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Abstract 

 

This research updates the joint estimation of revealed and stated preference data of 

Cameron (1992) to allow for joint estimation of the Travel Cost Method (TCM) portion 

using count data models. Further, these count data models reflect correction for 

truncation and endogenous stratification associated with commonly used on-site 

recreation sampling. Our updated modeling framework also allows for testing of 

consistency of behavior between revealed and stated preference data rather than imposing 

it. Our empirical example is river recreation visitors to the Caribbean National Forest in 

Puerto Rico. While we find little gain in estimation efficiency in our data, this may be 

due to our contingent valuation question eliciting willingness to pay for existing site 

conditions, a benefit measure conceptually very similar to what is estimated with TCM. 

However, our updated joint estimation may make a significant improvement in estimation 

efficiency when the contingent valuation scenarios involve major changes in site quality 

not reflected in the TCM data.  

 

JEL Classifications: Q0 Agricultural and Natural Resource Economics 

 

Key Words: Nonmarket valuation, Travel Cost Models, Contingent Valuation Models, 

Recreation 
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Determining the consistency of Stated Preference (SP) and Revealed Preference 

models (RP) has been an important part in the recreation economics literature for more 

than two decades. SP uses hypothetical scenarios to create or extend existing market 

conditions for a public good and assess marginal consumer behavior to change in fees or 

quality. RP considers observed behavior from consumers to uncover a demand schedule 

usually to arrive at the benefit consumer receive with the current price and quantity.  

Neither of the available methods under both types of models is free of criticism. SP 

models, typically developed in the form of Contingent Valuation methods (CVM), are of 

concern because of the hypothetical nature of the “transactions” used. Although several 

validation studies have been done (Bowker and Stoll 1988, Loomis 1989, Carson, et al. 

1996) showing that CVM results provide legitimate welfare estimates that are 

comparable to RP results, criticism of CVM techniques have become more focused and 

direct overtime (Boyle 2003).  

On the other hand, RP models also have some problems associated with 

sensitivity of welfare estimates to treatment of travel time and econometric issues. For 

years now, econometric efforts to develop RP models of recreation have evolved. Two 

main approaches have become the mainstream way to tackle non-market valuation using 

RP models. These are trip frequency travel cost (TCM) and random utility travel cost 

models (RUM-TCM). In both cases, econometric estimation has evolved from relatively 

simple computational methods that were not always consistent with the underlying data 

generating process, to more sophisticated methods that are more consistent with the 

nature of trip data.  

 2



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Fully parameterized trip frequency count data models have gained ground with 

the use of Poisson, Negative Binomial and Multinomial Count Distributions in recreation 

literature (Creel and Loomis 1990, Hellerstein and Mendelsohn 1993) reflecting the 

integer nature of trips taken. The evolution of fully parametric trip frequency model have 

made RP models trustworthy (Hellerstein 1999).  

In 1992 Cameron proposed a procedure that combined RP and SP methods in a 

simultaneous estimation framework. The purpose of this was to allow communication 

between models and to arrive at a robust estimation of both set of parameters. In 

Cameron’s study, CVM estimation is combined with a TCM in a structural way, allowing 

CVM parameters to be conditional to expected demand levels for each individual. This 

first attempt used a probit and a normal distribution joint process. The simultaneous 

estimation done in Cameron’s paper relates the errors in both methods assuming a 

bivariate normal distribution, conditioning the probit part of the estimation to the error 

structure in the TCM portion. The whole concept of joining these two estimation 

processes emanates from the idea that both CVM and TCM decision processes follow the 

same underlying principles and that combining both sets of information should help us 

reduce uncertainty regarding the resulting welfare measures. 

However the SP part allows the researcher to explicitly evaluate policy relevant 

scenarios that may involve changes in resource quality beyond the levels observed in the 

RP data. This “data augmentations” approach avoids extrapolating beyond the range of 

the RP data when evaluating substantial improvements in environmental quality. Such 

non marginal changes in environmental quality are often associated with major 
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restoration programs or updating decades old hydropower licenses or decades old land 

management plans. 

