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Electron transport in periodic quantum dot arrays in the presence of interactions

with phonons was investigated using the formalism of nonequilibrium Green’s func-

tions. The self-consistent Born approximation was used to model the self-energies.

Its validity was checked by comparison with the results obtained by direct diagonal-

ization of the Hamiltonian of interacting electrons and longitudinal optical phonons.

The nature of charge transport at electron – phonon resonances was investigated

in detail and contributions from scattering and coherent tunneling to the current

were identified. It was found that at larger values of the structure period the main

peak in the current – field characteristics exhibits a doublet structure which was

shown to be a transport signature of polaron effects. At smaller values of the pe-

riod, electron – phonon resonances cause multiple peaks in the characteristics. A

phenomenological model for treatment of nonuniformities of a realistic quantum dot

ensemble was also introduced to estimate the influence of nonuniformities on current

– field characteristics.

I. INTRODUCTION

Semiconductor quantum dot superlattices are attracting increasing research attention due

to their possible applications in a variety of devices. For example, they have the potential

to increase solar energy conversion efficiency;1 most recently intermediate-band solar cells

based on them have been demonstrated.2 On the other hand, they are expected to have an

improved thermoelectric figure of merit3,4 compared to bulk materials, paving the way for
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thermoelectric devices with improved performance. It is also expected5–7 that quantum cas-

cade lasers based on quantum dot superlattices should have superior performance compared

to existing quantum well superlattice based quantum cascade lasers. Therefore, there is a

significant interest in investigating the carrier transport in quantum dot superlattices, which

is essential for understanding the performance of most of the devices mentioned.

In this paper, electron transport through periodic arrays of vertically stacked semicon-

ductor quantum dots in the presence of the electron – phonon interaction, will be inves-

tigated. Special emphasis will be put into the electron – phonon resonances that occur

when nVF = mELO, where n and m are integers, ELO the LO phonon energy, and VF the

potential drop over one period due to electric field. Resonances of this kind have been in-

vestigated in quantum well superlattices in an external axial magnetic field, that provides

lateral confinement and causes a discrete electronic spectrum, similar to the one in quantum

dots. It has been predicted8–11 that inelastic optical phonon resonances occur whenever

nEC + pVF + qELO = 0 (Stark-cyclotron-phonon resonance), and elastic resonances (Stark-

cyclotron) when nEC + pVF = 0 (where EC is the cyclotron energy corresponding to the

energy separation of Landau levels and n, p and q are integers). The observation of Stark-

cyclotron resonances was reported in Ref. 12. A special case of both of these, so called

Stark-magneto-phonon resonances that occur when nEC = pVF = qELO was recently mea-

sured, as reported in Refs. 13 and 14. Several theoretical studies have also addressed the

transport through a few quantum dots in the presence of the electron – phonon interaction.

Phonon-assisted transport through a double quantum dot coupled to electric contacts was

theoretically investigated in Ref. 15, where a weak LO phonon interaction strength was

assumed. The effect of a strong electron – phonon interaction on the transport through a

single quantum dot was studied in Ref. 16.

The organization of the paper is as follows. The theoretical framework used will be

presented in Sec. II, which will be additionally justified in Sec. III. The overall characteristics

of the current – field curves will be discussed in Sec. IV, with special emphasis on the main

peak in the curves in Sec. V and other peaks in Sec. VI. The influence of nonuniformities

will be estimated in Sec. VII.
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II. THEORETICAL FRAMEWORK

The formalism of nonequilibrium Green’s functions17,18 was used to evaluate the current

in the steady state through an array of identical quantum dots. The central quantities

are expectation values of product or anticommutators of electron creation and annihilation

operators at different times, such as the retarded Green’s function

GR
αβ(t1, t2) = −iΘ(t1 − t2)〈{âα(t1), â

+
β (t2)}〉, (1)

the advanced Green’s function

GA
αβ(t1, t2) = iΘ(t2 − t1)〈{âα(t1), â

+
β (t2)}〉 = GR

βα(t2, t1)
∗, (2)

and the lesser Green’s function

G<
αβ(t1, t2) = i〈â+

β (t2)âα(t1)〉. (3)

As can be seen from (3), the lesser function at equal times represents populations and

coherences of the states, in terms of which other relevant physical quantities can be expressed.

