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Abstract

A theoretical model describing the electron transport in vertical conductivity quantum dot in-

frared photodetectors is presented. The carrier wave functions and energy levels were evaluated

using the strain dependent 8-band k ·p Hamiltonian and used to calculate all intra- and inter-period

transition rates due to interaction with phonons and electromagnetic radiation. The interaction

with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within

the framework of Fermi’s golden rule, while the interaction with longitudinal optical phonons was

considered taking into account their strong coupling to electrons. A system of rate equations

was then formed, from which the macroscopic device output parameters like dark current and

responsivity, as well as microscopic information about carrier distribution in quantum dots and

continuum states, could be extracted. The model has been applied to simulate the dark current,

as well as the mid-infrared photoresponse in an experimentally realized device [J. Appl. Phys. 89,

4558 (2001)] and a good agreement with experiment has been obtained. Being free from any fitting

or phenomenological parameters, the model should be a useful tool in the design and prediction of

the characteristics of the existing or new types of quantum dot infrared photodetectors.

a) Electronic mail: eennv@leeds.ac.uk
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I. INTRODUCTION

In the last decade, quantum dot infrared photodetectors (QDIPs),1–8 utilizing electron

intraband transitions to detect incident infrared radiation, have emerged as an alternative

technology aiming to replace quantum well and HgCdTe infrared detectors. The expected

advantages of QDIPs are their inherent sensitivity to normal-incidence radiation, high op-

erating temperature and low dark current. In(Ga)As/GaAs quantum dots grown on GaAs

substrate,1–4,8–18 being probably the most explored quantum dot material system, are typ-

ically used in QDIPs, however other material systems have also attracted attention such

as InAs quantum dots grown on InP,7 InGaAs/InGaP dots grown on GaAs substrate,19–21

InAs/InAlAs dots grown on InP,22 GaN/AlN23 and Ge/Si quantum dots.24 QDIP devices uti-

lize two different geometries - lateral conductivity QDIPs and vertical conductivity QDIPs.25

Vertical QDIPs have been the subject of more intensive research due to their suitability for

application as focal plane arrays,5,6 although lateral QDIPs have demonstrated excellent

performance too.25

The afore mentioned experimental work has initiated the development of several theoret-

ical approaches with different level of complexity to understand the performance of QDIPs.

As the detection is based on the process of absorption of incident radiation, a significant

amount of theoretical work was focused on calculation of the intraband optical matrix el-

ements within the one band effective mass approach15,26–29 or the 8-band k · p method.30

Some theoretical efforts have also been made to model the current under dark or light con-

ditions.9,31–37 In these models, the current is deduced from the analysis of the processes of

carrier capture, thermal escape and photoexcitation. However, the rates of these processes

are calculated using parameters that were either taken phenomenologically, deduced from

experiment, or obtained by fitting. None of these models aims to predict the dependence

of relevant QDIP output parameters, such as responsivity or dark current on the choice of

material system used or on quantum dot size and composition, which it is highly desirable to

know in order to optimize QDIP characteristics. Deeper understanding of underlying QDIP

physics can also be achieved by obtaining information about carrier distribution among

various quantum dot and continuum energy levels, which is hardly to access experimentally.

In this work, we therefore present a theoretical model of vertical electron transport in

quantum dot infrared photodetectors. The model starts from the energy level and wave
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functions calculation, followed by evaluation of transition rates between all pairs of states,

from which a system of nonlinear rate equations is formed. From its steady state solution in

dark or light conditions, the population of energy levels and consequently the dark current

and responsivity are calculated. The details of the model are presented in Sec. II, while the

results obtained by its application to one of the reported InAs/GaAs QDIP structures14 are

given in Sec. III.

II. THEORETICAL MODEL

QDIPs consist of periodically arranged layers of quantum dots (see Fig. 1a), with the

period typically equal to Lz = 50nm chosen to minimize the dark current channel via

transport between bound states of quantum dots in neighboring periods. At such a value of

quantum dot period, the quantum dots are not vertically aligned, and the whole structure is

not strictly periodic in the z−direction. Nevertheless, as a reasonably good approximation,

the vertical arrangement and the periodicity of the structure will be assumed in the model as

shown in Fig. 1b. The processes that determine the dark and light current are the excitation

of carriers from the bound quantum dot states to resonant continuum states mainly localized

in the quantum dot region, their subsequent transport via the continuum states to the next

period, and possible capture of carriers from the continuum by quantum dots, but not the

direct transport between quantum dot bound states of neighboring periods. Therefore, it

is not expected that the transport properties of QDIPs are dependent on the details of the

quantum dot arrangement, hence the simplest possible periodic arrangement is chosen in

the model.

