
PARALLEL ARCHITECTURE FOR INDEPENDENT  
COMPONENT ANALYSIS ALGORITHM (ICA) 

 

Independent component analysis (ICA) is a recently proposed method as a 

solution to the blind source separation problem. The objective is to recover the 

unobserved source signals from the observed mixtures without the knowledge of the 

mixing coefficients. It has the potential for a wide range of applications in industrial, 

medical, security, and military fields because it reduces the complex problem of dealing 

with high-dimensional statistical descriptions to products of one-dimensional density 

functions. For some applications, off-line ICA analysis on a workstation could be 

adequate, but for a vast majority it is desirable to have a VLSI chip for real-time analysis. 

In this chapter we propose some preliminary ideas on a parallel architecture for the real-

time implementation of ICA algorithm on the reconfigurable J-platform. Admittedly it 

just begins to address the problem of VLSI implementation and explores some first steps 

toward actual high-speed implementation. The feasibility of mapping ICA to the J-

platform is demonstrated, but much work remains to be performed as delineated in the 

‘discussion’ section at the end of the chapter. 

 

1 Motivation for ICA 

Imagine that in a room, two people are speaking simultaneously and that there are 

two microphones which produce time signals denoted by x1(t) and x2(t). Each of these 

received signals is a weighted sum of the speech signals emitted by the two speakers 

denoted by s1(t) and s2(t). Then we can express the received signals in terms of the 

original signals as  
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where a11, a12, a21, and a22 are certain parameters that depend on the microphone 

characteristics and their distances from the speakers. Clearly, it would be very useful to 

recover the original speech signals from the received signals. 

More generally, if there are n different signals and n received mixed signals, then 

the relationship can be expressed as  
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or in matrix-vector notation x(t) = A s(t). Here, for example s1 and s2 could be speech 

signals, s3 could be the sound produced by a motor vehicle, etc. In a biomedical 

environment s1(t), … could represent a set of EEG signals, ECG signals, etc. 

 The recently developed technique called ICA, can be used to estimate A or its 

inverse W = A-1  based on the information of their statistical independence, which then 

allows blind separation of the original signals from their mixtures. The technique is 

applicable not only to time signals but also to images. As a specific example consider the 

three images s1, s2 and s3 shown in the Figure 1 (a), (b) and (c). Their histograms are 

shown in (d), (e) and (f). Suppose now that the observed images are the ones shown in 

Figure 1 (g), (h) and (i). We now pose the question whether and how we can recover the 

original images blindly (without the knowledge of the mixing information). The answer 

is a ‘yes’. Indeed, the images estimated by the application of the fast version of ICA, 

called Fast ICA, are shown in Figure 1 (j) (k) and (l). 
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Figure 1. Separation of the original images using ICA algorithm 

 

This algorithm has a wide range of applications in industrial and medical fields. 

For some specific application, ICA analysis on a workstation is adequate, but for a vast 



majority it is desirable to have a VLSI chip that can perform Independent component 

analysis (ICA) in real-time. In this chapter we propose a parallel architecture for the real-

time implementation of ICA algorithm on the reconfigurable J-platform, developed in our 

laboratory. 

2 Fast ICA Algorithm 

 The flowchart indicating the various steps involved in the Fast ICA algorithm is 

shown in the Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Flowchart for ICA algorithm 

A very high-level summary of the detailed flowchart is given in Figure 3. The 

details of the various blocks are discussed in the following sections. 
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Figure 3 Simplified diagram for ICA algorithm 

 

3 Preprocessing for Fast ICA 

Before applying the ICA algorithm on the given data, it is useful to perform 

preprocessing. Some preprocessing techniques that can make the problem of ICA 

estimation simpler and better conditioned are centering, whitening and band pass 

filtering. In this chapter we discuss only whitening. 

 

3.1 Whitening 

 Whitening reduces number of parameters to be estimated. Whitened data x~  has 

its components uncorrelated and their variances equal unity. In other words, the 

covariance matrix of x~  is an identity matrix. Whitening can be done using eigenvalue 

decomposition (EVD) of the covariance matrix of mixed signals x , C. Let V be the matrix 

of eigenvectors of C and Ë  the Diagonal matrix of eigenvalues of C. 

