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Аbstract: This article continues to present principles of a new 
"inertial" rotor dynamics theory considered any rotor moment 
of inertia changing (which is caused by rotor shift 
comparatively rotation axis) as a disturbing factor that resists 
the rotor rotation. The article analyzes aerodynamic resistance 
influence on the static unbalance rotor dynamics. Loading 
diagram of forces and torques with effect on rotor and rotor 
dynamics equation are presented in the article. Specific 
research is dedicated to questions related to equation rotor 
rotation and physical meaning of the rotor rotation process. 
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1  Introduction 

New “inertial” theory absolutely changed view of 
rotor rotation physics and presented new equations of 
the dynamics that are the algebraic equations no more 
than 3rd order [1]. 
      The fundamental dynamics equation of the rotor with 
static unbalance reflects the rotor rotation under vacuum 
and weightless conditions. However, most rotors rotate 
in an atmosphere and suffer the aerodynamic drag effect. 
      As a result, there is need to consider the rotor 
dynamics taking into account the aerodynamic drag 
forces. 
 
2  Study Subject and Coordinate System. 

Consider a vertical disc rotor with mass m, mounted 
to an elastic shaft with stiffness factor k. The rotor is 
fastened in the middle of the shaft. The shaft is fixed on 
two rigid bearings. The rotor centroidal moment of 
inertia exceeds tenfold the equatorial one. The rotor has 
a center of mass that is at distance e from the 
geometrical axis, which is common for the rotor and 
shaft.  
      Suppose that the rotor rotates in the vertical position. 
      Consider the features of the rotor rotation in a 
rotating coordinates OXYZ (Figure 1). 
      The coordinate system origin O and axis Z are 
congruent with a rotation axis. The axis X is directed 
along action of a resultant rotor unbalance vector. 

The rotor center of mass lies on the plane OXY. The
rotor motion will be studied using the trails of the center
of mass (point C), geometrical axis (point B), and rotation
axis (point O) in the plane OXY. The figure has not axis Z.

Assume that the rotor is rotating with speed ω so the
shaft is deflected and the rotor is turned around the
geometrical axis for an angle α. 

 

 
 

Figure 1. Layout of the forces affecting the rotor. 
 

3  Forces Affecting the Rotor 
      Consider the forces and moments affecting the rotor. 
They include: 
      Centrifugal force Fц caused by new position of the 
center of mass in respect to the rotation axis 
 

                         ,                            (1) ρω 2mFц =
 

where ρ  is a distance between O and C points; 
      Elastic force of the deflected shaft Fу 

 

                           ,                                (2) уF k= a
 

where а is a distance between O and B points.  
      Head aerodynamic drag Fл applied to point B normal 
to line ОВ. 
      Moment Мn generated by surface aerodynamic drag 
forces and acting around the rotor geometrical axis. 
      Force moment Ми resulting from the additional rotor 
inertia moment  at the rotor deflection from rotation 
axis by distance а. 
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      Force moment Ми acts around the rotor geometrical 
axis also.  
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      Additional torque  is required to overcome as 
disturbing factors as the rotor aerodynamic drag and 
additional moment of inertia. Additional torque can be 
represented by force applied to the geometrical axis at 
point В as normal to the line ОВ. 
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where - is a force acting on arm а, by witch additional 
torque M
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      Note that in the article there are no dependences to 
determine Fл because these dependences presented in any 
course of aerodynamics. 

Taking into account that the rotor holds a strictly 
defined position in the coordinates OXYZ and rotor-
deflected shaft system takes a stable state at a constant 
speed, we can form a system of moment equations in 
respect to O, B and C points. 

 
4  Rotor Dynamics Equations 

To constitute the equation system of the moments 
about O, B, C points, it is enough to use the geometrical 
proportions: 

 

                      
ρ
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                   CN ,                                  (8) sine α=
 

                    .                                  (9) αcoseBN =
 

Based on the classical laws of static and taking into 
account the proportion after series of transformation the 
equations of moment about O, B, C points will take the 
following form 
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          ,               (11) 0sin 2 =−− nu MMeam αω
 

cos  sin 0u n крM M F e kaeα α+ + − = .           (12) 
From equations (10) and (11), we have 
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From equation (12) considering (10) and dependence 
(13), take the fundamental equation of rotor dynamics 

 

               .               (16) ( ) 0cos2 =−+ kaeam αω
 

      The equation (16) correlates such variables as a, α, ω. 
This correlation will enable determining value a 
depending on a speed and calculating at this speed the 
forces and moments affecting the rotor if α value is 
known. With, all this going on, note that 

 

               2 2 2 cosa e aeρ α= + +    .    (17) 
 

Assume the direction of resultant unbalance vector as 
origin of angels, so we can determine angular direction of 
all effective forces. The angle θ designates the direction of 
shaft elastic forces 

 

         θ  .      (18) o180+=α
 

The angle η designates the direction of forces 
generated by additional torque 

 

                      η  .                             (19) o90+=α
 

      The angle ν designates the direction of centrifugal 
force  
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For the rotor rotating under weightless conditions, we 
can determine the response R for each bearing  
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Bearing response direction with respect to the line of 
the rotor geometrical axis deflection from the rotation axis 
is determined by the angle ξ 

 

                        
0
кр

у

F
tg

F
ξ = .                              (22) 

5  Analysis of Equations 
5.1  General observations 

Equation (16) coincides absolutely with equation of 
the rotor dynamics under vacuum [1]. New conditions 
result in change of the rotor behavior. Equation (16) at 
under-critical ( ) and over-critical ( ) 
modes of rotation was analyzed earlier 

1cos =α 1cos −=α
[1-2]. 

      From equation (16) follow 
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The expression shows aerodynamic force take no 
influence upon value of critical speed of the rotor. 

  



 
5.2  Transient rotation mode.  

between trail of center of mass and trail of rotation axis is 
more than distance between trail of geometrical axis and 
trail of rotation axis. Trail of geometrical axis as though 
keeps own position between trails of rotation axis and 
center of mass. 

Consider the dynamic features of the disk rotor at a 
transient only where the rotor turn to be taken into 
account. 
      From equation (11) accounting dependence (3), take 
the following 
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Dependence (24) shows that environment surface 
aerodynamic drag forces affect behavior of the rotor turn 
angle α.  

When , take the well-known dependence0=nM [1] 

 

                        
e
a=αsin   .                            (25) 

 

To obtain comprehensive information about the rotor 
dynamics, joint resolution of equation (16) and 
dependence (24) is need. At that it had to be considered 
that the moment caused by aerodynamic drag depends on 
rotation speed  
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where µ - is a coefficient of proportionality,  
                 n is an exponent. 

Relatively low speeds, it is assumed что n = 1. At 
relatively high speeds n = 2, etc. 

Consider the case when n = 2.  
Taking into account that at n = 2. 
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The equation (16) can be written down as:  
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Taking into account dependence (24), we can state 
that during rotor rotation at under-critical speeds the 
following condition should be met 
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Condition (31) means that when critical speed passes, 
а value is always less than е. 

Therefore, the aerodynamic drag contributes to 
“smooth” crossing the critical speed, because provides 
less rotor deflection from the rotation axis by a resonance 
time. 

Presence of α angle demonstrates that at transient 
mode trails of geometrical axis, rotation axis and center of 
mass in plane ОXY form no one line. At that a distance 

Resolving this equation (30) with respect to a, take 
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where .   (33) )2(4 423422242 ωωωωµ emmkkmd −−−=
  

Dependence (32) sets required unique dependence а 
on ω. When , dependence (32) is congruent to  0=µ
known [1] 
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Under given rotation conditions and considering 
dependences (3) and (26), from equation (10) follows 
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Equation (25), at , is easy transformed to 
dimensionless form. For transient mode: 
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Based on equation (36) we can set a dependence of α  

on 
кр

ω
ω

  (Figure 2). 
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Figure 2.  Dependence of angle α  on 
кр

ω

ω
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It is easy to see that rotor turn angle values, when 
aerodynamic drag is present, cannot be lower than 
obtained curve.      

  



Expression (36) enables setting dependence of 
e
a  on 
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(Figure 3). 
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Figure 3. Dependence of 
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Curve 1 allows determining value of the rotor 

motions before resonance effects. When , values 0≠µ
e
a  

are higher than curve 1.  
At over-critical mode the equation (16), when 

, takes the following form 1cos =α
 

                    

2

2

2

2 1

кр

кр

a
e

ω
ω

ω
ω

=
−

 .                              (37) 

 

Dependence of 
e
a  on 
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 as the curve 2 is presented 

in Figure 3 also.  
 