For this research we follow the spirit of Cameron’s (1992) work, by combining 

CVM and TCM data to estimate joint parameters. Unlike Cameron’s approach, however 

our attempt is primarily computational and does not use a combined utility function to 

channel the TCM model information into the CVM choice parameters. Our approach 

provides us with a joint error structure but eliminates the need for parameter restrictions 

as no utility function needs to be determined (thus, parameters are not to be constrained 

across equations). Although this study still follows the basic approach of Cameron’s 

combination of TCM and CVM data, it updates the joint estimation process by taking 

advantage of the evolution in parametric estimation models for TCM data. That is, we use 

a modified Poisson and Negative Binomial distribution to exploit the count nature of the 

TCM data. Furthermore, these distributions are modified to account for on-site sampling, 

a problem also known as endogenous stratification.  

Also, the study focuses on the usefulness this joint estimation has on obtaining 

welfare measures. To assess whether welfare calculations differ between individual and 

joint estimations we use an empirical numeric procedure known as complete 

combinatorial convolutions. Poe, et al. (2005) proposed this method as an alternative to 

empirically determine the probability that a random variable is statistically different to 

another. We recognize that individual’s willingness to pay (WTP) in both CVM and 

TCM models is a random variable and test whether calculated consumer surplus changes 

significantly from one case to another (joint and individual estimation).   Rather than 

conditioning the CVM data on the TCM, we adopt the spirit of Randall’s (1998) 
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suggestion that we learn everything that can be learned from combining these data 

without imposing preconceived notions regarding about the superiority of one type of 

data over another.  

The following sections will expand on the econometric estimation process and the 

use of the convolutions method. Results and conclusions are also presented.  

Alternative Ways to Combine TCM and CVM Data 

Economists have pointed out that one can combine these two non market 

valuation methods in different ways. First and foremost, TCM’s aim is to estimate a 

demand function while CVM looks at an inverse demand. Just as in Cameron’s work, the 

unobservable factors that affect respondents’ answers to the CVM question are likely to 

affect their number of trips demanded.  

There is a continuum of TCM and CVM questions, ranging from seasonal WTP 

for both (Cameron 1992) to marginal trips for both (Loomis 1997). Loomis (1997) 

proposed to combine TCM and CVM in a series of dichotomous choices. In this view, the 

revealed trip making behavior reflects an implicit yes to the first of the bid questions at 

existing travel cost, whereas the CVM question represents the second response to a 

higher bid in a panel. The problem with using such approach is that you need to discard 

the trip frequency information from the TCM to be able to use it in a dichotomous choice 

panel context. Others, like Englin and Cameron (1996), do quite the opposite, setting up 

the CVM question in a way that mimics the TCM framework using a change in trips in 

response to higher travel costs. It has been argued that, in this case, asking visitors to 

reassess a full season of trips given a marginal change in price might be too much of a 

strain, thus becoming a source of possible bias or item non responses.    
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This objective of this paper is to simultaneously estimate both models to take 

advantage of the commonalities between the two methods and 

1 

without: 1) discarding 

TCM trip frequency information, 2) forcing users to reassess their visits for the full 

season and 3) imposing consistency between the two models (e.g. instead, allowing 

testing for consistency). Our paper fills an important empirical gap in the analysis of 

combined RP and SP data: The case of TCM, with CVM on the most recent trip. This 

combination is not uncommon in the literature. Examples of separate use of these 

particular data setup can be found in studies that range from from deer hunting (Loomis, 

et al. 2000), mountain biking (Fix and Loomis 1998) to recreation demand in developing 

countries (Chase et al. 1998). The aforementioned commonalities imply that, as Cameron 

said, the underlying behavior in TCM and CVM should be related and that proper 

simultaneous estimation of both models should result in gains in efficiency.   
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It is important to update the Cameron (1992) approach to allow for count data 

models. Ever since Hellerstein and Mendelsohn (1993) established the theoretical 

foundation for the use of count data models, most recreation economists agree that count 

models can and should be employed because of their usefulness dealing with discrete and 

non-negative trips. In their definition of a discrete good demand function Hellerstein and 

Mendelsohn observe that the graphical shape of this demand schedule would look like a 

set of stairs. Each level of these stairs represented the extent to which a set of trips would 

be taken, given a certain price level.  

