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This article is dedicated to the analysis of a forced motion of a rotor having one degree of freedom. Both rotational and 
translational motions are considered. The rotor motion is represented as a material point rotation around the fixed point 
assuming that a material point posses both a mass and a moment of inertia. Rotation and translation of the material 
point are treated as motion of the system “material point – fixed point” in an inertial reference system. An attention is 
drawn to the fact that in order to enable rotation and translation of a material point with a constant velocity, it is 
necessary to apply an additional torque for the purpose of overcoming of the inertial moment being created by a moment 
of inertia of the material point, which is produced due to a displacement of the material point with respect to the fixed 
point. The special attention is paid to the case of a simultaneous rotation and linear displacement of the material point 
by three virtual displacements with respect to the fixed point.  

The first law of Newton says that if there is no effect of any other body to a body being under 
consideration, this body will maintain the quiescent state or keep a uniform rectilinear inertial motion. 
Such a motion is referred to as a free motion. The free-moving body consists of the material points 
being connected to each other creating the single whole without interacting as independent bodies do. 
Such an assumption is used in the classical mechanics. Therefore, one can say that the material points 
of the free-moving body are in the weightlessness state. The first law of Newton says nothing about 
free rotation of a body possessing the principal moment of inertia about the principal axis of inertia, 
although such motion exists. The reason is as follows: Newton has considered the planetary motion as 
a bounded motion of the material point possessing only the mass, while a size and a moment of inertia 
could be neglected. In fact, Newton considered the bounded translation of the material point along a 
curvilinear trajectory. Such a conclusion is evidently proven through the examples of the material 
point motion. 

One of the examples provided in the physics is a bounded motion of the body under effect of 
parallel gravitational forces of the Earth. A thrown body performs a complex motion consisting of 
inertial translation with a constant linear velocity in the defined direction, and of the uniformly 
accelerated free fall. Because of these two motions, the body moves along a curvilinear trajectory. 
Gravitational forces can be referred to as mass forces due to the fact that they are applied in a 
continuous manner to each material point of the body. In this case, the material points as independent 
bodies are not interacting between themselves and, therefore, they are in the weightlessness state. The 
more complex example of the bounded motion is the planetary motion around the Sun. The motion of 
a planet as a material point is performed in the field of the gravitational forces converging to the center 
of the Sun. Due to such a feature of the field of the gravitational forces, the free motion of a planet is 
performed while changing the direction of the velocity. The gravitational field of the Earth affects in 
the same manner the moving satellites. It is considered that the motion of planets and satellites is 
performed along closed curvilinear trajectories. Despite a changed direction of the planet velocity, the 
principle of body’s material point weightlessness is conserved also for that type of a motion. 

In case of bounded translation, the body possessing the principal moment of inertia can perform 
a uniform rotation about principal axis of rotation as in the case when no forces are affecting the body. 
Such a fact demonstrates that the field of gravitational forces does not affect the body’s rotation, 
because the gravitational forces are the mass forces not producing a torque. The free motion of the 
body possessing the principal moment of inertia is not left without due attention. The physics consider 
a rotation of the Earth, and it is shown that in the course of rotation the field of centrifugal 
accelerations is produced. It affects the body’s material points and creates diverging centrifugal forces 
affecting each material point as gravitational forces do. There is another difference in addition to the 
path of the force application: the value of the centrifugal force depends on a radius of the body’s 
rotation about the principal axis of the inertia. The body would be destroyed into separate material 
points if the forces of another nature will not exist. These forces prevent from such destruction. In case 
the material points being enabled to move inside the body are presented, then such material points are 
interacting between themselves and their interaction results in development of the ponderability state. 
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In the whole, the uniform rotation of the body as a motion has a principal difference with respect to an 
inertial rectilinear uniform motion of the body.  

The bounded motion of a body along a curvilinear trajectory under the action of both the active 
force being generated by another body and the gravitational forces being generated by the Earth 
represents a new qualitative class of the motion. Under the action of a force, the body performs an 
accelerated motion in the direction of the force application. In this case the inertial properties of the 
body opposing its accelerated motion are manifesting themselves. The mass of the body being 
included into the definition of the active force accounts for the inertial properties of the body in an 
inertial reference system. Therefore, the inertia forces of the body are taken into consideration only in 
a non-inertial reference system. The distinctive feature of such translational motion of the body is an 
interaction of the material points of the body between themselves. Therefore the material points of the 
body are in ponderability state. A more complex motion of the body under action of an active force in 
case when the path of the force application does not go through the body's center of gravity might 
occur. In such a case, in addition to the rectilinear motion of the body occurs a complementary 
accelerated rotation of the body possessing the principal moment of inertia about the principal axis of 
inertia. Such a motion can be referred to as a bounded rotation under the action of the torque about the 
center of gravity resulted from the action of an active force. Hence, the bounded rotation of the body is 
performed about the principal axis of inertia. It is a uniformly accelerated motion, and it could occur 
only in presence of the torque-producing forces. 

