K.F.NG and K.T.NG
{kfng1, ktng1}@cse.cuhk.edu.hk
The Department of Computer Science and Engineering
The Chinese University of Hong Kong
7th May, 2004

Implementation of Cramer's Rule in Pilchard Platform

Abstract
A hardware implementation of system solving system of simultaneous linear equations using Cramer’s rule on the Pilchard Platform is presented. The calculation of determinant is implemented in Pilchard Platform while software implementation is used for the post-processing of the results for solving system of linear equations by Crammer’s Rule. In the hardware design, parallelism of modules is used to gain the speed up. The resulting design operates at a maximum frequency of 36.089MHz with 87% slice resources used in the Xilinx VirtexE XCV1000-6 FPGA.

1 Introduction
A linear equation is an equation in one or more variables where each term's degree is not more than 1. A system of simultaneous linear equations is just a collection of such linear equations, and to solve a system look for the values of the variables which make all the equations true simultaneously.
It is a common task for engineers to solve systems of simultaneous linear equations, especially when modeling natural phenomena. Cramer's rule is one of the techniques for solving this problem with unique solution. Computer is normally used for the task instead of solving by hand.
In Cramer’s rule, determinants are calculated for computing the variables. The most time consuming part is to calculate the determinant one by one for computer. For example, for a 4X4 matrix determinant, it is need to calculate 4 3X3 matrix determinants, and for each 3X3 matrix determinant, 3 2X2 matrix determinants are required. The situation will become more worse when the linear equation is a larger matrix.
FPGA can be the solution to the problem. Compared to software-only implementation using processor, FPGA has the following advantages. First, higher degree of parallelism can be achieved. The computing elements of the FPGA can all operate in parallel. Multiple data can be processed in one cycle. In this way, calculation can be done in much fewer clock cycles. Also, FPGA is explicitly hardwired to perform a certain operation and does not require decoding of an instruction stream as in a processor. This leads to higher performance to silicon area ratio and more computation per clock cycle as there is an elimination in the overhead of the instruction storage, instruction decoding.

Moreover, FPGA is reconfigurable. The debug process become much easier compared to the ASIC technology, especially when errors occur at the later part of the design cycle.

Therefore, the parallelism and specific design contributes to the most significant improvements of the performance. And the reconfigurability and flexibility makes the development time become much shorter.

Post calculation is needed when Cramer’s rule is used to solve simultaneous linear equations. Divisions of the calculated determinant results are required in order to determine the unknowns. It is carried out in software level.
Both serial and parallel implementation is used in the hardware part of the system design. For small matrix determinant calculation, parallel design is implemented in order to obtain higher degree of parallel calculation. Since the logic resource is limited and the requirement of slices increases exponentially, serial implementation is needed for larger matrix determinant calculation. The system is aimed to achieve the most optimization in the confined resources.

The rest of the paper is organized as follows. In Section 2, the determinant and Cramer’s rule are introduced. In Section 3, the consideration of system design is described. Section 4 is an overview of the design architecture of the system. Section 5 is the results of the design. Section 6 is a conclusion with suggested future work.
2 The Determinant and Cramer’s rule

2.1 Determinant

To find the determinant of a matrix,

it is needed to expand to “minor” to obtain:

[image: image1.png]an e ai o oA
an an am - an

an ap Ak
an

@y agg v Gk
L]

[image: image2.png]an ax - am an axn Ay(-1)

R t] I SRR P

ak aks o akk @ ag (o)

In general:

[image: image3.png]k
A=Y s,
2

 [image: image4.png]

For a 3X3 matrix, the calculation is as follow:

[image: image5.png]

Where [image: image6.png]a1 by
az by

 [image: image7.png]

[image: image8.png]aiby = bray = —(braz — arbz)

2.2 Cramer’s Rule
The Cramer’s rule states that for a system of linear equation.

[image: image9.png]@z +by+e
sz +boy + oo
a3z + bay + ¢

The Determinant D is [image: image10.png]ar b oa

az by .

az by

If [image: image11.png]d#0

and [image: image12.png]D#0

,
then there is unique solution given by the following.
[image: image13.png]by
by
by

a
o

114

Y = [image: image14.png]

Z = [image: image15.png]

In this way, by calculating the relative determinants of the system of linear equation, all the variables can be computed. There is a requirement that the equation should have unique solution. It can be checked whether the value D is equal to 0.

3 Design Considerations
The system consists of two parts of implementations: Hardware and software. The hardware implementation is used to calculate determinants which are the most time consuming part of the calculation. And the software implementation is used for the calculation with Cramer’s rule correspond to the system of linear equations.

