
PARALLEL ARCHITECTURE FOR INDEPENDENT
COMPONENT ANALYSIS ALGORITHM (ICA)

Independent component analysis (ICA) is a recently proposed method as a

solution to the blind source separation problem. The objective is to recover the

unobserved source signals from the observed mixtures without the knowledge of the

mixing coefficients. It has the potential for a wide range of applications in industrial,

medical, security, and military fields because it reduces the complex problem of dealing

with high-dimensional statistical descriptions to products of one-dimensional density

functions. For some applications, off-line ICA analysis on a workstation could be

adequate, but for a vast majority it is desirable to have a VLSI chip for real-time analysis.

In this chapter we propose some preliminary ideas on a parallel architecture for the real-

time implementation of ICA algorithm on the reconfigurable J-platform. Admittedly it

just begins to address the problem of VLSI implementation and explores some first steps

toward actual high-speed implementation. The feasibility of mapping ICA to the J-

platform is demonstrated, but much work remains to be performed as delineated in the

‘discussion’ section at the end of the chapter.

1 Motivation for ICA

Imagine that in a room, two people are speaking simultaneously and that there are

two microphones which produce time signals denoted by x1(t) and x2(t). Each of these

received signals is a weighted sum of the speech signals emitted by the two speakers

denoted by s1(t) and s2(t). Then we can express the received signals in terms of the

original signals as

)()()(2121111 tsatsatx += (1)

)()()(2221212 tsatsatx +=

where a11, a12, a21, and a22 are certain parameters that depend on the microphone

characteristics and their distances from the speakers. Clearly, it would be very useful to

recover the original speech signals from the received signals.

More generally, if there are n different signals and n received mixed signals, then

the relationship can be expressed as

)(...)()()(12121111 tsatsatsatx nn+++=

)(...)()()(22221212 tsatsatsatx nn+++= (2)

)(...)()()(
......

2211 tsatsatsatx nnnnnn +++=

or in matrix-vector notation x(t) = A s(t). Here, for example s1 and s2 could be speech

signals, s3 could be the sound produced by a motor vehicle, etc. In a biomedical

environment s1(t), … could represent a set of EEG signals, ECG signals, etc.

 The recently developed technique called ICA, can be used to estimate A or its

inverse W = A-1 based on the information of their statistical independence, which then

allows blind separation of the original signals from their mixtures. The technique is

applicable not only to time signals but also to images. As a specific example consider the

three images s1, s2 and s3 shown in the Figure 1 (a), (b) and (c). Their histograms are

shown in (d), (e) and (f). Suppose now that the observed images are the ones shown in

Figure 1 (g), (h) and (i). We now pose the question whether and how we can recover the

original images blindly (without the knowledge of the mixing information). The answer

is a ‘yes’. Indeed, the images estimated by the application of the fast version of ICA,

called Fast ICA, are shown in Figure 1 (j) (k) and (l).

Original image s1 s2 s3

 (a) (b) (c)

Original image s1 s2 s3

 (d) (e) (f)

 Mixed image x1 x2 x3

 (g) (h) (i)

 Separated image s3 s2 s1

 (j) (k) (l)

Figure 1. Separation of the original images using ICA algorithm

This algorithm has a wide range of applications in industrial and medical fields.

For some specific application, ICA analysis on a workstation is adequate, but for a vast

majority it is desirable to have a VLSI chip that can perform Independent component

analysis (ICA) in real-time. In this chapter we propose a parallel architecture for the real-

time implementation of ICA algorithm on the reconfigurable J-platform, developed in our

laboratory.

2 Fast ICA Algorithm

 The flowchart indicating the various steps involved in the Fast ICA algorithm is

shown in the Figure 2

Figure 2 Flowchart for ICA algorithm

A very high-level summary of the detailed flowchart is given in Figure 3. The

details of the various blocks are discussed in the following sections.

Start

C is the Covariance matrix of mixed signals .
V is the matrix of eigenvectors of C.
Ë is the Diagonal matrix of eigenvalues of C.

Whitening
:

xVx T/- 21~ Λ=

Eigen
Decomposition:

p=1 and k=0
B is the null matrix of size of N
N is the number of independent
components

Choose initial random weight vector)0(w p

 with norm
1.