However there is also the third type of rotation of the body possessing the moment of inertia. 
Such type can be referred to as the bounded rotation of the body. Such a type of the body's rotation has 
been produced in an artificial way as a result of imposing the mechanical constraints onto the body. 
Such constraints force the body to perform an inertial rotation about previously chosen axis or a point 
under the action of the torque-producing forces. Due to that fact, a new type of the system has been 
established. It could be referred to as the system with the mechanical constraints or as the mechanical 
system. The distinctive feature of the system rotation is the rotation with the same velocity of all its 
points being situated at the different radial distances around the same fixed axis or point. In this case, 
any variation of the material points' relative position is finite and results from the deformation of the 
mechanical constraints. It is obvious that such systems in addition to the principal moment of inertia 
can possess a complementary one, because a determined axis of rotation may not coincide with the 
principal axis of inertia. If in the course of rotation a system allows changes of the material points' 
position as a function of the speed of rotation, then such a system became a system with variable 
moments of inertia. The common feature of all bodies and systems performing a rotation is the field of 
the centrifugal accelerations diverging from the axis of rotation. Such accelerations impel each 
material point to return to the uniform rectilinear motion. It is evident that in some cases a mechanical 
system can be represented as a material point possessing the mass and the principal moment of inertia, 
which is connected to a fixed axis in some particular way. 

The mechanical system has been occurred as a result of the technological progress and they are 
the products of engineering activities. Usually the design foresees the coincidence of the body's center 
of gravity with the rotation axis. It results in the fact that the resultant of all centrifugal forces of the 
rotor’s material points is equal to zero. In practice, it is not always possible to locate the body's center 
of gravity on the rotation axis. As a result, the resultant of centrifugal forces emerges. It is applied at 
the rotor's center of gravity and is directed along the rotation radius. Usually the design approaches 
foresee superposition of the rotor's principal axis of inertia with the rotation axis. Such a system 
possesses the principal moment of inertia uniformly distributed around the rotation axis in the same 
manner as for the body performing a free rotation about the principal axis of inertia. Due to this fact 
the system is enabled to perform a uniform rotation during unlimited period of time if there are no 
applied torque-producing active forces. The rotating system having the rotation axis coinciding with 
the principal axis of inertia performs a uniformly accelerated rotary motion under the action of the 
torque-producing active force when no resistance forces are present. However, in practice, it is 
impossible to achieve a full coincidence between the principal axis of inertia of the system and the axis 
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of rotation. The moment of inertia of such a system is greater than the principal moment of inertia. One 
could say that the system possesses a complementary moment of inertia because of not complete 
coincidence between the principal axis of inertia and the rotation axis. An important feature of a 
complementary moment of inertia is the fact that it introduces asymmetry into the system’s moment of 
inertia. Therefore a complementary moment of inertia of the system could be considered as a 
disturbing factor that counteracts the system rotation. It is obvious that in order to overcome the 
negative effect of a complementary moment of inertia the torque should be applied to the system. 

Exactly because of this type of the rotating system, disagreements in physics and engineering 
mechanics have been occurred. On the one side, it is considered that the mechanical system "solid 
body – fixed axis” possesses one degree of freedom, and a forced accelerated rotation of the body 
about fixed axis (in accordance with the energy conservation law) is performed under the action of 
forces being able to produce a torque. In case such forces are not present, a mechanical system 
performs a uniform rotation about a rotation axis if the system possesses only the principal moment of 
inertia. However, while analyzing a system “material point-fixed axis” it is considered that the material 
point being included into the system possesses two degrees of freedom, and a rotation of the material 
point about fixed axis is performed under the action of a centripetal force, which is not able to produce 
a torque. In this case, it is not considered a fact that such a system possesses a certain moment of 
inertia, which includes the principal moment of a material point. The law of the kinetic energy 
conservation leaves a room for a real centrifugal force, while rotation of the material point about fixed 
axis requires considering a centrifugal force as an imaginary one. The discrepancy between the model 
of the material point rotation about fixed axis and the law of the kinetic energy conservation can be 
explained by a simple carryover of the planetary rotation physics provisions to the mechanical system 
rotation. 