Data 

Data for this study come from a research project that is currently being conducted 

in the Caribbean National Forest in the northeastern part of Puerto Rico, also known as El 
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Yunque. Surveys were administered during the summers of 2004-05 as part of a 

comprehensive study on the impact of site characteristics on social and physical 

conditions in and around the forest streams. 

In person interviews were conducted at nine recreation sites along the Mameyes 

and Espíritu Santo rivers. Data include visitor’s demographics, site characteristics (fixed 

and variable), trip information and a contingent valuation question in the form of; “if the 

cost of this visit to this river was $____ more than what you have already spent, would 

you still have come today?” Bid amounts ranged from $1 to $200 per trip.  

Over 700 observations were obtained and coded, of which 494 observations were 

used in this analysis. The reason for the reduction in observations is because only trips 

where visiting the site were the main reason for traveling are considered valid for the 

TCM. This is done to deal with multiple destination problems (274 trips were not single 

destination trips) that are typically pointed out as a source of distortion in travel cost 

models. Also, because of the complicated form of the corrected negative binomial 

distribution, we eliminated four visitors who took more than 100 trips because they 

appear to be from visitors that are somehow quite different than the vast majority who 

take a small fraction of these trips.  

Variables in the TCM model include an intercept and travel cost. Variables in 

the CVM model include mean annual stream discharge (as a measure of flow), 

distance of pool to bridge, pool volume, pool volume squared, median grain size 

(measure of substrate sand size), and gage day (the depth of the river on the day 

sampled) and the bid amount visitors were asked to pay. Separate regressions indicate 

these variables have the greatest explanatory power under each model.  
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Estimating CVM parameters 

Because CVM directly deals with consumer reactions to marginal changes they 

represent a straightforward way to obtain compensated welfare measures. In our study a 

dichotomous choice WTP question format is used. The welfare measure from a WTP 

question in CVM can be summarized in the following equation: 

(1) v(p0,Q0,y) = v(p1,Q1,y-c)          

where v( ) is an indirect utility function, p0 is the current price level of the good 

considered, Q0 is the current quantity of the good consumed and y is income. On the other 

side of the equation, p1 and Q1 represent the new price and consumption level and c is the 

Hicksian compensating variation or WTP. In words, this equation states that maximum 

WTP is the amount that makes utility levels equal when considering different prices 

levels, quantities and disposable income. Note that under the current condition (0), 

disposable income is y, whereas in the alternative scenario (1) is the difference between y 

and c. 

What CVM allows us to do is to determine what the visitors’ WTP is for the good 

in question. In other words, we uncover the population parameter c. In the case of 

recreation or site valuation the two levels available for consumption is typically all or 

nothing. Put differently, we uncover the WTP that makes the visitors indifferent between 

visiting a site or not on their most recent trip.  

Because our WTP question format of “take it or leave it” involves a dichotomous 

choice of continuing to visit at the hypothetically higher travel cost or staying home, 

economists have used logit and probit likelihood functions to obtain WTP measures. For 
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our purpose, this study uses a probit for the CVM portion of the parameter estimation. 

The general form of a probit likelihood function is derived from the Bernoulli 

distribution. A probit link is associated to ensure a non-negative and bounded probability 

value (between 0 and 1) while conditioning the individual probability function to the set 

of parameters to be estimated.  

(2) lnL = ycvm * ln(π) + (1-ycvm) * ln(1-π)         

where π = Φ(Xβ) and ycvm is the individuals response to the CVM question. It is 

important to point that Φ( ) stands for the standard normal cumulative density function; X 

refers to the set of variables we are conditioning our probability to and β is the set of 

parameters to be estimated. Among the set of variables X we have the bid amount or price 

increase per trip. 