)0(

)0(
)0(

)0()0()0(

p

p
p

p
T

pp

w

w
 w

wBBw w

=

−=

 2exp 1

 2exp
22

2

) /(-u)u((u)g

)/(-uu(u)G g(u)

−=′

=′∆

x (k)w u T
p=

{ }{ }(k)w (u) g E- g(u)xE)(kw pp ′=+1

)1(w

)1(w
)1(w

+

+
=+

k

k
k

p

p
p

)1(

)1(
)1(

)1()1()1(

+

+
=+

+−+=+

kw

kw
 kw

kwBBkw kw

p

p
p

p
T

pp

)(w)1(w kkr pp −+=

ε≤r

1+= kk Replace the pth column of B with wp

(k+1)
After whitening, add wp (k+1)T as the pth
row of W
Then Increment p to p+1

Stop

Np ≤

True

Fals
e

Tru
e

Fals
e

Figure 3 Simplified diagram for ICA algorithm

3 Preprocessing for Fast ICA

Before applying the ICA algorithm on the given data, it is useful to perform

preprocessing. Some preprocessing techniques that can make the problem of ICA

estimation simpler and better conditioned are centering, whitening and band pass

filtering. In this chapter we discuss only whitening.

3.1 Whitening

 Whitening reduces number of parameters to be estimated. Whitened data x~ has

its components uncorrelated and their variances equal unity. In other words, the

covariance matrix of x~ is an identity matrix. Whitening can be done using eigenvalue

decomposition (EVD) of the covariance matrix of mixed signals x , C. Let V be the matrix

of eigenvectors of C and Ë the Diagonal matrix of eigenvalues of C.

Whitening is done by

 x~ = Ë -1/2 VT x (3)

Eigen
Decomposition

and

Whitening

Formation
of De

mixing
Matrix

Separation
of data

Observed data
Independent
components

Fast ICA
for one

unit
De correlation
checking for
convergence

Whitening transforms mixing matrix A into A
~ where AVA T/- 21~ Λ= . A parallel

architecture for whitening is shown in Figure 4

Figure 4 Parallel architecture for whitening

4 Iterative Computation

 The fast ICA finds a direction, i.e. a unit vector w such that the projection wTx

maximizes non-gaussianity. Non gaussianity is measured by negentropy J(wTx) where

 2]})({})({[)(zGEuGEuJ −≈ (4)

z is Gaussian variable of zero mean and unit variance (i.e. standardized). The variance of

wTx has to be unity for the measure to be valid. For whitened data, this is equivalent to

constraining the norm of w to be unity. To prevent different vectors from converging to

the same maxima, we must decorrelate them after each iteration. For this, when we have

UNL

UNL

UNL

UNL

× UNL

R/1

v1

1

v1

2

v2

1

v2

2

Ë 1

1

Ë 1

2

Ë 2

1

Ë 2

2

x
1

x
2

~

1x

~

2x

-
×

-
×

-
×

-
×

-
×

×

×

×

×

×

×

×

×

+
×

+
×

+
×

+
×

3d 3d

3d 3d

3d

3d

3d

1d

1d

3d

estimated p vectors, w1, w2, …, wp, we run the algorithm for wp+1, and after every

iteration step subtract from wp+1 the projection matrix B, whose columns are w1 ,w2, …,

wp.

The algorithm consists of the following steps:

Step 1: Initialization: Choose initial random weight vector)0(w n with norm 1. Let B be

the null matrix of the size of number of independent components.

Step 2: Iteration: Let the non-linear function be)2exp()(2 /-u-uG = . Then

)2exp()1()(

) 2(exp)()(
22

2

/u-uug

/u-uuGu g

−=′

=′∆
 (5)

The update of the nth row of W is given by T
n k)1(w + .

)}(w)}x)(w(gE{-)x)(wg(x{ E)1(w TT kkkk nnnn ′=+ (6)

)1(w

)1(w
)1(w

+
+

<=+
k

k
k

n

n
n (6)

 The Fast ICA algorithm can be mapped on to the J-platform as shown in Figure 5.

Figure 5 Fast ICA Algorithm

Step 3: Decorrelation: To prevent the different vectors from converging to the same

maxima, it needs to be decorrelated.

)1()1()1(+−+=+ kwBBkw kw n
T

nn (7)

)1(
)1(

)1(
+
+=+

kw
kw

 kw
n

n
n (8)

Step 4: If)1(w +kn and)(w kn have converged, then goto step 5, else increment k to

 k + 1 and goto step 2.

