4 Jan 1999


he Notation

In mathematics, we often use symbols to simplify mathmatical expression.

Expression like 12 + 22 + 32 + ¼ + n2 is often written in short as år2, which means "the sum of all terms like r2 ".

To be more precise, numbers are placed above and below å to show where the series begins and ends.

Thus

12 + 22 + 32 + ¼ + n2
n
å
r = 1
r2.

In general, a finite series am + am + 1 + ¼ + an, where m £ n, is written as

n
å
r = m
ar .

In this notation,

For infinite series am + am + 1 + ¼, we replace the upper limit by ¥.

So the representation is

¥
å
r = m
ar .

Usually, the lower limit is 1, but it should not be assumed to be always the case.

n
å
r = 1
ar  = a1 + a2 + ¼ + an .


ome Results

n
å
ar
r = m
 = 
n
å
ar
r = 1
 - 
m - 1
å
ar
r = 1
    where n > m ³ 1
 
n
å
(aUr + bVr)
r = m
 = a
n
å
Ur
r = m
 + b
n
å
Vr
r = m
    where a, b are constants
 
n
å
k
r = 1
 = nk    where k is a constant
 
n
å
r
r = 1
 = ½n(n + 1)
 
n
å
r2
r = 1
 = n(n + 1)(2n + 1)/6
 
n
å
r3
r = 1
 = [n(n + 1)/2]2
 
n
å
kr
r = 1
 = 
k(kn - 1)
¾¾¾¾
k - 1
    where k ¹ 1


xamples

Example 1:  Find

n
å
(r + 1)(r + 2).
r = 1

Solution:

n
å
(r + 1)(r + 2)
r = 1
 = 
n
å
(r2 + 3r +2)
r = 1
 
 = 
n
å
r2 + 3
r = 1
n
å
r
r = 1
n
å
2
r = 1
 
 =  (n/6)(n + 1)(2n + 1) + 3(n/2)(n + 1) + 2n
 
 =  (n/3)[n2 + 6n + 11].


Example 2:  Find

2n
å
(2r - 3r2).
r = n + 1

Solution:

2n
å
(2r - 3r2)
r = n + 1
 = 
(2n + 1  + 2n + 2  + ¼ + 22n) - 3[
2n
å
r2 -
r = 1
n
å
r2
r = 1
]
 
 = 
2n + 1(2n - 1)
¾¾¾¾¾¾  - 3[(2n/6)(2n + 1)(4n + 1) - (n/6)(n + 1)(2n + 1)]
2 - 1
 
 =  22n + 1 - 2n + 1 - (n/2)(2n + 1)(7n + 1).


Hosted by www.Geocities.ws

1