Considering above-written comments, we can analyze a forced rotation of the material point C  
about fixed point under the action of the active force  in the horizontal plane (see Fig. 1). This 
material point possesses the mass  and the moment of inertia 

aF
m zI . 

 

 

 
Fig. 1 
 

We assume that the material point  is put off to the distance e  and is mechanically connected with 
the fixed point . The mechanical connection is ideal. Such a system possesses one degree of 
freedom. In case of sufficiently big distance between the material point and the fixed point, the motion 
of the material point with the rotation speed 

C
O

ω  can be considered as the one being close to the 
rectilinear motion. Therefore, at first glance, the law of the uniformly variable curvilinear motion of 
the material point would look like the law of the uniformly variable rectilinear motion of the material 
point. The only difference is the following: in case of curvilinear motion of the material point the 
linear velocity and tangential acceleration are taken into account [2] 
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where  is the pathway traversed by the material point, S

0S  - is the pathway traversed by the material point by the time of initiation of the uniformly 
accelerated motion 

0V τ  - tangential velocity of the material point prior to initiation of the uniformly accelerated motion, 
t  - time of the material point motion, 
aτ  - tangential acceleration of the rotating material point. 
 
The expression (1) can be also represented in the following form: 
 

2

0 2
e tS S e t ξω= + + ,               (2) 

where ω  - is the angular velocity of the material point, 
ξ  - angular acceleration of the material point. 

 
However, the material point makes part of the system, and a rotation of the material point is performed 
about an axis, which is parallel to the principal axis of inertia of the material point at the distance . In 
this case, the system's moment of inertia consists of principal moment of inertia of the material point 
and the complementary moment of inertia of the material point about the fixed point  

e

 
      2

0 zI I me= + .         (3) 
 
General moment of inertia of the system is an asymmetrical moment of inertia. Therefore, so called 
inertial moment is produced while material point is rotated about the fixed point. Such inertial moment 
counteracts the system's rotation [3]  
 

2 2
иM m eω= .      (4) 

 
The inertial moment of the system acts around the fixed point opposing a direction of the system's 
rotation. Then, it can be represented as the force , which is acting onto the material point in the 
direction opposite to the direction of the force  application 

иF

aF
 

2
иF m eω= .      (5) 

 
In this case, for the time point  of the rotor's spinning, the variable resultant force whose action 
enables the material point motion can be derived 

t

 
2

**a иR F F ma m e maω= − = − = ,    (6) 
 
where  - is the acceleration determining the value of the defined force, *a

*a  - an instantaneous acceleration at the velocity value ω  at the given time point. 
 

It is evident that the value of  depends on the system speed of rotation, while the speed of 
rotation in turn depends on duration of the force  application. 

иF

aF
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In this case a general equation of the rotary motion of the system may be derived in the form 
shown below basing on the law of the kinetic energy conservation and taking into account the known 
general equation of the rotary motion [2]: 
 

2 2
0 *dI ma e m e

dt
ω ω= − .     (7) 

 
The equation shows that under the action of the force having a constant value, the system's 

rotation is passes with variable acceleration. In order to ensure the system's rotation with a constant 
value of acceleration, which is characterized with the equation (1), it is necessary to apply a variable 
force, whose value is varied in accordance with a certain law. 

Separating the variables and resolving the differential equation, we can derive a dependence 
between the duration of the force  and the material point rotation speed aF ω  
 

0 *ln
2 * *

I a e et
me a e a e e

ω
ω

+
= +

−
.    (8) 

 

The maximum value of the system rotation speed maxω  is achieved at 0d
dt
ω
= . 

In this case, from the equation (7) we can derive: 
 

2
max*ma m eω 0− = ,     (9) 

 

max
*a

e
ω = ,      (10) 

 
2
max*a ω= e ,      (11) 

 
2
max*ξ ω= ,      (12) 

 
where *ξ  - is an initial angular acceleration at the beginning of the material point motion. 
 
Setting various values to ω  the time of necessary to reach the required level of the material point 
rotation speed can be evaluated using the equation (8). The expression (9) shows the condition for the 
uniform rotation of the system too. 