In order to prevent high values of dark current, quantum dots used in QDIPs are typically

either doped at a relatively low level to populate just the ground state or undoped. It

is therefore reasonable to assume a uniform electric field throughout the structure as the

formation of electric field domains38,39 is expected to occur only at high doping densities.

A. Modelling the electronic structure

The energy states of a quantum dot superlattice subjected to a uniform electric field

possess the property of shift-invariance. For each state assigned to a certain period of the
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superlattice (called the central period in the text), there is a set of corresponding states

obtained by translating the wave function in the growth direction by multiples of the su-

perlattice period. The corresponding eigenenergies are shifted by multiples of the potential

drop due to electric field over one period (see Fig. 2). Therefore, it is enough to find the

energy levels assigned to one period only, and the others are then obtained by exploiting

the shift-invariance property. The states assigned to the central period are obtained by

solving the Hamiltonian eigenvalue problem in the region of space containing 2N+1 periods

(central period, N periods to the left and N periods to the right) and selecting only the

eigenstates whose probability of finding a carrier in the central period is larger than in any

of the other 2N periods. In the calculations, a value of N = 2 was taken based on large

value of superlattice period compared to quantum dot size and previous experience with

simulations of quantum well infrared photodetectors.40,41

The 8-band strain dependent k ·p Hamiltonian42 is used to model the single-particle states

in the conduction band. The strain distribution was modeled using the continuum mechan-

ical model43,44 and was found using the finite element method on a rectangular nonuniform

grid where first order Lagrange interpolation elements were used.45 Due to the periodicity of

the structure, periodic boundary conditions in the growth direction were imposed, therefore

the strain tensor components need to be found in a single period only. It was assumed that

the dot shape is cylindrically symmetric as most dots in experimentally realized QDIPs ex-

hibit such shape. The axial approximation then allows us to reduce the problem from three

dimensional to two dimensional.46 The cylindrical symmetry of the dots then introduces a

good quantum number of the z−component of the total angular momentum mf (where mf

is half integer). The orthonormal wave function expansion method was used to find the

eigenenergies and the corresponding wave functions. The method is based on assuming each

of the eight envelope wave functions as a linear combination of the expansion basis functions

ψi(r) =
∑

nl

Ainlbnm(i)l(r, z, ϕ), (1)

with the coefficients Ainl (i ∈ {1, . . . , 8}, n ∈ {1, . . . , nmax} and l ∈ {−lmax, . . . , lmax}) to

be determined, where m(i) = mf −mj(i) and mj(i) is the eigenvalue of the z-component of

the total angular momentum of the Bloch function |i〉 (its explicit values for one choice of

the Bloch function basis can be found for example in Ref. 47). The basis functions bnml are
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given by

bnml(r, z, ϕ) = fnm(r)gl(z)Φm(ϕ), (2)

where

fnm(r) =

√
2

Rt

Jm(knmr)
∣

∣

∣J|m|+1(knmRt)
∣

∣

∣

,

gl(z) =
1√
Ht

e
i 2π

Ht
lz
, (3)

Φm(ϕ) =
1√
2π
eimϕ,

where l and m are integers and n is a positive integer, Rt and Ht are the radius and the

length of the region of space in which the Hamiltonian eigenvalue problem is solved (see

Fig. 3), Jm is a Bessel function of order m, and knmRt is its n-th zero. After substituting

Eq. (1) into Hamiltonian eigenvalue problem one can derive the corresponding Hamiltonian

matrix. The eigenvalues of this matrix are in fact the energies and its eigenvectors contain

the coefficients in the wave function expansion.

B. Carrier interaction with phonons and electromagnetic radiation

Due to the discrete nature of states in quantum dots, transition rates between electronic

states due to interaction with longitudinal optical (LO)-phonons have previously been con-

sidered to be vanishingly small unless the energy levels are separated by the energy of an

LO-phonon.48 Furthermore, longitudinal acoustic (LA)-phonons, due to their small energy,

cause transitions only between closely spaced energy levels. These expectations led to the

predictions of extremely low dark currents and very small capture rates in QDIPs due to

inhibited carrier dynamics. Consequently excellent QDIP characteristics were expected.