+

×

UNL
(exp)

+

×

+

×

+

×

+

×

+

×

U
NL
(Re
c)

+

×

+

×

+

×

+

×

+
×

+

×

+

×

w1(k) w2(k)

x1 x2

g(u)

1
1-u2

u

u

-0.5

-0.5u2 exp(-0.5u2) u 1-u2
N

1/N

(u)g′

g(u)

x1 x2

1/N

1/N

+

×

w1(k+1)

w2(k+1)

w1(k) w2(k)

4d
5d

 8d 8d

Step 5: Replace the nth column of B with)1(w +kn . After whitening, add T
n k)1(w + as

the nth row of W. Increment n to n + 1 and set k = 0. If ≤n number of independent

components, then goto step 2 else stop.

The parallel architecture for the decorrelation step is shown in Figures 6

Figure 6 Parallel architecture for Decorrelation

+

×

+

×

+

×

+

× b11
b12 b12

b22

b11
2

b11
2 + b12

2

0
b12

2

b12
2 + b22

2

+

×

+

× b11
b12

b11 b21

b2

1

b22

b11 b21 + b12 b22

+

×

+

× B1
B2

w1 w2

+

×

+

×
B2

w2 w1

B4

w2 B4 + w1 B2

w1 B1 + w2 B2

+

×

+

×
w2

w1

w2 (k+1) w1 (k+1)

5 Parallel architecture for Eigenvalue decomposition

In (3), V is the orthogonal matrix of eigenvectors and Ë is the diagonal matrix of

its eigenvalues. Ë can be obtained by eigenvalue decomposition of the covariance matrix

C. A simplified diagram of the parallel architecture of the EVD algorithm is shown in the

Figure 7. The details of the Figure 7 are shown in Figure 8 and Figure 9.

Figure 7 Symbolic architecture for EVD for a 4x4 symmetric real matrix

Because C is real and symmetric, its eigenvalues are real and non-negative. Therefore, a

special algorithm can be used for its decomposition. The EVD algorithm has the

following steps

Step 1: Initialization:

Choose a initial random x and normalize it Let M be is the size of the covariance matrix

C. Initialize R = C.

Step 2: Iteration:

Find the smallest eigenvalue and corresponding eigenvector of R say X

X

Normalize
X

Rank
reduction

x

Block 1

r

r X C [V, D]

Figure 8 Details of Block 1 and Normalize X (Architecture for
finding one eigen value and one eigen vector)

Step 3: Rank reduction:

 The rank of the covariance matrix should be reduced by using the following expression

TXXRR **λ−=+ (9)

+

×

+

×

+

×

+

×
r11

r12

r13

r14

r21

r22

r23

r24

r31

r32

r33

r34

r41

r42

r43

r44

X1 X2 X3
X4

+

× UNL

Sqrt

UNL

Rec +

×

+

×

+

×

+

×

+

×

x1

x2

x3

x4

X1

X2 X3
X4

Figure 9 Details of Block 2

For the sake of simplicity, let the size of the covariance matrix be 4x4. Block1

finds the minimum eigenvalue and the corresponding eigenvector of a matrix R. The

architecture requires 14 MA_PLUSs and 3 UNLs including the spares. The second block

finds the norm of the input and normalizes the input vector. The third block is the Rank

reduction block. This follows (2). The parallel architecture of EVD on J-Platfrom

requires 28 MA_PLUSs and 3 UNLs including spares.

6 Discussion

In this chapter we have proposed some preliminary parallel architectures to

implement the Fast ICA algorithm on J-platform. By considering individual steps of the

algorithm for simple cases, it was shown that they can be mapped to the platform’s

+

×

+

×

+

×

+

×

+

×

+

×

+

×

+

×

+

×

+

×

+

×

+

×

x1

x3
x4

x2

x2 x3

x4 x4

x3

x4

x1 x1 x1

x2 x3

x2

r34 r24 r44 r33

r34

r11 r12 r13 r14

r23

r34

r24 r44 r33

r23

r14

r13

r11

r12

r34

coarse-grain cells: MAPLUS, UNL, and DF. Although an analysis was not performed,

hardware versions have the potential for reducing the latency compared to the

workstation analysis enormously. Some of the areas that should be explored in future are

1) mapping to limited and fixed resources on a J-platform chip, 2) timing consideration

for synchronous data flow in the architecture, 3) reusability of the resources, 4)

generalization to arbitrary number of signals, 5) block-by-block analysis of data, 6)

precision considerations, and much more.