Estimating the TCM parameters 

For the TCM portion of our estimation we use a Poisson and a Negative Binomial 

distribution. These two options are commonly used in the estimation of recreation 

demand because they are count data models. This means that they take advantage of two 

important characteristics (such as visits to a site) that count data share: non-negative and 

discrete outcomes. Both the Poisson and Negative Binomial have been used successfully 

in the past to estimate seasonal demand for sites. 

One important consideration that was raised by Shaw (1989), and later showed 

empirically by Creel and Loomis (1990), is that truncated versions of these distributions 

should be used when on-site sampling takes place. Truncation of the dependent variable 

arises because all visitors must take at least one trip to be sampled. In addition, we also 
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correct for what is known as endogenous stratification or the fact that on-site sampling 

results in an over-representation of more frequent visitors in the sample data.  

In general correcting for truncation is done by dividing our probability 

distribution function by the probability of the ruled out (i.e., unobserved) outcomes. 

Analytically this could be represented as: 

(3) Pr(Y=y | y>α) = Pr(Y=y) / Pr(Y>α)       

In our particular case: 

(4) Pr(Y=y | y>0) = Pr(Y=y) / (1-Pr(Y=0))      

Note that because we are using count data models, we only need to find the 

probability that Y equals 0 and use its complement by subtracting it from 1.  

When using the Poisson distribution, the resulting truncated version looks like: 

(5) Pr(Y=y | y>0) = (e-λ λy) / (y! (1-e-λ))       

where λ = e(Xβ ; and a resulting log likelihood function that can be represented in the 

following way: 

(6) lnLpoisson = -λ (y*ln(λ)) – ln(y!) – ln(1-e-λ)      

Alternatively, the Poisson distribution has a very particular and useful property 

for correcting for endogenous stratification. That is that the truncated Poisson distribution 

provides the same results as using a regular (without truncation) Poisson when 

subtracting 1 from the dependent variable Y. 

 However the Poisson imposes the restriction that the mean of the distribution 

equals its variance something often rejected by trip data. A more general form of the 

Poisson count data that tests for and relaxes this mean-variance equality is the Negative 

Binomial model. The standard log likelihood form of this model is:  
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(1/ α))*(ln(1+ α* λ)          

In the case of the Negative Binomial distribution this convenient property for 

correcting for on-site sampling does not hold. For this distribution an endogenously 

stratified version has to be derived resulting in the following log likelihood function: 

(8) lnLnb = ln(y)+ln(Γ(y+(1/α)))-ln(Γ (yTCM+1))-ln(Γ (1/ α)) y*(ln(α))+(y 

-1)*(ln(λ))-(y+(1/ α))*(ln(1+ α* λ))        

Simultaneous Estimation 

Using Cameron’s (1992) structure we define our joint estimation process taking 

advantage of the known fact that a joint probability is equal to a conditional probability 

multiplied by a marginal probability:  

(9) ( ) ( ) (, |f x y f x y f x=         12 
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Just as in her case, we define the conditional probability in a direct manner by 

making the CVM estimation conditional to the TCM expected outcome. This expectation 

is used as an avidity measure in the CVM part of the estimation. Although we use a non-

linear distribution for our TCM estimation, the central limit theorem allow us to treat its 

errors as if they were normally distributed, thus making viable the use of the same 

conditional form for the probit part of the estimation. That is, assuming that we are 

dealing with a bivariate normal distribution where the expected value is ρZ and the 

variance is (1-ρ2). As should be understood, if the probit part of the estimation is treated 

as the conditional probability part of the aforementioned equality, the TCM (Poisson or 

Negative Binomial) part is considered as the marginal probability function. Analytically, 

our new CVM log likelihood function would then look like: 
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where now π = Φ((Xβ+ρZ) / (1-ρ2)0.5) and Z = (ytcm – E(ytcm)) / σtcm

The full log likelihood version of the joint estimation is simply the sum of the 

new CVM probit likelihood and the chosen TCM likelihood function (whether Poisson or 

Negative Binomial).  