However, it is currently thought that the electron-LO-phonon interaction in quantum dots

cannot be taken into account within the framework of first order perturbation theory and

should be considered in the strong coupling regime,49,50 when the entangled electron-LO-

phonon states called polarons are formed. The polaron dynamics are then determined by

the decay of the LO-phonon part of the polaron to two LA-phonons.51,52 Therefore, full

modeling of the carrier dynamics would require the calculation of the polaronic, rather than

electronic structure only, which would be computationally very demanding. Nevertheless, as

the polaron states still remain mainly electronic or phononic,52,53 the electronic states found
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using the method presented in Sec. IIA closely resemble the mainly electronic polaron states.

The transition rate between such states due to the interaction with an LO-phonon and its

subsequent decay to two LA-phonons are calculated using the approach that was introduced

in Ref. 51. Subsequently it was used to model the experimental results on intraband car-

rier dynamics in quantum dots54,55 and in the feasibility study of intraband quantum dot

lasers.53,56 The transition rate from the initial state with an electron in state i (with energy

Ei) to the final state with an electron in state f (with energy Ef ) and one more (less) phonon

is therefore given by51,56

Wif = Γ −
√

2(R−X)

h̄
, (4)

where R =
√
X2 + Y 2, X = g2 + (∆2

if − Γ2h̄2)/4, Y = Γh̄∆if/2, ∆if = Ei − Ef ∓ h̄ωLO,

h̄ωLO is the LO-phonon energy, Γ is the inverse LO-phonon lifetime due to its decay into

two LA-phonons, g2 =
∑

k |gk|2 is the electron-LO-phonon coupling strength, which under

the assumption of bulk LO-phonon modes and the Frölich interaction Hamiltonian reads56

g2 =
∑

k

(nLO + 1/2 ± 1/2)|α(k)|2|Fif(k)|2, (5)

where nLO is the phonon occupation number and

|α(q)| =
1

q

√

e2h̄ωLO

2V

(

1

ε∞
− 1

εst

)

, (6)

with V being the volume of the embedding cylinder, ε∞ and εst the high frequency and

static dielectric constants, respectively, and where

Fif (q) =
8
∑

j=1

∫

V
d3rψ

(f)
j (r)∗eiq·rψ

(i)
j (r) (7)

is the electron-phonon interaction form-factor. The envelope functions of the initial and

final state are given as

ψ
(i)
j (r) =

∑

nl

A
(i)
jnlbnm(j)l(r, z, ϕ), (8)

ψ
(f)
j′ (r) =

∑

n′l′
A

(f)
j′n′l′bn′m′(j′)l′(r, z, ϕ), (9)

where m(j) = mf −mj(j) and m′(j ′) = m′
f−mj(j

′) with mf and m′
f being the z-components

of the total angular momentum of the initial and final state, respectively. One of the very

convenient features of the wave function expansion method is that the form factor, Eq. (7),
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can be evaluated without the numerically demanding three dimensional integration. Instead,

after substituting Eqs. (8) and (9) into Eq. (7) one finds that it can be expressed in terms

of the expansion coefficients as

Fif (q) =
8
∑

j=1

∑

nl,n′l′
A

(i)∗
jnl A

(f)
jn′l′f1(qz,∆l) ×

×f2(mf , m
′
f , n, n

′, qr, j), (10)

where

f1(qz,∆l) =
1

Ht

e
i

(

qz+ 2π
Ht

∆l

)

Ht/2 − e
−i

(

qz+ 2π
Ht

∆l

)

Ht/2

i
(

qz + 2π
Ht

∆l
) (11)

is an analytic function of its arguments, while

f2(mf , m
′
f , n, n

′, qr, j) = 1
2π

∫ 2π
0 dϕ

∫ Rt

0 rdrei∆mf ϕ ×

×ei(qx cos ϕ+qy sinϕ)rfnm(j)(r)fn′m′(j)(r), (12)

where ∆l = l′ − l, ∆mf = m′
f −mf , and

qr =
√

q2
x + q2

y .