In the steady state of the system, Green’s functions depend only on the difference of their

time arguments. One can therefore define the Fourier transform of all these quantities as

F (E) =
∫

d(t1 − t2)e
iE(t1−t2)/h̄F (t1 − t2). (4)

In order to find the retarded and the lesser functions, one has to solve their dynamical

equations. These satisfy the Dyson equation

∑

γ

[

Eδαγ −
(

Hαγ + ΣR
αγ(E)

)]

GR
γβ(E) = δαβ (5)

and the Keldysh relation

G<
αβ(E) =

∑

γδ

GR
αγ(E)Σ<

γδ(E)GA
δβ(E). (6)

The relation between the retarded and advanced function in the energy domain is

GR
αβ(E) = GA

βα(E)∗. (7)

The Hamiltonian Ĥ contains the kinetic energy of the electron and single particle potential,

while all other interactions are contained in the self-energy Σ.
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As a first step in the application of the formalism to a given physical system, one has to

choose the basis of states to represent the Green’s functions. Here, a basis of states localized

mainly to one period is chosen. Such a choice enables one to make an approximation where

interactions with nearest neighbors only are considered. Additionally, such a basis gives

an excellent insight into the carrier transport in real space. Due to the periodicity of the

structure, the basis states are labelled as (ν, n), where ν is the index of the state assigned to

period n in ascending order of energies. In the case when only ground states are important,

the first index can be suppressed. The basis states are calculated as follows.

The electronic miniband structure of a quantum dot superlattice is solved using the eight

band k · p method with the strain distribution taken into account via continuum elasticity

theory, as described in more detail in Ref. 19. As a result of this step one obtains the

quantum dot superlattice eight component spinors |ΨνKz
(r)〉, satisfying the Bloch condition

|ΨνKz
(r + Lzez)〉 = eiKzLz |ΨνKz

(r)〉, (8)

where ν is the miniband index, Lz the period of the structure, and Kz the superlattice wave

vector. The phase of the spinors was fixed by imposing the condition that the value of the

dominant spinor component at a particular point in space is real and positive.

The spinors obtained are then used to construct Wannier states that are localized to a

certain period. The Wannier state originating from miniband ν, localized to period n is

given by

|Ψνn〉 =
Lz

2π

∫ π/Lz

−π/Lz

dKze
−inKzLz |ΨνKz

〉. (9)

In order to obtain states with even better localization (i.e. the states with the probability

of finding the electron in period n being closer to 1), the eigenvalue problem of the operator

of the z-coordinate is solved in the manifold of states spanned by |Ψνn〉, n ∈ {−N, . . . , N}.

The (N +1)-th eigenvector then corresponds to the basis state (ν, 0). The states (ν, n), when

n 6= 0 are then obtained by making a translation in real space by nLz . Since the eigenstates

of the position operator in the total vector space of the system are fully localized delta

functions, it is expected that the procedure described, performed in a limited subspace,

yields states with improved degree of localization. The actual calculation, where N was

overcautiously set to 10, verified this expectation. Additional convenience of this basis is

the fact that the external potential operator |e|F ẑ (where F is the electric field) is diagonal
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when the basis is restricted to the states with ν = 1. However, when the states with ν > 1

are included, this is no longer the case.

Once the basis of states is chosen, one can proceed to calculate the relevant Green’s

functions represented in that basis and afterwards the current in the structure. In the steady

state of the system, one obtains an algebraic system of equations for Green’s functions in

the energy domain, containing the Dyson equation (5), the Keldysh relation (6), and the

expressions for self-energies. The system of equations is closed by imposing the periodic

condition for all Green’s functions and self-energies

G(ν,n),(µ,m)(E) = G(ν,n+1),(µ,m+1)(E + VF ), (10)

and introducing an approximation by considering only the Green’s functions and self-energies

with |n − m| ≤ K.

