Types of Biosensors

Based on the type of transducer:

1. Piezoelectric Biosensor

- Transducer is a vibrating crystal.
- The transducer vibrates when there is change in mass.

2. Optical Biosensor

- Based on Emission, absorption or scattering of light.
- Don't require electrical contacts.

3. Electrochemical Biosensor

- Operate at constant temperature conditions.
- An electric field is applied between two electrodes.
- a. Conductometric Biosensor measures electrical conductivity.
- b. Amperometric Biosensor measures electrical current.
- c. Ion sensitive Biosensor measures the charge density variations.

http://www.sentron.nl

ISFET- 2

Enzymatic Reactions used for FET Sensors

Substrate	Enzyme	Reaction	
Pencillin	Pencillinase	Hydrolysis Pencillin	
Urea	Urease	Hydrolysis Urea + H ⁺	
Glucose	Glucose oxidase	Glucose+0 ₂ $\xrightarrow{\text{Oxidation}}$ Gluconolactone+H ₂ O ₂	
	Gluconolactonase	Hydrolysis Gluconolactone → Gluconic acid	
Triolein	Lipase	Hydrolysis Triolein Glycerol + oleic acid	

Integrated ISFET Chip

Glucose measurement using ISFET

Insulating Methods

	Insulating method	Characteristics
Resin coating	Cover bare silicon region with resin	
Film resist	Cover with patterned film resist	Micropool
Needle type	Anisotropic etching of silicon wafer to obtain a Si needle, which is covered with insulation layers	Needle shape, very small sample can be measured
SOS*	ISFET is made in a silicon island on a sapphire wafer	Compatible with normal IC process, chemically stable, complete insulation
p-n Junction	Isolation by <i>p-n</i> junction	Compatible with normal Si process

ISFET Fabrication (Silicon on Sapphire)

3

4

* Silicon Islands built over the Sapphire wafer.

♣ p type and n type regions are formed by ion implantation and SiO2 layer deposited.

• Silicon Nitride is deposited over the Silicon dioxide layer by LPCVD.

•Glucose oxidase, bovine serum albumin and photopolymer solution are dropped on the wafer surface which is spun at 2000rpm.

Fabrication of ISFET (Contd...)

• Lift off

ISFET in Standard CMOS

After Na Ion implantation, Al buffer layer removal, metallization and Oxide formation NAS- Sodium alumino silicate

ISFET

- MOSFET in which gate metal is replaced by an aqueous solution
- Membrane is hydrated when exposed to aqueous solution
- The potential difference across the interface of membrane and solution is given by Nernst equation,

$$\Phi_{ox} - \Phi_{sol} = Const + \frac{RT}{F} \ln\left(a_{H_{sol}^+} + Ka_{Na_{sol}^+}\right)$$

where

 $\begin{aligned} a_{H_{sol}^{+}} &= Activity \ of \ H^{+} \ ions \ in \ the \ solution \\ a_{Na_{sol}^{+}} &= Activity \ of \ Na^{+} \ ions \ in \ the \ solution \\ F &= Faraday \ Constant \\ R &= gas \ Constant \\ T &= Absolute \ Temperature \\ K &= Ion \ exchange \ constant \ of \ the \ membrane \end{aligned}$

Drain Current

$$I_{ds} = \beta V_{dd} \left[\left\{ Const + \frac{RT}{F} \ln \left(a_{H_{sol}^+} + Ka_{Na_{sol}^+} \right) \right\} - \frac{a}{C_{ox}} \left[V_b' \right]^{1/2} \right]$$

Potential Distribution of Solution-Oxide-Silicon system

Oxide

DC Characteristics of ISFET

Drain Current

$$I_{ds} = \beta V_{dd} \left[\left\{ Const + \frac{RT}{F} \ln \left(a_{H_{sol}^{+}} + Ka_{Na_{sol}^{+}} \right) \right\} - \frac{a}{C_{ox}} [V_{b}']^{1/2} \right]$$

where

 $a_{H_{sol}^+} = Activity of H^+ ions in the solution$

 $a_{Na_{sol}^+} = Activity of Na^+ ions in the solution$

F = *Faraday Constant*

R = gas Constant

T = *Absolute Temperature*

K = *Ion exchange constant of the membrane*