It follows from the condition that the uniform rotation of the system can be achieved only in the 
case when the active force  is applied, or in case the torque is applied to the system in order to 
counteract its inertial moment. 

aF

The equation (9) shows that in case the value of both the force  and the distance  are 
constant, the material point initially performs a circular motion with acceleration, while after a time it 
starts a motion about the fixed point with a finite rotation speed 

aF e

maxω . The tangential velocity of the 

material point, which we will refer to as V τ  will be upon a certain time the finite one too.  

In the process of the material point circular motion, the existing mechanical tie forces the 
material point to change the rotation speed direction while keeping on the distance between the 
material point and the fixed point. 

Let us assume that during a small period  the direction of the tangential velocity has been 
changed by a small angle 

t
ϕ . It is evident that the tangential velocity will obtain an increment 
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V Vτ τ ϕ=  if 0ϕ → . In such a case, the variation of the tangential velocity in small interval of 
time defines in the limit an acceleration of the material point under the action of the reaction force RF  
being applied from the fixed point by means of the mechanical connection, which is sufficient for 
changing the material point velocity direction  
 

2V da V
dt

ττ eϕ
ω ω= = = .     (13) 

 
The reaction force RF  of the fixed point (see Fig. 2) occurs as a response to attempts of the material 
point to perform its inertial rectilinear. 
 

 

 
 

Fig. 2 
 

It is obvious that the material point applies to the fixed point the same force trying to impart the 
same acceleration to the fixed point. By this is meant that the inertia of the material point produces 
initially a centrifugal force, and as the response to its action (in accordance with the third law of 
Newton), the reaction force of the fixed point is occurred  
 

2
cf RF m e Fω= = .     (14) 

 
The expression (13) also shows that the occurring acceleration is equal to the tangent 

acceleration in terms of magnitude at the beginning of the material point motion under the action of the 
active force.  

Usually the mechanics deal with a motion of more complex systems under the action of several 
forces of different nature including also the weight. Therefore the reaction force depends on all forces 
being applied to the material point. Due to this fact, the concept of the centrifugal force is extensively 
used in the rotor dynamics. This force could be easily considered in the analysis together with other 
forces being applied to the body. 

Therefore, a particular feature of the forced rotation of the material point in the selected 
coordinate system (as distinct from a rectilinear motion of the material point under the action of a 
force) is an origination of two additional forces: the centrifugal force and the support reaction force. 

There were some attempts in the rotor dynamics theory being based on the oscillation theory to 
introduce an effect of Coriolis forces onto the rotor spinning. It is pointed-out that consideration of 
Coriolis forces increases the calculation accuracy [1]. In this connection, an analysis of the rotary 
motion features of the system "material point – fixed point" plays a key role in the case when the 
material point is able to perform not only a rotation, but also a translation with some linear velocity 
relative to the fixed point (e.g. in the radial direction). 

In the beginning, we shall consider uniform circular motion of the material point about the 
fixed point O  with a radius e  (see Fig. 3). 
 

O

cF f

C

FR

e
ω



 7

V τ
лин

V τ

C

O

ω
e

 
 

Fig. 3 

We assume that the material point performs a rotary motion along a circle with a constant tangential 
 

velocity V τ  and in addition it moves with a linear velocity линV τ  along the same circle. 
We assum  that the tangential and the linear velocity of the erial point have the same mat e direction. 
An absolute velocity of the material point can be defined as  
 

a линV V Vτ τ= + .      (15) 
 

n acceleration acting on the material point during its rotation and changing the velocity direction as is A
well known, can be defined as  
 

2
aVa
e

= .      (16) 

 
herefore an absolute centrifugal acceleration of the material point will be equal to  T

 
22 ( ) 2( ) лин лин

a
V V VVa

e e e

τ τ ττ

= + +  or to 

 
2

2 ( ) 2лин
a лин

Va e V
e

τ
τω ω= + + .    (17) 

 
An analysis of the relationship (17) shows that acceleration of the material point is composed 

of the 

 increase an additional 
torque.

following parts: the acceleration, which could have a material point in case it would perform 
only rotary motion; the acceleration, which could have a material point in case it would perform only a 
circular motion with a linear velocity; the complementary acceleration, which is referred to as the 
Coriolis acceleration. Of three above mentioned accelerations the two former ones have the same 
directions. The direction of the Coriolis acceleration is orthogonal to them [2]. 