The interactions with phonons considered in this work are polar coupling to optical

phonons and deformation potential coupling to acoustic phonons, as it is known that other

electron – phonon interaction mechanisms, such as deformation potential coupling to op-

tical phonons and piezoelectric coupling to acoustic phonons are less important.20 As it is

thought that the influence of phonon confinement is not so important in AlGaAs/GaAs and

InGaAs/GaAs nanostructures,21,22 bulk phonon modes are assumed. The Frölich interaction

Hamiltonian describing polar coupling to optical phonons is then given by20,23

Ĥe−ph =
∑

ijq

Mij(q)â+
i âj

(

b̂q + b̂+
−q

)

, (11)

where b̂q and b̂+
q

are phonon annihilation and creation operators, Mij(q) = α(q)Fij(q),

α(q) =
1

q

√

e2ELO
2V

(

1

ε∞
−

1

εst

)

, (12)

V is the volume of the box used for discretization of q vectors, Fij(q) is the electron – phonon

interaction form factor,23 and ε∞ and εst are high frequency and static dielectric constants,

respectively. Optical phonons are nearly dispersionless and for simplicity, a constant LO

phonon energy ELO is assumed.

The Hamiltonian of the deformation potential interaction with acoustic phonons is given

by the same formula (11) except that in this case

α(q) =

√

√

√

√

D2
Ah̄q

2ρvsV
, (13)
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where DA is the acoustic deformation potential, ρ the material density and vs the longitudinal

sound velocity. To a very good approximation, a linear and isotropic acoustic phonon

dispersion relation ω(q) = vsq can be assumed.

Self-energies are modelled using the self-consistent Born approximation (SCBA). Within

the SCBA, self-energies due to the electron – phonon interaction in the system with trans-

lational invariance24 are given by the Fock term17,18,20

ΣR
αβ(E) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)
1

2π

∫

dE ′
[

GR
γδ(E − E ′)DR(E ′)+ (14)

+G<
γδ(E − E ′)DR(E ′) + GR

γδ(E − E ′)D<(E ′)
]

,

Σ<
αβ(E) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)
1

2π

∫

dE ′G<
γδ(E − E ′)D<(E ′). (15)

In the systems lacking translational invariance, such as a single quantum dot investigated

in Sec. III, there is an additional contribution to ΣR from the Hartree term (see for example

Ref. 15 for the explicit expression). In the limit of low carrier density (G< = 0) investigated

in Sec. III, this term vanishes and therefore it was not considered. The anharmonic decay

of LO phonons, which is known to be important for the proper description of relaxation

processes in quantum dots,25 was taken into account by adding an exponentially decaying

term26 to the free phonon Green’s functions in the time domain. The phonon Green’s

functions in the energy domain are then given by

DR(E) =
1

E − ELO + iΓ
−

1

E + ELO + iΓ
, (16)

D<(E) = −i

[

(NLO + 1)
2Γ

(E + ELO)2 + Γ2
+ NLO

2Γ

(E − ELO)2 + Γ2

]

, (17)

where Γ is the LO phonon linewidth determined by its anharmonic decay rate and NLO is

the phonon occupation number

NLO =
1

e
h̄ωLO

kBT − 1
. (18)

Self-energy terms due to the interaction with acoustic phonons are given by the formulas

which have the same form as in the case of LO phonons. These can be simplified to avoid a

demanding integration in the energy domain, assuming acoustic phonons are stable. They

then read18

ΣR
αβ(E) =

∑

γδ,q

M∗
βδ(q)Mαγ(q)

[

(Nq + 1)GR
γδ(E − Eq) + NqG

R
γδ(E + Eq)+

+1
2
G<

γδ(E − Eq) −
1
2
G<

γδ(E + Eq)
]

, (19)
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Σ<
αβ(E) =

∑

γδ,q

M∗
βδ(q)Mαγ(q)

[

NqG
<
γδ(E − Eq) + (Nq + 1)G<

γδ(E + Eq)
]

, (20)

where Eq is the energy of an acoustic phonon and Nq is the acoustic phonon occupation

number. The principal value integrals appearing in the expression for the retarded self-

energy have been neglected, as is often done in the literature.27

An additional self-energy term representing the nonuniformity of quantum dots can also

be included, as described in Sec. VII.

The justification of application of the SCBA to electron – LO phonon interaction self-

energies in the system studied here will be given in Sec. III. In the expressions for self-

energies, only the electron – phonon interaction form factors between states with |n−m| ≤ K

are assumed to be nonvanishing.