3.1 Hardware Implementation
The equations before show that larger determinant can be expanded to small determinant. So the hardware module is built up from the basic 2X2 determinant module. The calculation of the determinant is as follow:

[image: image16]
Figure 1. Diagram of the calculation flow of 2X2 module
The parallelism makes the calculation completed in shorter cycle. The same architecture is implemented in the 3X3 module:

[image: image17]
Figure 2. Diagram of the calculation flow of 3X3 module
In this way, the number of cycles required for the computational of the higher level module is just a few circles more than that of lower level module. The function of time is only O(n). But the requirement of resources increases exponentially since a NXN module requires N number of one-level-lower modules (e.g. a 3X3 module requires 3 2X2 modules). So for the higher level module (from 5X5 module), serial implementation is used. Corresponding determinants of lower level modules are calculated and stored in registers. Then final results are calculated.

Since the hardware modules are required to calculate all level of determinant for different number of equations, control signal is needed to select which module is to be activated for calculating the corresponding size of module.

3.2 Software Implementation

The software program is used for the post-calculations after the corresponding determinants are calculated in the hardware module. From Cramer’s rule, the variables are calculated by dividing the two corresponding determinants. The software implementation of division is much more efficient than hardware since floating point calculation is required. In the software program, the floating point calculation can be done inside the FPU inside the processors. If the floating point calculation is done inside the hardware module, large amount of resources are used. The hardware module is aimed to use the resource to optimize the calculation of determinant. So the floating point calculation is done inside the software program.

4 System Architecture

The hardware module is build up from the basic 2X2 module. It consists of 2 multiplications and a subtraction. For multiplication, it is found that the multiplier can only multiply positive numbers. It is required to change the negative input to positive before multiplication. And change the correct sign after.

[image: image18.emf]

a

b

c

d

+

+

+

+

a(7)

b(7)

c(7)

d(7)

MULT

MULT

+

+

=

=

+

+

1

1

a(7)

b(7)

c(7)

d(7)

1

1

1

1

8

8

8

8

16

16

16

1

Figure 3, Data path of 2X2 module
The serial implementation of larger core is shown as follow:

[image: image19.emf]

state

4X4

module

MUX

Registers

+

-

+

+

-

state

Inputs

from

the

5x5

module

Figure 4, Data path of 5X5 module
Registers are used for temporary storage of results. And the output is passed to the higher determinant module.

An FSM is used as the system control. The state diagram of the design is as follow:

[image: image20.emf]State 1

State 2

state X

Control >=

“

0111

”

&

Run =

‘

1

’

Run =

“

0

”

Rdy =

‘

0

’

State 3

Rdy =

‘

1

’

State 4

Rdy =

‘

1

’

Rdy =

‘

0

’

State 5

Rdy =

‘

1

’

Rdy =

‘

0

’

State 6

Rdy =

‘

1

’

Rdy =

‘

0

’

State 7

Rdy =

‘

1

’

Rdy =

‘

0

’

State 8

Rdy =

‘

1

’

Rdy =

‘

0

’

Rdy =

‘

1

’

State 9

State 10

rdy1 =

‘

1

’

rdy1 =

‘

0

’

Control <

“

0111

”

&

run =

“

1

”

Figure 5, the state diagram of the system of 7x7 module
	State
	action

	1
	Wait for run, assign corresponding input to 6x6 module

	2
	Determinant 1 calculated and stored. Assign next inputs to the module

	3
	Determinant 2 calculated and stored. Assign next inputs to the module

	4
	Determinant 3 calculated and stored. Assign next inputs to the module

	5
	Determinant 4 calculated and stored. Assign next inputs to the module

	6
	Determinant 5 calculated and stored. Assign next inputs to the module

	7
	Determinant 6 calculated and stored. Assign next inputs to the module

	8
	Determinant 7 calculated

	9
	Change the determinants to correct sign

	10
	Calculate the determinant output of 7x7 determinant

	x
	Pass the input to lower level module. Wait for ready signal.

Table 1, the corresponding action in each state of 7x7 module

5 Result

An implementation of system solving system of simultaneous linear equations using Cramer’s rule was synthesized and implemented using Xilinx ISE 6.1i with XST for the synthesis. The Pilchard Platform which used SDRAM bus instead of PCI bus for the communication with the PC was used as the development platform. The design was successfully tested in this platform with Xilinx VirtexE XCV1000-6 FPGA.