That means that for the rotation of such a system it is necessary to
 It is greater than the torque крM  required for rotation of a fixed material point  

 
2

2 ( )( 2лин
кр лин

V )M m e V e
e

τ
τω ω= + + .    (18) 

 
If the linear velocity линV τ  of the material point is oppositely directed, then the absolute centrifugal 
acceleration can be defined as  
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2

2 ( ) 2лин
a лин

Va e V
e

τ
τω ω= + − .     (19) 

 
If the material point moves with some small angle α  with 
bsolute centrifugal acceleration can be defined in the following way (depending on the direction of a 

respect to a meridian circle, then the 
a
motion) 
 

2( )V τ
2[ 2 ]cosлин

a линa e V
e

τω ω α= + ± .    (20) 

 
In case when the material point motion is directed at a great angle α , it is necessary to take into 
account a displacement of the material point along the radius while defining the absolute centrifugal 

 point  to the point

acceleration.  
Let us assuming that the material point moves with a constant linear velocity along the rotation 

radius from the

 

 N  M . Such a velocity will be referred to as  (see Fig. 4).  
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Fig. 4 
 

The force M
иF  point Macts onto the material point at the  being produced by an inertial moment, while 

at the point  the force N N
иF acts, which is also produced by an inertial moment. We shall make an 

assumption that 0M Ne e− → . The tangential velocity o he material point at the point N  is equal to 
 

N NV eτ

f t

ω= .     (21)  

The linear velocity of the material point can be defined
 

 in the following way:  
 

e
лин M NV V Vτ τ= − .     (22) 

The tangential velocity of the material point at the point 
 

M  being defined from the relationship (20) is 
equal to 
 

e
M лин NV V Vτ τ= − .     (23) 

Basing on the equation (23), we can define an absolute cen
 

trifugal acceleration at any point M  
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e

M eлин
a лин

Va e V
e

ω ω= + + .     (24) 

 
 the linear velocity of the material point is directed towards the fixed point , then an absolute If O

centrifugal acceleration at any point can be defined in accordance with the following relationship 
 

2
2 ( ) 2

e
M eлин
a лин

Va e V
e

ω ω= + − .     (25) 

 
The driving torque M

крM  required for a uniform rotation of a movable material point can be derived 
from the following relationship: 
 

2
2 ( )( 2

e
M eлин
кр лин

V )M m e V e
e

ω ω= + + .    (26) 

 
If a uniformly rotating material point performs at the same time a motion along both the radius 

and the

material point can also be performed along a generatrix, which is perpendicular 
to the r

echanical systems performing a rotation about some defined axis, there are 
mechan

 circular trajectory with constant linear velocities, then, obviously, an absolute acceleration of 
the material point will be defined in terms of absolute centrifugal accelerations of the material point in 
considered directions.  

A motion of the 
otation plane. This is the third virtual displacement of the material point, which does not make 

any influence on the value of a centrifugal acceleration because a tangential velocity of the material 
point does not change its magnitude in case of such displacement. For most rotors the geometry and 
mass characteristics are constant values. However, it is typical of the rotors of separation centrifuges to 
change their masses. Therefore, allowing for the absolute centrifugal acceleration and with it an effect 
of the Coriolis forces to the rotor dynamics are applicable only to the limited class of variable-mass 
rotors. 

In addition to the m
ical systems enabling translational motion of a body around defined axis along a circle. At real 

conditions, a mechanical system usually includes bodies, which perform their motion, and bodies 
performing a translational motion along a circle. These types of body’s motion have some similarities; 
however they have some qualitative differences and distinct physical essence. As distinct from a rotary 
motion of the mechanical system, in case of a translational motion of a system along a circle, the 
principal moment of inertia of the system can be disregarded. For what concerns the rotor dynamics, a 
translational motion of a body along a circle has been erroneously considered as a rotary motion. 
However a translational motion of particular elements of the rotating mechanical system plays also a 
significant role in the rotor dynamics. The equation for the material point translational motion along a 
circle can represented as 
 

2*de a
dt

eω ω= − .      (27) 

 
he material point rotation speed and duration of a force application are bounded  T

 
*ln

2 * *
e a et
a e a e e

eω
ω

+
= +

−
.     (28) 

 
The studies has been performed show that the system "material point – fixed point”, in the 

same way as the system “rotor – supports” is a system with asymmetrical moment of inertia, which 
does not depend on the rotor’s rotation speed. Correspondingly, an inertial moment emerges in the 
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