The interest here will be in the limit of low doping and carrier densities where the in-

teraction with ionized impurities and electron – electron interaction can be neglected, and

there is no formation of electric field domains. In this region, current depends linearly on

the number of carriers. Therefore, the values of current presented have been normalized by

dividing it by the total occupancy of states in one quantum dot.

The system of algebraic equations for Green’s functions and self-energies was solved in a

manner that is now described. When the current – field characteristic is calculated, i.e. when

the same calculation is performed for different values of the electric field, the results obtained

for the previous value of the field can be used as an initial guess. Otherwise, an initial guess

for the lesser Green’s functions is taken in the form G<
αβ(E) = 2πi g(E − Eα, σ)nαδαβ,

where g is the Gaussian function, and nα is the initial guess for expected values of state

populations given by the thermal distribution of carriers. The initial guess for the retarded

Green’s function is obtained from the self-consistent solution of Eqs. (5) and (14) where the

terms with lesser electron Green’s function have not been included. After the initial guess has

been established, retarded and lesser self-energies are calculated. Next, the retarded Green’s

functions are calculated from the Dyson equation by solving the appropriate system of linear

equations. Finally the lesser Green’s function is calculated from the Keldysh relation. These

three steps constitute one iteration of the self-consistent procedure which is repeated until

convergence is achieved. In order to improve the stability of the self-consistent procedure,

the lesser and retarded functions for the next iteration are calculated from their average value

in the previous two iterations, as is usually done in self-consistent calculations. After each
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iteration the lesser Green’s functions are adjusted to enable the total number of particles to

be equal to a given predefined value.

It should be mentioned that due to the assumption of dispersionless LO phonon modes,

the integral in the expression for self-energy does not depend on q. Therefore, the terms

Mαβγδ =
∑

q M∗
βδ(q)Mαγ(q) can be calculated only once before the self-consistent procedure,

rather than in each iteration. When the self-energies due to the interaction with acoustic

phonons are concerned, due to the assumption of isotropic dispersion relation these take the

form
∫

d3qM∗
βδ(q)Mαγ(q)f(|q|). The integral over spherical coordinates θ and ϕ for each |q|

can therefore be calculated before the self-consistent procedure. However, the integral over

|q| must be calculated in each iteration.

The populations of the energy levels and coherences between states can finally be calcu-

lated by performing an integration of lesser Green’s functions over the whole energy domain.

The current through the structure can be calculated as described in Sec. IV.

III. VALIDATION OF THE SELF-CONSISTENT BORN APPROXIMATION

The main approximation in the model described is the use of the SCBA, which therefore

needs to be validated. Although the SCBA was widely used for modeling the electron

transport in quantum well based superlattices18 and quantum cascade structures,27 it is not

immediately apparent that it should be valid also for quantum dot superlattices.

The SCBA was used in Ref. 15 to describe the transport through two quantum dots

coupled to contacts in the presence of the electron – LO phonon interaction. The electron –

phonon interaction matrix elements Mαααα used in Ref. 15 were of the order ∼ 0.001×E2
LO,

implying a weak interaction where the SCBA is fully justified, and it has been argued15

that polaron effects become important when Mαααα approaches E2
LO, which is expected to

be the regime of strong electron – phonon coupling, beyond the reach of SCBA. In Ref. 28,

polaron relaxation in InGaAs quantum dots assisted by the presence of wetting layer states

was treated within the SCBA (called random phase approximation therein) . It has been

pointed out there that the SCBA is expected to be valid in the presence of continuum states

provided by the wetting layer, which has been verified by a comparison with the first term

in the cummulant expansion.28 On the other hand, in Ref. 29 the problem of interaction of

quantum dot carriers with dispersionless LO phonon modes was treated, and the conclusion
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was reached that the SCBA cannot reproduce the exact solution of the idealized model given

by a series of delta functions at all temperatures. This is a consequence of the fact that the

SCBA sums only a limited number of diagrams in the expansion, while a full summation is

needed to reproduce delta functions.