 

Whitening is done by 

  x~ = Ë  -1/2 VT x           (3) 
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Whitening transforms mixing matrix A into A
~  where AVA T/- 21~ Λ= . A parallel 

architecture for whitening is shown in Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Parallel architecture for whitening 

 

4 Iterative Computation 

 The fast ICA finds a direction, i.e. a unit vector w such that the projection wTx 

maximizes non-gaussianity. Non gaussianity is measured by negentropy J(wTx) where     

 2]})({})({[)( zGEuGEuJ −≈       (4) 

z is Gaussian variable of zero mean and unit variance (i.e. standardized). The variance of 

wTx has to be unity for the measure to be valid. For whitened data, this is equivalent to 

constraining the norm of w to be unity. To prevent different vectors from converging to 

the same maxima, we must decorrelate them after each iteration. For this, when we have 
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estimated p vectors, w1, w2, …, wp, we run the algorithm for wp+1, and after every 

iteration step subtract from wp+1 the projection matrix B, whose columns are w1 ,w2, …, 

wp. 

The algorithm consists of the following steps: 

 

Step 1: Initialization: Choose initial random weight vector )0(w n  with norm 1.  Let B be 

the null matrix of the size of number of independent components. 

 

Step 2: Iteration:  Let the non-linear function be )2exp()( 2 /-u-uG = .   Then 
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 The Fast ICA algorithm can be mapped on to the J-platform as shown in Figure 5. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Fast ICA Algorithm 

 

Step 3: Decorrelation: To prevent the different vectors from converging to the same 

maxima, it needs to be decorrelated. 
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Step 4: If )1(w +kn  and )(w kn  have converged, then goto step 5, else increment k to  

 k + 1 and goto step 2. 
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Step 5: Replace the nth column of B with )1(w +kn . After whitening, add T
n k )1(w +  as 

the nth row of W. Increment  n to n + 1 and set k  = 0.  If  ≤n   number of independent 

components, then goto step 2 else stop. 

 

The parallel architecture for the decorrelation step is shown in Figures 6  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6 Parallel architecture for Decorrelation 
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5 Parallel architecture for Eigenvalue decomposition 

In (3), V is the orthogonal matrix of eigenvectors and Ë  is the diagonal matrix of 

its eigenvalues. Ë  can be obtained by eigenvalue decomposition of the covariance matrix 

C. A simplified diagram of the parallel architecture of the EVD algorithm is shown in the 

Figure 7. The details of the Figure 7 are shown in Figure 8 and Figure 9. 

 

 

 

 

 

 

 

 

Figure 7 Symbolic architecture for EVD for a 4x4 symmetric real matrix 
 

Because C is real and symmetric, its eigenvalues are real and non-negative. Therefore, a 

special algorithm can be used for its decomposition. The EVD algorithm has the 

following steps 

Step 1: Initialization:  

Choose a initial random x and normalize it   Let M be is the size of the covariance matrix 

C. Initialize R = C.  

Step 2: Iteration:   

Find the smallest eigenvalue and corresponding eigenvector of R say X 
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Figure 8 Details of Block 1 and Normalize X (Architecture for  
finding one eigen value and one eigen vector) 

 

 

Step 3: Rank reduction:  

 The rank of the covariance matrix should be reduced by using the following expression 

TXXRR **λ−=+        (9) 
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Figure 9 Details of Block 2 
 
 

For the sake of simplicity, let the size of the covariance matrix be 4x4. Block1 

finds the minimum eigenvalue and the corresponding eigenvector of a matrix R. The 

architecture requires 14 MA_PLUSs and 3 UNLs including the spares. The second block 

finds the norm of the input and normalizes the input vector. The third block is the Rank 

reduction block. This follows (2). The parallel architecture of EVD on J-Platfrom 

requires 28 MA_PLUSs and 3 UNLs including spares. 

 
6 Discussion    

In this chapter we have proposed some preliminary parallel architectures to 

implement the Fast ICA algorithm on J-platform. By considering individual steps of the 

algorithm for simple cases, it was shown that they can be mapped to the platform’s 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

+ 

× 

x1 

x3 
x4 

x2 

x2 x3 

x4 x4 

x3 

x4 

x1 x1 x1 

x2 x3 

x2 

r34 r24 r44 r33 

r34 

r11 r12 r13 r14 

r23 

r34 

r24 r44 r33 

r23 

r14 

r13 

r11 

r12 

r34 



coarse-grain cells: MAPLUS, UNL, and DF. Although an analysis was not performed, 

hardware versions have the potential for reducing the latency compared to the 

workstation analysis enormously. Some of the areas that should be explored in future are 

1) mapping to limited and fixed resources on a J-platform chip, 2) timing consideration 

for synchronous data flow in the architecture, 3) reusability of the resources, 4) 

generalization to arbitrary number of signals, 5) block-by-block analysis of data, 6) 

precision considerations, and much more. 

 
 
 
 
 
 
 
 
 