The function f2 does not depend on the wave functions and can be tabulated once for all

arguments before evaluating the form factors. Finally, since Fif (q) depends on the radial

and the z-component of the wave vector only (and not on the ϕ-component), the summation

(integration) over q in Eq. (5) can be simplified from three dimensional to two dimensional.

The weaker electron-LA-phonon scattering was calculated using Fermi’s Golden rule. The

transition rate from an initial state i to a final state f is then given by55,56

Wif = Θ [±(Ei − Ef )] (nqs
+ 1/2 ± 1/2)

D2
Aq

3
s

h̄ρv2
s

×

×
∫

sin θqdθqdϕq|Fif (qs)|2, (13)

where DA is the acoustic phonon deformation potential, ρ the density and vs the longitudinal

sound velocity, qs = |Ei − Ef |/(h̄vs), nqs
is the number of LA-phonons with wave vector

qs, Θ(x) is the step function and (θq, ϕq) are the spherical coordinates of the vector qs.

The linear and isotropic acoustic phonon dispersion relation ω(q) = vsq is assumed. Since

the form factor does not depend on ϕq, the two dimensional integration in Eq. (13) can be

reduced to one dimensional.
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Other possible types of scattering were not included in the calculation and we now discuss

the reasons for that. As in QDIP operating conditions, only the ground state is significantly

populated and the populations of the wetting layer and the continuum states are small; all the

processes originating from the Coulomb interaction among carriers, being proportional to the

carrier density, can therefore be neglected. These are, for example, the relaxation of bound

states assisted by the Coulomb interaction between bound and wetting layer carriers,57,58

or the Coulomb scattering among the carriers in the continuum or wetting layer. Coulomb

scattering between bound states is also suppressed as in a system with discrete energy levels

it is difficult to achieve the resonance imposed by the condition of energy conservation.56 This

is also the case for ionized impurity scattering in the case of structures with a doped active

region, although in this work the structure with an undoped active region was considered. We

have previously shown56 that the relaxation rates due to spontaneous emission of photons

are much smaller than the other relaxation rates in the system. Finally, in the realistic

device, some number of defects is present, depending on the quality of growth. The defects

are another potential source of scattering, and as they are not included in the model, it is

expected that the results of the model should be valid in the limit of high-quality samples

with low defect density.

The interaction with incident electromagnetic radiation was treated in a standard man-

ner56,59 within the dipole approximation and Fermi’s golden rule. The optical cross section

of the i→ f transition due to absorption of electromagnetic radiation of angular frequency

ω is then given by56

σε
if (ω) =

2π

nε0cω

∣

∣

∣Mε
if

∣

∣

∣

2
g(Ef − Ei − h̄ω, 2σ), (14)

where n is the refraction index, and Ef and Ei are the energies of the final and the initial

state, respectively. Mε
if =

〈

i
∣

∣

∣Ĥ ′
∣

∣

∣ f
〉

/A is the perturbation matrix element which depends

only on the direction ε of light polarization and not on the amplitude of A. The inhomo-

geneous broadening due to size inhomogeneity of the quantum dot ensemble was taken into

account by replacing the delta function in Fermi’s golden rule with a Gaussian given by

g(x, 2σ) =
1

σ
√

2π
exp

(

− x2

2σ2

)

. (15)

In a similar manner as the form factors, the absorption matrix elements can be expressed
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in terms of the expansion coefficients as

Mε
if =

∑

jnl

∑

jn′l′
A

(i)∗
jnl A

(f)
j′n′l′G(jnl, j ′n′l′), (16)

where the perturbation Hamiltonian matrix elements are

G(jnl, j ′n′l′) =
1

A

∫

V
d3rb∗nm(j)lĤ

′bn′m(j′)l′ . (17)

The cylindrical symmetry of the dots introduces the following selection rules: ∆mf = 0 for

z−polarized radiation and |∆mf | = 1 for in-plane polarized radiation.

C. The transport model

The energy levels of a quantum dot superlattice will be denoted as i = (M,P ) representing

the P -th level in ascending order of energies among the levels belonging to the periodM . The

populations of energy levels and the current in the device will be found from the semiclassical

(Boltzmann equation) model, which due to the discreteness of the energy levels reduces to

the following system of rate equations:

dni

dt
=
∑

j 6=i

Wjinj

(

1 − 1

2
ni

)

−
∑

j 6=i

Wijni

(

1 − 1

2
nj

)

−

−
∑

j

σp
ij(ω)(ni − nj)Φ, (18)

where 0 ≤ ni ≤ 2 is the occupancy of level i including electrons of both spin, Wij is the

total transition rate from state i to state j due to interaction with phonons, σp
ij(ω) is the

optical cross section between states i and j for incident radiation of angular frequency ω and

polarization p and Φ is the flux of incident radiation. The effect of final state blocking is

included via the terms (1 − ni/2) that represent the probability that the final state is empty.

