platgen (Platform Generator)�

Data2BRAM�

XFlow�

Mb-gcc�

IMPACT�

�

�

�

_1131029831.vsd
�

CPLD
XC95144XL
tq100�

Xilinx Virtex II
XC2V1000-4FG456C�

SAA7113H
Video Input�

TDI�

TDO�

_1142796301.unknown

_1131008162.vsd
�����

MHS file�

Microblaze IP core�

Custom IP core�

Generate netlist�

bmm file�

*.ngc, *.vhd�

Generate bitstream�

MSS file�

Generate library�

Compile and link�

User C File�

Elf file�

Update bitstream�

bitstream�

Ucf file
(XPS)�

bitstream�

Project Navigator
(ISE)�

Download to board�

_1130969732.vsd
AC 97 Compatible Audio�

Xilinx Virtex II
XC2C1000-4FG356C
FPGA�

Line in�

Mic in�

Line out�

2Mbytes
ZBT SRAM�

2Mbytes
ZBT SRAM�

Seven-Segment Display�

10/100 Ethernet MAC/PHY�

Contact Switches�

LEDs�

Video�

RS232�

PS/2 keyboard �

PS/2 mouse�

Composite video�

Camera�

VGA�

S video�

CPLD�

JTAG�

Parallel Port�

Smart Media�

Reset�

50 pin Expansion�

