
TABLE OF CONTENTS 
 
 

1.       Acknowledgement   ……………………………  1 
2. Objective     ……………………………  2 
3. Introduction    ……………………………  2 
4. Tool Used    ……………………………  3 
5. Adder structure    ……………………………  4 
6. Project Description    ……………………………  9 
7. Simulation results   …………………………… 14 
8. Conclusion    …………………………… 14 
9. Reference     …………………………….15  
10. Appendix     …………………………….16 



 1 

 
ACKNOWLEDGEMENT 

 
 

I wish to place on record my deep sense of gratitude for the instructor Dr. 

James Leffew  for his constant guidance throughout the course.  



 2 

OBJECTIVE 
 

The purpose of this project is design and simulation of a sixteen bit 

Conditional Sum Adder using four bit slice components with Look ahead carry. 

The Look ahead carry is incorporated in the 4 bit slices.  

INTRODUCTION 
 

High performance microprocessors demand faster arithmetic operations. 

The addition of two operations is the most frequent operation in almost any 

microprocessor arithmetic unit. A two-operand adder is used not only when 

performing additions and subtractions but also employed in some more complex 

operations such as multiplication, division, and other functions. Propagation 

delay has been one of the major problems facing engineers working to 

implement high-speed circuits. High propagation delays in binary addition will 

result in a highly amplified propagation delay at the output of the circuit.  

There are many ways of formulating the process of binary addition. Each 

different way provides different  insight and thus suggests different 

implementations. Examples are Weinberger & Smith's carry-look ahead (CLA) 

adder, Nadler's pyramid adder ,Sklansky's conditional sum adder , Bedrij's 

carry-select adder, and Ladner & Fischer's prefix adder.  

 

 The following table compares the various binary addition techniques with 

Conventional ripple Adder(1). 



 3 

 

 

TOOL USED 
 
 

MAX PLUS II (Version 10.1) from ALTERA has been used in this project. 

MAX+PLUS II software is a fully integrated, architecture-independent package 

for designing logic with Altera programmable logic devices. MAX+PLUS II 

offers a full spectrum of logic design capabilities: three design entry methods for 

hierarchical designs; floorplan editing; powerful logic synthesis; design 

partitioning; functional, timing, and board-level-type linked simulation; detailed 

timing analysis; automatic error location; and device programming and 

verification.  



 4 

ADDER STRUCTURE  
 

Carry Look Ahead Adder(CLA) Technique is used to speed up carry 

propagation in adder complex. Hence the carries entering all the bit positions of 

a “parallel” adder are generated simultaneously  by additional logic circuitry. 

This results in a constant addition delay independent of the length of the adder. 

 

 
 

 
Conventional Ripple carry Adder 

 

For the conventional ripple carry adder shown above, the Sum of the most 

significant stage will be valid after 2(N-1) + 1 gate delays, in which N is the 

number of bits . The carry-out bit will be valid after 2N gate delays. This delay may be 

in addition to any delays associated with interconnections. It should be mentioned that in 

case one implements the circuit in a FPGA, the delays may be different from the above 

expression depending on how the logic has been placed in the look up tables and how it 

has been divided among different CLBs (Configurable Logic Block) .For instance, for a 



 5 

32-bit adder, the delay would be about 63 ns if one assumes a gate delay of 1 ns. 

That would imply that the maximum frequency one can operate this adder 

would be only 16 MHz! For fast applications, a better design is required.  

 

The carry-look-ahead adder solves this problem by calculating the carry 

signals in advance, based on the input signals. It is based on the fact that a carry 

signal will be generated in two cases: (1) when both bits Ai and Bi are 1, or (2) 

when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1. 

Thus, one can write,  

COUT = Ci+1 = Ai.Bi + (Ai XOR Bi).Ci.                                     (1) 

Which can be also written as, 

Ci+1 = Gi + Pi.Ci                                                                                      (2) 

in which  

Gi = Ai.Bi                                                                                                                                (3) 

                                   Pi = (Ai XOR  Bi)                                                                         (4)  

are called the Generate (Gi) and Propagate (Pi ) term.  

Notice that both the Propagate and Generate terms only depend on the input bits 

and thus will be valid after one gate delay.Let’s apply this to a 4-bit adder.  

   

C1   = G0 + P0.C0                                                                       (5)  

C2   = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0                               (6)  

C3   = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0                               (7)  

C4   = G3 + P3.G2 + P3.P2.G1 + P3P2.P1.G0 + P3P2.P1.P0.C0                          (8) 

 

Notice that the carry-out bit, Ci+1, of the last stage will be available after  three 

delays (one delay to calculate the Propagate signal and two delays as a result of 

the AND and OR gate). The Sum signal can be calculated as follows,  

Si   = Ai XOR Bi XOR Ci = Pi XOR Ci.                                                        (9) 



 6 

The Sum bit will thus be available after one additional gate delay. The advantage 

is that these delays will be the same independent of the number of bits one needs 

to add, in contrast to the ripple counter.  

The carry-look ahead adder can be broken up in two modules: (1) the Partial Full 

Adder, PFA, which generates Si, Pi and Gi as defined by equations 3, 4 and 9 

above; and (2) the Carry Look-ahead Logic, which generates the carry-out bits 

according to equations 5 to 8. The 4-bit adder can then be built by using 4 PFAs 

and the Carry Look-ahead logic block as shown in  Figure .  

 
4 bit CARRY LOOK AHEAD LOGIC ADDER 

 

A 16-Bit CLA Adder could be constructed continuing along in the same 

logic pattern, with the MS B carry-out resulting from the OR of 16 AND gates. T his  

would make the 16-Bit CLA Adder as  fast as  the 1-Bit R ipple Carry Adder. 



 7 

However, another plaus ible method to create a 16-Bit CLA Adder would be to 

ripple the carry-out of a 4-Bit CLA Adder to the carry-in of another 4-Bit CLA 

Adder, us ing four 4-Bit modules  total. T his  would make the 16-Bit CLA Adder as  

fast as  the 4-Bit R ipple Carry Adder. Each 4 bit s lices  will have a Partial full adder 

or conditional sum adder, 2 to 1 Multiplexer and look-ahead carry logic. 

An algorithm for fast addition  -conditional sum addition(CS A) was 

presented by J.S klansky early in 1960.It is  poss ible to des ign a adder with up to 

five or s ix times the ripple adder performance by us ing CS A algorithm, but it 

needs larger s ize of area. It is  shown that the conditional sum adder has a better 

power-delay product than other adders  for high speed applications (2) . T he 

Conditional sum addition rules  can overcome the carry propagation problems. It 

generates dis tant carriers  and us ing these carriers  to select the true sum outputs  

from two s imultaneous ly generated provis ional sums under different carry input 

conditions . T he following table shows the 8-bit addition, where the arrows show 

the actual carries  generated between sections. It is  seen that s imultaneous 

additions  are performed on all sections  independently. T he addition process  of a 

n bit adder is  completed in t s teps, where 

t   =  log 2 n         (10) 

where n is  number of input bits . 

R ipple Carry Addition Conditional S um addition 

 

Conditional carry Addition 



 8 

 

C0=A and B   C1= A OR B 

S 0=A XOR B   S 1= NOT (A XOR 

B) 

 

C0=A and B 

C1= A OR B 

 

 

 

An improvement of the conditional sum addition is  conditional carry 

addition, which is  shown in table. It also has no carry propagation problem. T he 

generated dis tant carriers  are used to select the true carry inputs  from two 

s imultaneous ly generated provis ional carriers  under different carry input 

conditions . T he arrows show the actual carriers  generated between sections T he 

s imultaneous carry generations  are performed on all section independently. T he 

conditional carry addition of an 8 bit addition is  completed in 3 s teps. An extra 

XOR function of the cout and S 0 is  required to generate the final sum outputs , the 

final results . 



 9 

Suppose we have an n -bit adder that generates two sums: One sum assumes 

a carry-in condition of '0', the other sum assumes a carry-in condition of '1'. We 

can split this n -bit adder into an i -bit adder for the i LSBs and an ( n – i )-bit 

adder for the n – i MSBs. Both of the smaller adders generate two conditional 

sums as well as true and complement carry signals. The two (true and 

complement) carry signals from the LSB adder are used to select between the 

two ( n – i + 1)-bit conditional sums from the MSB adder using 2( n – i + 1) two-

input MUXes. This is a conditional-sum adder (also often abbreviated to CSA) 

[Sklansky, 1960]. We can recursively apply this technique. For example, we can 

split a 16-bit adder using i = 8 and n = 8; then we can split one or both 8–bit 

adders again—and so on.  

Figure shows the simplest form of an n -bit conditional-sum adder that uses 

n single-bit conditional adders, H (each with four outputs: two conditional 

sums, true carry, and complement carry), together with a tree of 2:1 MUXes 

(Qi_j). The conditional-sum adder is usually the fastest of all the adders we have 

discussed (it is the fastest when logic cell delay increases with the number of 

inputs—this is true for all ASICs except FPGAs).  

  



 10 

 

FIGURE : The conditional-sum adder. (a) A 1-bit conditional 
adder that calculates the sum and carry out assuming the carry in 
is either '1' or '0'. (b) The multiplexer that selects between sums 
and carries. (c) A 4-bit conditional-sum adder with carry input, 
C[0]. 

 

 

PROJECT DESCRIPTION 

 
The project objective is met by dividing 16 bit Addition into 4-bit slices.Each slice 

contains conditional sum generator ,Look Ahead Carry generator and 

multiplexer components. All the components are stored in user library. Main 

program is able to call/access each component and utilize its functionality.  

 The descriptions of each component are given below.  

 

 

 

 



 11 

 

Components Used  

 

4 bit  Conditional Sum Generator(CSG): 

 The  inputs A and B, each of 4 bits, are used in this component to produce 

Sum when when carry is 0 and Sum when carry is 1.It also produces C0 and C1. 

 This module makes use of propagating(P), generating (G) and transfer(T) 

functions. 

Where P,G and T are given by, 

Pi  =  Ai  XOR   Bi 

Gi  =  Ai  AND   Bi 

Ti  =  Ai  OR  Bi 

 The VHDL code for this component uses behavioral model. 

 
Look-ahead carry (LAC) generator: 

 It  produces carry out using C0 and C1 from Conditional sum generator 

and Carry in.  

VHDL Code for LAC uses behavioral model where Carry Out is defined by 

Cout  =  C0 or ( C1 and Cin). 

 
4 bit 2:1Multiplexer: 
 
 It produces output either S0 or S1 depending on carry signal from Look 

Ahead carry unit.Here carry acts as select signal for multiplexer. 

VHDL code for 4 bit 2:1 multiplexer uses  behavioral model with wait 

statement.It also incorporates timing Model. 

  

 

 

 



 12 

 

 

Package 
 
 All the components mentioned above are included in separate package 

called CSA4.It contains port definitions of all the components.VHDL codes for all 

components and packages are stored in separate folder mylib and this folder is 

defined as user library when compiling 16 bit adder using Altera MAX II. 

16 bit Adder using 4 bit CSA slices 
 
 16 Bit Adder is developed by slicing 16 bits into four portions. Addition 

mechanism for each portion is then developed by using the library mylib. Where 

mylib contains components CSG, LAC, 2:1 mux .The inputs are A, B 16-bit 

vectors and a Cin bit with outputs being 16-bit sum and a Cout bit. The three 

components CSG,LAC and 2:1 mux are called in each bit slice and the carry out 

from each bit slice is passed as carry in to next bit slice. Carry out of the last bit 

slice is Cout. Thus the complete operation of the 16 bit addition is performed by 

using the components in the package stored in the library. 

 The 16 bit Adder using the components in the package CSA4 is shown 

below. 



 13 

 

16 BIT CONDITIONAL SUM ADDER 

 
CSG0 

A0-3 

B0-3 

SO0-3 

S10-3 
MUX 

Lo
ok

 A
he

ad
 C

ar
ry

 G
en

er
at

or
 

C04 
C14 

S0-3 

 
CSG1 

A4-7 

B4-7 

SO4-7 

S14-7 
MUX 

C08 

S4-7 

C18 

C4 

Cin 

 
CSG2 

A8-11 

B8-11 

SO8-11 

S18-11 
MUX 

C012 

S8-11 

C112 

 
CSG3 

A12-15 

B12-15 

SO12-15 

S112-15 
MUX 

C016 

S12-15 

C116 

C8 

C12 

Cout 



 14 

Test bench 

 
Simulation can also be done by providing data needed using a test bench. 

In simulation, ports of the program being tested are mapped with test bench. 

Here Test bench provides inputs A, B and Cin .Outputs Sum and Cout are 

generated when main module is called from the test bench. Test bench uses 

configuration specifications to bind values.  

The test bench could be written in such a way that it provides random 

input values for A and B. The test bench can also be written to detect errors in the 

circuit and thus aborting the simulation when incorrect results are obtained. 

 



 15 

ANALYSIS OF SIMULATION RESULTS: 
 
 The following table shows the inputs and corresponding results executed from 
the 16 bit adder mentioned above. 

INPUT OUTPUT 
A B Cin Sum Cout 

FFFF 0001  0001  
1111 1111 1111 1111 0000 0000 0000 0001 1 0000 0000 0000 0001 1 
 
The waveforms resulted by simulation are given in appendix. 

 
 
 

CONCLUSION 
 

The 16 bit addition is performed by using four 4 bit slices which use 

conditional sum adder and look ahead carry logic. 

This leads to production of faster adder than conventional ripple carry 

Adder due to decrease in carry propagation delay. 

Hex 

Binary 



 16 

Reference 
 
1. Weihua Chen,”Implementation and Comparison of 16-bit Look Ahead Adders”, 

project report for EE8053 Computer Arithmetic Algorithm. 

 
2. Jungang Han and Glen Stone,”Implementation and verification of conditional sum 

adder”, 1988-311-23,July 1, 1988,Department of computer science Reports. 

3.Anantha Chandrakasan,Robert W.Broersen,”Minimizing Power consumption in 

digital CMOS circuit”,in proceedings of IEEE,Vol 83,No 4,pp 498-523,April,1995. 

4. M. Horauer and D. Loy, “Adder Synthesis”, Proceedings of Austrochip '95, Graz 

Austria, pp. 81--87, 1995. 

 

 