6  Dynamics Equation of the Rotor on Elastic Bearings 
The article considers a rotor fixed on elastic shaft. 

The shaft, in one’s turn, fixed on two absolutely ring 
supports (bearings). However, there are devices, in which 
the rotor is attached to rigid shaft, and the shaft is fixed on 
two elastic supports.  

The equations obtained are adequate to descript 
dynamics of the rotor attached to elastic bearings. For that, 
it is enough to take into account that the shaft stiffness 
factor equals a sum of the same stiffness factors of both 
bearings. 

In this case the fundamental rotor dynamics equation 
takes the following form:  

 

        ,                 (38) 02)cos( 1
2 =−+ akeam αω

 

where k1 - is a stiffness factor of each elastic bearing. 
 
 
 
 

7  Self-Vibration Effect 
Note, the rotor dynamics equations point out no 

possibility of the self-vibration effect, while it exists in 
fact[2]. It announces that self-vibration effect concerned 
with not only rotor rotation, but also other features. 

However, the rotor dynamics equation and rotation 
process physics described allow find out and descript the 
following case of self-vibration effect of a rotary device 
housing. 

In reality, the elastic shaft is fixed into bearing units, 
which have specific stiffness also. The stiffness factor of 
bearing units is usually higher than stiffness factor of the 
shaft.  

Consider the rotation features of such rotor. As speed 
increases, the resonance effect appears that disappears 
after the rotor crosses the critical speed. At over-critical 
speeds the rotor self-alignment and rotation stabilization 
are observed. However, at any speed there are the forces 
affecting the support and, in this case, the bearing units. 
Direction of the forces acting is changed along with the 
rotor rotation speed, and value of ones can be determined 
using the dependence (21). 

If the forces rotation speed is closed to the free 
frequency of the bearing unit, then there appear the device 
vibrations that called as “self-vibration”.  

As the disturbing force exist at any speed of rotor 
rotation, so self-vibrations appeared at one speed exist 
also at all higher. When the rotor speed decreases lower 
speed of self-vibration appearance, the self-vibration 
effect disappears. 

In case of elastic supports, the physics of process 
differs significantly from described above.  

The elastic supports in fact transfer no disturbing 
effects from the rotating rotor to the device housing. The 
housing mass has enough inertia to damp little disturbs. 
Therefore, it is necessary to expect that after crossing the 
critical speed, which depends on elastic support stiffness, 
the self-vibration effect of the device should not be 
appeared. However, the support bearings have also a finite 
stiffness and, at specified speeds, the repeated resonance 
is possible.  

Vibrations of elastic supports disappear after crossing 
the rotor critical speed determined by bearing stiffness and 
total mass of the rotor and supports.  

 
8  The Rotor Direct Precession 

Some studies [2] show that at high over-critical speeds 
the rotor rotation speed exceeds the shaft rotation speed. 

One of cause of this effect can be explained using 
dependence that determines additional torque . At 
that, such effect can exist even under vacuum conditions. 
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assuming that , , and value а is founded 
from equation (16), 
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Dependence of 
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 is represented in the 

Figure 4.  
It is easy to make certain that at very high over-

critical speeds the torque exceeds significantly the torque 
at medium over-critical speeds. 
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Figure 4. Dependence of 2
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May be due to this the shaft speed ceases increasing, 
but the rotor speed increases. It is obvious, on the analogy 
of the gyroscope theory, the dependence to determine the 
speed within over-critical speeds, which is derived from 
equation (16), at cos , we have to write in the 
following form  

1−=α
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where    ω - is a speed of rotor, p

Bω - is a speed of shaft. 
It is important to note that equations (36-37) and (39) 

are in fact dimensionless and can be an analogy 
parameters that could be applied to rotor dynamic 
simulation. 

 
9  Summary 
(1)  The dynamic equation obtained enable determining a 

parameters of rotation and all forces and moment 
affecting the rotor taking into account the effect of 
environmental aerodynamic drag, as well as 
explaining the features of the rotor rotation over a 
complete speed range). 

(2)  The represented hypotheses allow explaining a rotary 
device self-vibration effect and rotor precession at 
over-critical speeds. 

(3) The possibility of dynamics tasks’ solving using the 
analogy parameters is shown. 
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