One cannot conclude from the previous works just mentioned15,28,29 whether the SCBA

is a good approximation in the system considered here. Numerical calculation of the Mαααα

matrix element (where α is the ground state) gives the value of ∼ 0.07 × E2
LO, which is

larger than the value used in Ref. 15 but still significantly smaller than E2
LO. The validity

of the RPA in Ref. 28 was established for a quantum dot system in the presence of nearby

wetting layer states, while here the interest is mainly in transport through bound quantum

dot states. In contrast to Ref. 29 where a single quantum dot interacting with dispersionless

LO phonons only is considered, other interactions are included in the system considered

here, such as anharmonic terms leading to LO phonon decay, the interaction with acoustic

phonons, as well as an additional term due to nonuniformity of the quantum dot ensemble.

In order to validate the use of the SCBA, it will be established here that for InAs/GaAs

quantum dots, the polaron shift of the ground state, as well as the polaron splitting when

the energy difference between the ground and first excited state is set to an LO phonon

resonance, are accurately calculated in the SCBA. This gives confidence that the positions

of the peaks of Green’s functions are correct. The physical properties of the system depend

not only on the positions of the peaks but also on their linewidths. One therefore has to

establish that the linewidths originate from real interactions in the system, rather than from

the effect described in Ref. 29. This will be done by showing that the calculated linewidths in

the presence of acoustic phonons are significantly larger than the ones arising due to artificial

broadening of the spectrum of electrons interacting with dispersionless LO phonons only.

A comparison of the polaron shifts in the spectrum calculated by direct diagonalization

of the Hamiltonian of electrons and LO phonons whose interaction is described by the

Hamiltonian Eq. (11), and by the Green’s functions method, for different electron – phonon

interaction strengths, is given in Fig. 1. The calculations were performed for a lens shaped

single InAs/GaAs quantum dot of diameter 20 nm and height 5 nm, which is representative of

typical self-assembled quantum dots obtained in experiments. The electronic structure of the

quantum dot was calculated using the eight band strain dependent k ·p model as described

in more detail in Ref. 19. The electronic states obtained that way were subsequently used as
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input for both calculations. The strength of the electron – phonon interaction was artificially

varied by multiplying the electron – phonon interaction Hamiltonian by a constant whose

value is given on the x−axis in Fig. 1.

0 1 2 3 4
Electron-phonon interaction strength

0.62

0.64

0.66

0.68

0.7
E

ne
rg

y 
(e

V
)

GaAs

Green’s functions calculation
Exact diagonalization

FIG. 1: The dependence of the ground state energy of and its first phonon replica of a single

InAs/GaAs quantum dot on the electron – LO phonon interaction strength. A comparison of the

results obtained by exact diagonalization of the electron – LO phonon interaction Hamiltonian

(circles) and by the Green’s function calculation in the SCBA (full line) is given.

In order to provide a fair comparison, in both calculations, only the ground and the pair

of nearly degenerate first excited states were taken into account, and only the electron – LO

phonon interaction was considered. Direct diagonalization is performed using the method

of Refs. 29 and 30, where a unitary transformation on phonon modes is performed in such

a way that only a few phonon modes remain coupled with electronic degrees of freedom,

therefore enabling efficient diagonalization. The energies of the polaron states that contain

a contribution from the purely electronic ground state of more than 10% are represented

by circles in Fig. 1. The Green’s function calculation was performed by self-consistently

iterating between Eqs. (5) and (14) in the limit of low numbers of carriers (lesser electronic

Green’s functions set to zero), where a temperature of T = 77K and LO phonon linewidth of

Γ = 0.13meV was assumed. A fully fair comparison would require T = 0 and Γ = 0, however

the positions of the peaks weakly depend on T and Γ as they decrease from the values used to
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zero. In Fig. 1 the positions of the maximum of the spectral function A11(E) = −2ImGR
11(E),

and its replica when its peak value is at least 10% of the main maximum peak value are

shown with a full line. The retarded Green’s functions of the ground and first excited state

are given in the top part of Fig. 2. One can see from Fig. 1 that excellent agreement for

the polaron shift of the ground state obtained by the two methods is obtained throughout

the whole interval of electron – phonon interaction strengths investigated. On the other

hand, for larger interaction strengths (say larger than 2.5) the positions of the replica start

to differ. Further presentations will show that this replica is important for the description

of carrier transport. Therefore, the conclusion arising from the results presented in Fig. 1 is

that the application of the SCBA can be expected to give reliable prediction of polaron shifts

up to the electron – phonon interaction strength being 2.5 times larger than the strength in

the InAs/GaAs material system which is of central interest here.
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FIG. 2: Real (dashed line) and imaginary (full line) part of the retarded Green’s function of the

ground state (left) and first excited state (right) in the case when the interaction with acoustic

phonons is excluded (top) and included (bottom).