Due to the periodicity of the structure the relations

n(M,P ) = n(L,P ),

W(M,P ),(L,Q) = W(M+K,P ),(L+K,Q), (19)

σ(M,P )(L,Q) = σ(M+K,P )(L+K,Q)

hold.40,41,60 After exploiting them, the system of equations (18) is reduced and contains only

the occupations of levels assigned to a central period. Furthermore, in the spirit of the nearest

9



neighbors approximation, introduced in Sec. IIA, only the transitions with |M−L| ≤ N are

considered. As usual, the system of rate equations should be supplemented by the condition

imposing the total number of particles in the system. It is therefore assumed that there are

nd electrons per quantum dot on the average, i.e.
∑

P n(M,P ) = nd. In order to obtain a

finite system of equations, one also has to limit the number of levels per period, i.e. take

into account only the states with P < Pmax. It has been checked for each field that the

number of states taken in the calculation was sufficient.

As the carrier transition rates in QDIPs are much smaller than the frequencies of external

excitations, one is mainly interested in the steady-state response (d/dt = 0). Nevertheless,

the rate equations are solved by time integration of the system of equations (18), starting

from an initial condition that all carriers are in the ground state and performing the inte-

gration until the steady state is reached. Such a method is extremely reliable in terms of

convergence unlike the methods for solving a large system of nonlinear equations.61

After the system of equations (18) is solved, the current in steady-state conditions is

found by selecting a certain reference plane normal to the growth direction and keeping

track of the amount of charge that passes through that plane in a unit of time. Let pi be

the probability that the electron in state i is located to the left of the reference plane. The

contribution to the current from the transitions from level i to level f is then given by

Jif = −e (Wif + σifΦ)ni

(

1 − nf

2

)

×

× [pi(1 − pf ) − pf (1 − pi)] . (20)

The first term in square brackets in Eq. (20) accounts for the carriers that were initially on

the left side of the reference plane and pass to the right side, while the second term considers

the carriers that were on the right and pass to the left and clearly gives the contribution to

current of an opposite sign to the previous one. The total current is calculated by adding

the contributions of the current from all the transitions considered.

The probability of finding an electron whose wave function is given by Eq. (1) in a region

of space a ≤ z ≤ b

p =
∫

a≤z≤b
d3r

8
∑

i=1

|ψi(r)|2 (21)

can also be expressed in terms of the expansion coefficients as

p =
∑

nll′

∑

i

A∗
inlAinl′

∫ b

a
dzgl(z)

∗gl′(z), (22)
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where the last integral is evaluated analytically. This expression is used both for the current

calculation according to Eq. (20) and assigning a certain period to the state as described in

Sec. IIA.

III. RESULTS

The model presented in Sec. II has been applied to the simulation of the InAs/GaAs

QDIP structure reported in Ref. 14 (the structure labeled as S-GaAs therein). Quantum

dots are assumed to be of conical shape with the diameter D = 25nm and height h = 7nm

which are approximately the reported dimensions of the dots. A wetting layer with the

width of dWL = 0.5nm is considered as well. The same set of material parameters for the

InAs/GaAs material system as in Ref. 56 was taken.

The calculated energy levels, as well as the effective potential profile on the z-axis for

the analyzed structure subjected to the electric field F = 10kV/cm are shown in Fig. 2.

Due to relatively large size of the dots, there is a significant number of bound energy lev-

els. The ground state is strongly bound and positioned 300 meV below the continuum

in agreement with the experimental results obtained from photoluminescence and photolu-

minescence excitation studies.14 The ground state has the z−component of total angular

momentum |mf | = 1/2, while the other bound states have |mf | ≤ 9/2 and are shown in

Fig. 4. The calculations have shown that the change in the energy level structure of the

bound states with electric field is small and therefore the structure shown in Figs. 2 and 4

can be considered to be a typical representative of the position of energy levels for any field.