One point of clarification is necessary before finalizing this section. Special care 

must be taken when using the Negative Binomial modified distribution. Because we are 

correcting it for endogenous stratification, the first and second moments used in the 

definition of Z are not the ones usually considered, but are also modified to account for 

the correction. Englin and Shonkwiler (1995) define these corrected moments for the 

Negative Binomial as: 

(11) E(y |y>0) = λ +1+α0         

and  

(12) V(y | y>0) = λ +α0+α0λ+α0
2        

where  α0=α/λ. 

To summarize, we will estimate recreation benefits with three empirical models: 

(1) the dichotomous choice CVM estimated with a probit model; (b) the TCM using 

Poisson and Negative Binomial; (c) a joint RP-SP model. From each of these models an 

estimator of net WTP for a trip is calculated. Now we turn to evaluation of whether these 

benefit estimates are different from each other and their respective CI’s as a measure of 

the precision of the benefit estimates with each of the three methods. 
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We use the method of convolutions to compare WTP estimates. Convolution is a 

mathematical operator that takes two functions and produces a third function that 

represents the amount of overlap between them. In 2005, Poe et al. proposed an 

alternative that can use a complete combinatorial approach to measure the difference 

between independent distributions. As mentioned before, convolutions create a third 

random variable that is formed by some relationship between the original functions 

considered. In Poe’s example, this relationship is a difference between the two random 

variables of interest. This new random variable can be expressed as: 

(13)  Z = X - Y or          

(14) Z = X + (-Y)          

Note that in (14) the difference is expressed by adding the X distribution to the 

distribution of Y flipped around zero (thus obtaining the negative value). Assuming that 

the corresponding probability functions of X and Y are fx(x) and gy(y) respectively, the 

distribution of their sum is represented by the following integral: 

(15) 
( ) ( )

( )( ) ( )

z

x y

f g h z

f z y g y d
∞

−∞

⊗ − =

= − − −∫ y
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This expression provides the probability that each combination of the original 

function produces. This can be shown to be related to the sum of the product of each 

combination from a polynomial multiplication. For a detailed proof please see Poe et al. 

(2005).  

Although several approaches have been used to assess differences between benefit 

estimates, some important issues are addressed with the use of the complete 
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where each difference is given the same weight.  

The method assumes that the researcher generates two independent distributions 

that approximate random variables X and Y. As mentioned above, each event in both 

distributions is given the same probability, although repeated outcomes are easily 

incorporated without loosing generality. Poe et al. (1995) showed that this empirical 

application can be related to the summation of polynomial products which, itself, goes 

back to the formal definition of the convolutions method.  

In our study, X and Y refer to WTP vectors for the individual and joint estimations 

respectively. A vector with random draws from the feasible values for each WTP is 

generated. A total of 4,000 draws were made and sorted. Each element of these vectors is 

subtracted from the other as suggested by (15). To obtain the one and two sided p-value 

the proportion of non-positive values is calculated. This represents the empirical 

probability that {  or } 0≤− yx γ̂  following Poe’s notation. We use the convolutions 

method to test consistency between CVM and TCM joint and individual estimation.  
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Testing Efficiency Gains of Joint Estimation 

As explained above the method known as convolutions allow us to assess the 

probability that two empirical distributions are different (whether WTPjoint=WTPindividual). 
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In our particular case we want to test whether the distribution of the WTP obtained from 

a joint estimation is statistically different from the one obtained in the individual 

estimation process. This allows us to test whether simultaneous estimation yields 

significantly different benefit estimates. There are other important ways in which we can 

see how different these results are from the ones obtained in separate regressions. For this 

matter we rely on more traditional hypothesis testing methods. That is, we use two 

different hypothesis tests to determine whether 1) the data generating processes of both 

equations are related in some way and, 2) if the resulting parameters for joint and 

individual estimations are equal. Formally this would be: 

(17) H0: ρ = 1 and H1: ρ ≠ 1   

(18) H0: βjoint = βindividual   and  H1: βjoint ≠ βindividual      

  To determine whether to accept the null hypotheses in (17) and (18) we use the 

traditional t-test and likelihood ratio approach, respectively. We assess whether Rho is 

statistically different than one by using a t-test.  To test equality of joint and individual 

coefficients we use the sum of log likelihoods of individual estimations against the joint 

estimation likelihood value. Together with the convolutions method, these set of tests 

should aid us to have a clearer idea of whether simultaneous estimation in this empirical 

case provides more efficient parameters.  