It is shown next that the SCBA also accurately predicts the amount of polaron splitting

when two levels are at an LO phonon resonance. For that purpose, a numerical experiment

is performed where the energies of the pair of first excited states are shifted in opposite

directions by the same amount ∆E, which is varied. The electron – phonon interaction
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matrix elements are kept constant. The polaron energy levels that contain a contribution

from at least one of the electronic states larger than 10% are shown by circles in Fig. 3,

while the maxima of the spectral functions Aii whose peak values are at least 10% of the

main peak value are represented by diamonds, squares and triangles, for i = 1, i = 2 and

i = 3, respectively. The results obtained by the SCBA are in excellent agreement with the

results obtained by direct diagonalization.

The Green’s functions of the two states when the interaction with acoustic phonons

is included in the calculation are shown in the bottom part of Fig. 2. In the previous

case (no acoustic phonons, top part of Fig. 2) the linewidth originated from the combined

effect of artificial broadening due to limitations of the SCBA and from the finite phonon

lifetime. Since much larger linewidths are obtained in this case, one can conclude that they

do originate from the interactions in the system rather than from the artifacts of the SCBA.
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FIG. 3: Dependence of the polaron energy levels obtained by direct diagonalization (circles) and

the maxima of the spectral functions Aii(E) obtained in the SCBA (diamonds i = 1, squares i = 2

and triangles i = 3) on the artificial shift ∆E. The corresponding single-particle levels are shown

by full lines.
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IV. TRANSPORT IN AN IDEAL SUPERLATTICE OF QUANTUM DOTS

The electron current through an array of quantum dots can be expressed in terms of the

expectation value of the velocity operator as31,32

I = −
|e|

L

〈

dẐ

dt

〉

, (21)

where L is the total length of the structure in the z−direction and Ẑ is the coordinate

operator of all the electrons in the system in the Heisenberg picture. From its equation of

motion, using the definition of the lesser Green’s function, by exploiting the periodicity of

the structure, and bearing in mind that all interaction terms commute with Ẑ, as emphasized

in Ref. 31, it follows that

I = −
|e|

Lzh̄

∑

β

′
∑

α

[

Ĥ0, ẑ
]

αβ
G<

βα, (22)

where Ĥ0 is the Hamiltonian of an electron in the superlattice potential, ẑ its coordinate

operator, Lz is the period of the structure, and the summation over β takes place over the

states of one period only (called the central period), which is emphasized by the prime in the

summation. In view of the approximations introduced to limit the range of the Hamiltonian

and the Green’s functions, the summation over α then takes place over the states in the

central period and its few nearest neighbors only.

The current given by the expression (22) was interpreted in Ref. 31 to be entirely coherent,

where the scattering events only redistribute the carriers in energy domain. Following that

interpretation, the origin of all resonances, presented in the sections that follow, can be

explained in terms of oscillations of coherence between ground states of neighboring periods,

when the external field is varied. However, such an interpretation would not give an insight

into the origin of the mentioned coherence oscillations. It has also been pointed out in

Ref. 31 that in the basis of Wannier-Stark states coherences are created by scattering. A

very useful view of how coherences are created by scattering comes from the interpretation of

the Keldysh relation. The interpretation in the time domain18 considers Σ< as a scattering

event, which is then propagated by GR and GA to a moment of time when coherence G< is

observed. Following a similar interpretation that can be given in the energy domain and the

fact that current is entirely determined by coherences, one can determine the origin of current

in the structure, as follows. In the case when α = γ, δ = β and γ 6= δ, the contribution
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to current from G<
αβ(E) originates from a scattering event (represented by Σ<

γδ(E)) creating

coherence at energy E, which will be observed only if there is available density of states

(information about which is contained in GR
αγ(E) and GA

δβ(E)) at that energy. On the other

hand, when α = γ, δ 6= β and γ = δ, the current originates from a coherent propagation

GA
δβ(E), which will be observed providing there are carriers scattered into γ = δ (the term

Σ<
γδ(E)) and available density of states (the term GR

αγ(E)). The same interpretation of a

coherent origin of current can be given in the case α 6= γ, δ = β and γ = δ. Other cases

where the current originates from a combination of scattering and coherent propagation are

also possible, but it is expected that these, being higher order processes, give a much smaller

contribution. The results of the calculation presented here will indeed show that this is the

case.