It can be seen that the states are grouped into five groups according to their energies with

energy gaps in between. While the model presented in Sec. II treats all the states on equal

footing regardless of whether such grouping occurs or not, the groups will be labeled with

G1-G5 and will be used in the discussion to build an intuitive picture of the microscopic

processes in the device.

A. The dark conditions

The calculated dark current density–electric field characteristics at three different tem-

peratures is given in Fig. 5. For comparison with experimental results where current voltage
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characteristics are reported, a mesa area of A = 5 ·10−4 cm2 in accordance with the reported

mesa diameter of 250 µm is assumed, and the uniform electric field distributed along the

340 nm long structure is taken. A realistic quantum dot density of 6 · 1010 cm−2 is taken

and it is assumed that there are nd = 1 electrons per dot on average, which is a typical

quantum dot occupation number in the case when relatively small voltages are applied in

n+-i-n+ structures.62 The comparison with the experiment should be taken with caution as

the reported QDIP structure consists of 5 periods only and it is possible that the effects

of contacts, not taken into account in our model of the periodic structure, might become

important in such cases. Nevertheless, one certainly expects the same trends and at least

the same order of magnitude of dark current. The inset in Fig. 5 shows that an overall

good agreement between the theoretical and experimentally measured results at T = 77K

is found, especially bearing in mind that the current changes by seven orders of magnitude

in the range of electric fields investigated. It can also be seen that the expected exponential

increase of current with field, followed by its saturation is obtained, as well as an increase of

current with temperature. The microscopic origin of these expected results will be presented

in what follows.

The carrier distribution among various energy levels at T = 77K is shown in Fig. 6. At

small values of the electric field the carriers appear to be thermalized and the distribution

resembles the equilibrium one. Most of the carriers are then in the ground state. At medium

fields the majority of carriers still remain in the ground state, however the nonequilibrium

distribution becomes clearly evident with some of the continuum states being more populated

than certain bound states. Finally, large values of the electric field significantly increase the

population in the continuum and at the same time the occupancy of the ground state falls.

The effect of temperature (at a fixed electric field) on the carrier population is similar to

the effect of electric field – larger temperatures promote more carriers to the continuum and

eventually deplete the ground state.

In order to identify the main carrier transport channels causing the presence of carriers

in the continuum and consequently the dark current in the device, the transition rates

between different quantum dot states are analyzed. The main transition mechanism is due

to interaction with LO-phonons, while the interaction with LA-phonons that carry only a

small amount of energy (<∼ 5meV) mainly causes the redistribution of carriers within the

same group of states, but cannot cause transitions between states from different groups. In
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order to participate in current, the carriers must eventually be excited to the continuum

(group G5, see Fig. 4) states. The carriers are naturally in the ground (G1 group) state

and only the excitations such as temperature and higher electric fields can populate higher

states.

At low values of electric field, the main carrier route to the continuum is via a sequence

of transitions G1 → G2, G2 → G3, G3 → G4 and finally G4 → G5. The transitions between

non-adjacent groups of bound states, (such as G1 → G3, G1 → G4 or G2 → G4), as well as

direct excitations to G5 states are much less probable due to the larger energy difference (and

hence the smaller transition rates) between the levels. When the electric field is increased, the

continuum states from the left neighboring periods (Fig. 2) start to penetrate the quantum

dots of the central period. As the field increases the energy of these states decreases and the

overlap with the bound states of the central period increases, providing additional channels

for carrier excitation to the continuum states. This firstly affects the transition rate from

G4 to G5, as shown in Fig. 7, which increases since the carriers can now be excited not only

to the continuum states assigned to the central period, but also to the continuum states of

the neighboring periods with smaller energy distance from G4 and the overlap which is still

sufficient to increase the transition rates. As the electric field is further increased, additional

paths of direct carrier excitation to the continuum, such as G3 to G5, and at larger fields

even G2 to G5, are opened and the dark current is therefore significantly increased.

The influence of temperature on the carrier excitation into the continuum is more trans-

parent. The transition rates to higher states in all the paths mentioned, being proportional

to the number of LO-phonons, increase with temperature (as seen for example from Fig. 7)

and therefore the number of carriers excited to the continuum and the dark current increase.