Results 

Results for the models estimated are summarized in table 1. The values shown are 

the parameters estimated value and their corresponding (t-values). This table shows 

results for the individual and joint estimations using the Negative Binomial (NB) 

distributions, as preliminary statistical results indicated that the overdispersion parameter 
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alpha was statistically significant. This suggests that the Negative Binomial is closer to 

the actual data generating process and thus should be used rather than the Poisson when 

determining WTP.  
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As can be seen, theoretically consistent results were obtained for both TCM and 

CVM regressions. This results seem to suggest that our empirical case supports the 

theoretical expectation of negative slope parameters for travel cost and bid amount 

variables. The table not only reports the individual log likelihoods for the separate 

estimations, but also includes the sum of both TCM and CVM likelihood values. With 

regard to the hypothesis tests in (17) and (18), we can see that in the joint estimation Rho 

appears an insignificant variable.  

Results for the likelihood ratio test performed between simultaneous and 

individual regressions are included in Table 1 also. The individual likelihood values for 

the separate regressions are reported along with the pooled log likelihood value. The 

difference between the sum of the individual log likelihoods and the simultaneous 

estimation likelihood is multiplied by 2 to obtain the likelihood ratio statistic χ2 reported. 

The likelihood ratio value computed is not significant for the χ2 test with one degree of 

freedom (critical value for 90% confidence level equals 2.706). With both an 

insignificant Rho value and likelihood ratio for the joint model, the joint estimation 

process, as used here, does not seem advantageous in our case study over the separate 

regressions approach.   

Results from the tests done suggest that the CVM portion of the estimation is very 

robust because all parameters from individual and joint estimations are very close. The 

same applies to the TCM model.  
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In the case of the convolutions results, testing for significant differences in mean 

WTP, Table 2 provides a summary of the calculated confidence intervals for each model 

and two of the most commonly used confidence levels (90 and 95%). The values 

presented for maximum and minimum WTP in each case come from our convolutions 

method, thus these would vary in case of replication due to the random nature of the 

process.  

Table 3 on the other hand, summarizes our failure to reject the null hypothesis of 

equality or no difference in separately estimated versus joint estimation of TCM and 

CVM benefits. Note that p-value under this test represents the probability that the 

difference between the two empirical distributions is less or equal to zero.  These results 

seem to reflect the small gain in efficiency obtained with the joint estimation process in 

this case for our data. In our table, the comparisons between the joint and individual 

empirical WTP variables appear, for all practical purposes, identical for both the TCM 

and the CVM. The similarity of consumer surplus estimates from the individual and joint 

models can be seen in the near equivalence of the Travel Cost coefficients in Table 1. 

The individual Negative Binomial and Joint Negative Binomial model, the coefficients 

are again almost identical (-.0112 and -.0113) yielding consumer surplus per day of $88. 

Since all comparisons between joint and individual estimations show us a one-tail 

p-value close to .5 (Table 3) we can understand that the entirety of one of the distribution 

tails is covered by the tail of the other distribution, thus one empirical distribution lies on 

top of the other. It is worth mentioning that the one-tail p-value for the empirical 

convolution between the TCM and CVM WTP (for the joint Negative Binomial 
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estimation) was equal to .16.  This suggests consistency between the two methods used to 

assess consumer demand. 

Conclusions and future research  

This paper provides an empirical modeling procedure that allows for testing 

whether joint estimation of stated and revealed preference models increase efficiency 

when compared to individual estimations and consistency between TCM and CVM 

responses. In our data the CVM WTP question involved willingness to pay to visit the 

site under current conditions, a scenario quite conceptually similar to what is estimated 

with TCM. In this situation the improvement from joint estimation was quite small. 