Table2: Resource used for the respective core for determinant calculation

	Core
	Slices
	Slice Flip Flops
	4 input LUTs

	Available
	12288
	24576
	24576

	2 x 2
	168
	88
	287

	3 x 3
	937
	473
	1650

	4 x 4
	4543
	2269
	8045

	5 x 5
	5934
	2886
	10634

	6 x 6
	7884
	3747
	14281

	7 x 7
	10541
	4915
	19240

Table3: Total resource required in implementing the design in Pilchard Platform

	Resource
	Used
	Available
	Percentage

	Slices
	10729
	12288
	87%

	Slice Flip Flops
	5463
	24576
	22%

	4 input LUTs
	19590
	24576
	79%

	Bonded IOBs
	120
	162
	74%

	BRAMs
	4
	96
	4%

	GCLKs
	2
	4
	50%

Table4: The maximum frequency obtained for the respective core and the whole design

	Core
	Maximum Frequency

	2 x 2
	150.625MHz

	3 x 3
	62.181MHz

	4 x 4
	57.998MHz

	5 x 5
	53.996MHz

	6 x 6
	52.236MHz

	7 x 7
	47.054MHz

	Whole Design
	36.089MHz

Table 2 shows the resources used for the respective cores for determinant calculation while table 3 shows the total resources required for the whole design. The resources required increases rapidly when compared that of the 3x3 module with that of the 4x4 module, but there is only a slight different when compared that of the 4x4 module with that of the 5x5 module. It is because 4 3x3 modules were used for the 4x4 module while only 1 4x4 module was used for the 5x5 module in order to save resources. This shows the difference of resources required for parallel and serial implementation.
Table 4 shows the maximum frequency that each modules and the whole design can operate. It can be found out that the design can operate at the highest frequency of 36.089MHz when calculating the determinant value.
6 Conclusion

A system solving system of simultaneous linear equations using Cramer’s rule is implementation using the Pilchard Platform. This system is able to solve system of simultaneous linear equations with up to 7 variables. Users have the ability to input the coefficient of the variables, the number of equations in the system and obtain the results as well as some intermediate results, such as the determinant values, through a user-friendly Text-User-Interface.
In the design, the calculating of matrix determinant which is a computational expensive task was carried out in a parallel approach using the Pilchard Platform. The user input, resulting output and the post-processing using the determinant values was done in software level using C program.
There is a maximum frequency of 36.089MHz in calculating of matrix determinant using Pilchard Platform with 87% of slices being used.
6.1 Future Work

Below are some suggested future works.
First, there is no multiplier in the Virtex E FPGA, the implementation of multiply function is done using slice resources. So, in order to improve the system with fewer resources, the multiplication can be implemented with a method using fewer resources. Another way to solve the problem is to implement the design in another FPGA with multiplier.
Second, the system of simultaneous linear equation can be done is pipeline. Pipelining technique can be used in this way to increase the throughput of the system.
7 Reference

1. Xilinx, Inc. “Xilinx VirtexE 1.8V Field Programmable Gate Arrays Production Product Specification”. 2002, July 17
2. Xilinx, Inc. Xilinx Libraries Guides. Alliance Series and Foundation Series online documentation collection. 2002.
3. Bolton, W. (William), “Linear equations and matrices”, Harlow : Longman Scientific & Technical, 1995
4. Aitken, A. C. (Alexander Craig), “Determinants and matrices”, Edinburgh: Oliver and Boyd; New York: Interscience Publishers, 1954. 8th edition
5. Robert Vein and Paul Dale, “Determinants and their applications in mathematical physics”, New York : Springer, c1999
6. K.H.Tsoi, “Pilchard Reference Guide”, January 21, 2004
a1c1 – a2c2 + a3c3

not

1

 a1 c1 a2 c2 a3 c3

ab - cd

not

1

a b c d

_1145447874.vsd
a

b

c

d

+

+

+

+

a(7)

b(7)

c(7)

d(7)

MULT

MULT

+

+

=

=

+

+

1

1

a(7)

b(7)

c(7)

d(7)

1

1

1

1

8

8

8

8

16

16

16

1

_1145450684.vsd
State 1

State 2

state X

Control >= “0111”&
Run = ‘1’

Run = “0”

Rdy = ‘0’

State 3

Rdy = ‘1’

State 4

Rdy = ‘1’

Rdy = ‘0’

State 5

Rdy = ‘1’

Rdy = ‘0’

State 6

Rdy = ‘1’

Rdy = ‘0’

State 7

Rdy = ‘1’

Rdy = ‘0’

State 8

Rdy = ‘1’

Rdy = ‘0’

Rdy = ‘1’

State 9

State 10

rdy1 = ‘1’

rdy1 = ‘0’

Control < “0111”&
run = “1”

_1145447387.vsd
state

4X4
module

MUX

Registers

+

-

+

+

-

state

Inputs
from
the
5x5 module