B. The light conditions

The results of the simulation of the mid-infrared (100–250 meV) optical response of the

structure investigated, are now presented. Under normal QDIP operating conditions the

carriers are mostly in the ground state, and the main origin of the optical response is the

absorption of carriers from the ground state. In agreement with previous theoretical and

experimental results,13,15,26 the calculation shows that significant absorption of the in-plane

polarized radiation from the ground state may occur only on transitions to G2 states and is
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located in the far-infrared region. The transitions in the mid-infrared region may therefore

only be due to z−polarized radiation and from here we only address the transitions due to

this polarization. The energy dependence of the optical matrix elements for the absorption

of z-polarized radiation from the ground state at an electric field of F = 10kV/cm is shown

in Fig. 8. It can be also considered as the representative graph for any value of the electric

field, as the dominant bound to bound transition matrix elements are weakly influenced by

the operating bias. The carriers from the ground state are mainly absorbed to the state of

the same symmetry from the G4 group and to a smaller extent to the state from the G3

group.

The QDIP responsivity at the angular frequency of incident radiation ω is defined as

R(ω) =
J(Φ) − J(Φ = 0)

h̄ωΦ
. (23)

In the simulation, the standard deviation of the Gaussian linewidth due to size inhomogene-

ity of the quantum dot ensemble was taken to be equal to 10% of the transition energy,

which is approximately the experimental value of the dominant transition in Ref. 14. The

spectral responsivity curves at several different values of the electric field and a temperature

of T = 77K are presented in Fig. 9. All of them exhibit a main peak around 180 meV

originating from the absorption from the ground state to the state from the G4 group, while

at higher values of the electric field another peak at an energy around 115 meV occurs, due

to a transition to the state from the G3 group. The positions of the peaks are in agreement

with experiment14 where the strong peak at 175 meV is accompanied by the weaker one at

115 meV. The peak responsivity mainly increases with electric field as one might expect,

but at large values of the electric field it starts to drop. These features can be understood

as follows. The carriers that are absorbed from the ground to a state from the G4 group

need to be promoted to the continuum to cause photocurrent. The transition rate from G4

to the continuum states increases with field, as already explained in Sec. IIIA and shown

in Fig. 7, causing the photocurrent to increase. However at larger values of electric field

the population of the ground state falls (see Fig. 6), therefore there are less carriers that

can be absorbed, causing the photocurrent to decrease, see Fig. 9. The smaller peak due

to absorption to the G3 state is not present at low fields due to the small probability of

further promotion of carriers from the G3 states to the continuum. At larger fields, when

the transition path G3 → G5 is activated (Fig. 7), this peak starts to appear.
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The spectral responsivity curves for different temperatures at two values of electric field

are given in Fig. 10. The influence of temperature on the responsivity can be understood

in a similar manner as the influence of electric field. At smaller values of electric field,

the responsivity increases with temperature, as the carriers absorbed to the state from G4

group are more likely to be promoted to the continuum at higher temperatures. On the

other hand, at larger values of the electric field when the ground state starts to be depleted,

higher temperature additionally reduces the number of carriers in the ground state, causing

less carriers to be absorbed from the ground state and consequently a smaller photocurrent.

It is more difficult to give a fair comparison of the theoretical and experimental respon-

sivity results than in the case of the dark current. In the model, an ideally z−polarized

excitation, performing a single pass through the QDIP active region, is considered. The ex-

periment reported in Ref. 14 was performed in normal incidence geometry, when the incident

radiation is certainly not ideally z−polarized and a quantitative comparison of the actual

value of the responsivity would require a more detailed analysis of the coupling of the optical

field with the active region of the QDIP structure. It can still be said that our results for the

responsivity of the order of R ∼ 1A/W are consistent with the experimental results. Indeed,

from the photocurrent spectra and optical excitation power reported in Ref. 14, one may

estimate the experimental responsivity to be of the order R ∼ (0.1 − 1)A/W for different

values of voltage. Furthermore, the simulation also predicts a fall of responsivity at higher

voltages, as observed in the experiment. The temperature of T = 77K was identified in the

experiment as optimal temperature in terms of the maximization of the responsivity. In the

simulation the responsivity at low voltages increases with temperature, and at high voltages

decreases with temperature, one should therefore expect that there is an intermediate region

where it exhibits a nonmonotonic behavior. However, for none of the values of the electric

field used in simulation was such behavior observed, implying that the simulation probably

predicts a steeper transition between the two regimes than it is in reality.