The current-field characteristics were calculated for a quantum dot array consisting of

quantum dots whose dimensions are given in Sec. III for several different values of the pe-

riod of the structure, using the same value of LO phonon linewidth Γ. The value chosen

corresponds to a phonon lifetime of 5 ps which is within the range of the experimentally ob-

served lifetimes.33,34 We have also verified that variations of Γ in this range do not yield any

significant qualitative differences in the results presented, although they of course give cer-

tain quantitative differences. As already emphasized in Sec. II, the calculation considers the

Hamiltonian matrix elements, the Green’s functions and the self-energies only among states

with |∆n| ≤ K. This approximation is motivated by the fact that the Hamiltonian of the

electron system and the Hamiltonian of the interaction with phonons are both short-ranged

in a localized basis used. However, one cannot a priori know whether the Green’s functions

will be short-ranged, as well. The calculations are therefore performed by increasing the

value of K until convergence is achieved (the values of K that yield convergent results are

reported for each calculation). The fact that convergence is achieved gives a posteriori justi-

fication of the assumption of short-ranged nature of Green’s functions. If Green’s functions

were long-ranged, the convergence would not have been achieved.

The results of the calculation for different temperatures when the period is equal to

Lz = 10nm are given in Fig. 4. It was necessary to take K = 2 in the calculation to obtain

convergent results. Self-energies due to the interaction with LO and acoustic phonons were

both included in the calculation. Only the states originating from the ground miniband were

considered at T = 77K and T = 150K since these are the only ones that are significantly
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populated then, while it was necessary to include a pair of first excited states at T = 300K.

In order to understand the role of acoustic phonons, calculations have been performed

where their contribution was excluded. The result at T = 150K is shown by dotted line

in Fig. 4. Acoustic phonons have an energy which is too small to cause peaks in the

characteristics, however they broaden the peaks caused by LO phonons and therefore play

a certain role. Such a conclusion is fully in line with the results of Sec. III where it has been

also shown that acoustic phonons cause significant broadening in the density of states.
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FIG. 4: Current – electric field characteristics of a quantum dot superlattice at temperatures

T = 77K (full line), T = 150K with the influence of acoustic phonons (dashed line) and without

it (dotted line), and T = 300K (dashed-dotted line) when the period is Lz = 10nm.

V. THE MAIN CURRENT PEAK

The main peak arises when the potential drop over one period VF is equal to the LO

phonon energy ELO. The second peak appears at VF = 1
2
ELO at all temperatures, while

there is also a third peak at VF = 1
3
ELO present at lower temperatures. The origin of these

resonances, as well as the nature of the electron transport at resonances will be investigated

in what follows. The resonances predicted in the results reported here are in full analogy

with Stark-cyclotron-phonon resonances or Stark-magneto-phonon resonances in the case of

quantum well superlattices in a magnetic field.
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The results of the calculation were transformed to a Wannier-Stark basis which is more

useful for the physical interpretation of the results. The focus will be given on the case

of low temperatures when only the ground state is occupied. In that case, one can show

using the properties of translational invariance and the identity G<
αβ = −G<

βα
∗ that in the

Wannier-Stark basis, the expression (22) reduces to

I =
e2F

h̄

∑

α>0

α · 2Re (z0αG<
α0) . (23)

For Lz = 10nm, the current is entirely determined by the α = 1 term, i.e. by the coherence

between two ground states of neighboring periods G<
10(E). In order to understand the origin

of the current, one therefore has to investigate the origin of this coherence. It should be

mentioned that the fact that G<
10(E) determines the current does not necessarily imply that

the K = 1 approximation is sufficient. Indeed, in this particular case, convergent results are

obtained with K = 2.