However, joint estimation may result in larger and significant efficiency gains in the 

situation where the CVM WTP scenario deviates substantially from the existing situation 

in terms of quality of the site. Empirically testing this conjecture awaits suitably designed 

CVM and TCM datasets.  

Another avenue of future research would be to integrate both models more, 

perhaps updating the joint utility theoretical approach that Cameron (1992) used to reflect 

the utility structure of count data models presented by Hellerstein and Mendelsohn 

(1993). Another alternative is to derive the expected constraints for different utility 

specifications and again use the simultaneous equation or estimation only to test which 

utility specification is supported by the data.  

For this case our simultaneous estimation process can be seen as a general 

unconstrained version of Cameron’s earlier work and opens the door to determine which 

type of joint preferences should be used prior to the actual estimation. Due to the 

complexity of estimating a constraint utility theoretic specification, more information on 

 18



1 

2 

3 

4 

5 

6 

7 

8 

the constraints that are supported by our empirical analysis should save researchers a 

great amount of effort while providing a better understanding of the behavior that guides 

both stated and revealed preferences.   

At the methodological level, a contribution of this paper is updating the TCM portion 

of the joint estimation statistical technique used by Cameron to reflect the count data 

models now commonly used for recreational demand modeling. Using count data models 

represents an improvement over the original simultaneous estimation suggested by 

Cameron.  
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Table 1. Results from individual and joint estimations 1 

     
   

 Variable 
Individual 

NB   

Joint 
NB 

& Probit 
Intercept 1.6465  1.646304 
 15.4736  15.482901 

TC -0.0113  -0.011259 TC
M

 

  -5.6238   -5.635707 

   
Individual 

Probit     
Intercept 2.429484  2.415245 
 4.363278  4.207129 

Bid -0.010373  -0.010351 
 -9.185037  -9.119293 

Road -0.234723  -0.233110 
 -2.466048  -2.376022 

Mean Annual Discharge -1.113220  -1.109557 
 -2.627327  -2.54502 

Median Grain Size -0.000442  -0.000440 
 -2.530866  -2.471221 

Pool Volume 0.002197  0.002187 
 2.258765  2.227659 

Pool Volume2 -0.000001  -0.000001 

C
VM

 

  -1.976418   -1.961058 

 Alpha 3.3296  3.329833 
   3.425   3.425877 

 RHO   -0.010433 
       -0.276134 

 Log Likelihood TCM -812.20970   
 Log Likelihood CVM -261.30236   
 Combined Log Likelihood -1073.51206   -1073.47540 
 Likelihood Ratio 0.07331 
   

2 

3 

Results present coefficients and t-values. 

 

 23



Table 2. Sumary for Convolutions WTP confidence intervals for individual and 
joint models. 

1 
2 
3  

 Joint  Individual 
           
   CI MIN. MEAN* MAX.    CI MIN. MEAN* MAX.  

95 $65.58  $88.82 $134.27   95 $65.46  $88.73 $136.70  

TC
M

 

N
B

 

90 $69.12 $88.82 $124.78   90 $68.44  $88.73 $123.52  

                   

95 $95.37  $108.00 $160.62   95 $96.30  $109.31 $126.78  

C
VM

 

Pr
ob

it 

90 $97.33  $108.00  $156.13    90 $98.23   $109.31 $123.57  

*Means are calculated using 1/ tcβ  for the TCM and ( )0 / bidabsβ β4 
5 
6 
7 
8 

9 

 where 0β  is a 
grand constant term (it includes all non bid coefficients multiplied by the respective mean 
value of the variables). Minimum and maximum values come from the convolutions 
method.  
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Table 3. Summary for Convolutions on Mean WTP for individual and joint 
Models (P-values for null hypothesis of equality of WTP between models). 

1 
2 
3 
4 

 
 

  Joint 
  TCM  CVM 

  

TC
M

 

0.5 
  

 

  In
di

vi
du

al
 

C
VM

 

  
  

0.49 

5 

6 
7 
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