A further insight into the origin of the photocurrent can be obtained by analyzing the

distribution of the photoexcited carriers. The difference between the state occupancies

under light and dark conditions for three values of the electric field at T = 77K is given

in Fig. 11. At a field of F = 5kV/cm, most of the carriers photoexcited to G4 states relax

back to the lower states, rather than escaping into the continuum. The carriers absorbed

from the ground state are then distributed among G2-G4 states. At a higher field of F =

15



15kV/cm, the carriers photoexcited to G4 have a significant probability to make a transition

to the continuum states. Most of the carriers absorbed from the ground state are therefore

distributed among continuum levels, as can be seen from Fig. 11. The same also holds for

the field of F = 30kV/cm, but due to a drop in the occupation of the ground state under

dark conditions, the total number of absorbed carriers is smaller than at F = 15kV/cm.

IV. CONCLUSION

In conclusion, a microscopic model of the electronic transport in vertical conductivity

QDIPs was developed. The model considers the transitions between various quantum dot

bound and continuum states to evaluate the current under dark or light conditions, without

resorting to any fitting parameters. The model was applied to one of the experimentally

reported QDIP structures. A very good agreement with the dark current experimental

results was found in the range of voltages where the current changes as much as seven

orders of magnitude. The simulations also predict most of the experimentally observed

trends in responsivity.

The proposed model should therefore serve as a useful tool in the analysis of the char-

acteristics of existing QDIP devices, providing a better understanding of their performance

and enabling researchers to find the way for possible device improvements. More impor-

tantly, as the model does not contain any fitting parameters, it can be used to predict the

performance of new types of QDIP devices and suggest whether such devices would perform

better than the existing ones. Finally, the model gives a deeper insight into internal QDIP

physics, extracting important information about carrier excitation paths to the continuum

and carrier distribution both under dark and light conditions.
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X. Marcadet, C. Sirtori, C. Worrall, et al., Appl. Phys. Lett. 86, 211117 (2005).
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Figure captions

FIG. 1: Schematic view of three QDIP periods: a) a realistic structure, b) the structure

used in the modelling. The period of the structure in the growth direction z is equal to Lz.

FIG. 2: The effective potential profile on z-axis for the analyzed structure subjected to

the electric field F = 10kV/cm and the corresponding energy levels assigned to each of the

five periods.

FIG. 3: The region of space in which the Hamiltonian eigenvalue problem is solved,

consisting of 2N + 1 periods (N = 2). The radius of the embedding cylinder is Rt and its

length Ht. It is assumed that quantum dots have conical shape with diameter D and height

h. The wetting layer width is dWL.

FIG. 4: Quantum dot energy levels and the quantum number of the z−component of

their total angular momentum at F = 10kV/cm. According to their energy the states are

grouped in five groups G1-G5.

FIG. 5: Calculated dependence of the dark current density on the electric field at the

temperatures T = 50K (circles), T = 77K (squares) and T = 100K (triangles). The inset

gives a comparison of the experimental dark current results at T = 77K (line) and calculated

values (points).

FIG. 6: Occupancies of energy levels at three different values of electric field at a tem-

perature of T = 77K.

FIG. 7: The dependence of the average carrier transition rates from the states in groups

G2 to G4 to the continuum (group G5) on electric field at the temperatures T = 50K

(circles), T = 77K (squares) and T = 100K (triangles).

FIG. 8: The energy dependence of the optical matrix elements for absorption of z-

polarized radiation from the ground state at an electric field of F = 10kV/cm.

FIG. 9: The dependence of responsivity on the energy of photons of incident radiation at

a temperature of T = 77K and an electric field of F = 7.5kV/cm (full line), F = 10kV/cm

(dashed line), F = 15kV/cm (dashed-dotted line), and F = 25kV/cm (dotted line).

FIG. 10: The dependence of responsivity on the energy of photons of incident radiation at

the temperatures T = 50K (full line), T = 77K (dashed line) and T = 100K (dashed-dotted

line) and the values of electric field of F = 10kV/cm (left) and F = 25kV/cm (right).

FIG. 11: The change in the occupancies of energy levels due to the optical flux excitation

of Φ = 1018 cm−2s−1 at peak responsivity photon energy at three different values of electric
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field and a temperature of T = 77K. Only absolute values of the changes are presented and

the negative (neg.) quantities are therefore marked.
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