The dominant contribution to G<
10(E) when VF = ELO comes from the

GR
11(E)Σ<

10(E)GA
00(E) term in Keldysh relation. The corresponding Green’s functions and

self-energies are presented in Fig. 5. G<
10(E) exhibits a maximum at the energy of level 0,

originating from the maxima of the scattering Σ<
10(E) term and the GA

00(E) term. In view of

the interpretation of the Keldysh relation presented, the origin of the current at this value

of the field is LO phonon scattering from level 1 to level 0, represented by the Σ<
10(E) term.

By expressing G<
10 in the energy domain as

G<
10 =

1

2π

∫

dEG<
10(E) (24)

and substituting into (23) one can also spectrally resolve the current flow between periods 1

and 0. The maximum of the spectrally resolved current appears at the energy of the ground

state of period 0, confirming the fact that the current flows into level 0, as demonstrated in

the left part of Fig. 6.

When one increases the electric field, the scattering Σ<
10(E) term decreases as 1 and 0

are no longer set to an LO phonon resonance. One should note that first phonon replica

in the spectral density of states A00(E) = −2ImGR
00(E) (see Fig. 6) is separated from the

main maximum by an energy larger than ELO, as a consequence of the polaron shift, as

demonstrated in Sec. III. Consequently, the resonance between the level 1 and phonon

replica of level 0 occurs at a higher field, which in this particular case corresponds to a



17

0.6 0.64 0.68 0.72
E (eV)

0
1000 Re G

A

00
 (E) (eV

-1
)

Im G
A

00
 (E) (eV

-1
)

-10
-6
0

10
-6

Re Σ<

10
 (E) (eV)

Im Σ<

10
 (E) (eV)

-1000

0 Re G
R

11
 (E) (eV

-1
)

Im G
R

11
 (E) (eV

-1
)

0

0.02

0.04

Re G
<

10
 (E) (eV

-1
)

FIG. 5: Green’s functions and self-energies of the dominant contribution GR
11(E)Σ<

10(E)GA
00(E) to

coherence G<
10(E), and hence the current, at LO phonon resonance (VF = ELO) when the period

is Lz = 10nm.

potential drop per period of VF = 38.3meV rather than VF = ELO = 36meV. Around

this resonance, the nature of the electron transport is significantly different than at an LO

phonon resonance. The dominant contribution to coherence G<
10(E), shown in Fig. 7, now

comes from the GR
11(E)Σ<

11(E)GA
10(E) term. Therefore, the current originates from coherent

propagation represented by GA
10(E), which now exhibits a pronounced maximum at the

energy of level 1. The coherence G<
10(E), and hence the current exhibit a maximum at the

energy of level 1 (see Fig. 7), confirming the interpretation that the transport channel at

this value of the field is coherent tunneling to phonon replica, as shown schematically by

horizontal arrows in the right part of Fig. 6.

At the period length of 10 nm and smaller, the two resonances cannot be distinguished

as their separation is smaller than their width. However, at a larger value of the period

when the linewidth decreases, the peaks become distinguishable, as shown in the left part

of Fig. 8.

From the previous discussion, it follows that the origin of the doublet structure is the

fact that polaron replica of the ground state is at an energy different than E0 + ELO. The

doublet structure of the current peak is therefore a transport signature of polaron effects,

where the separation between the peaks in the doublet is a measure of the electron – phonon
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FIG. 6: Schematic view of current transport at the field of F = 36kV/cm corresponding to

LO phonon resonance VF = ELO (left) and at F = 38.3kV/cm corresponding to resonance of the

phonon replica with the ground state of neighboring period (right). Corresponding density of states

given by the spectral function Aii(E) = −2ImGR
ii (E) presented in logarithmic scale, is shown for

each state. The dominant current transport channel in both cases is marked by arrows.

interaction strength. Polaron effects in self-assembled quantum dots have so far been ev-

idenced by optical means only in the intraband magneto-optical absorption spectrum,35,36

magneto-photoluminescence spectrum37 and by Raman scattering.38 The results presented

here therefore suggest a new physical effect: the manifestation of polaron effects in electron

transport.

VI. OTHER RESONANCES

The discussion will now be concentrated on a peak appearing at VF = 1
2
ELO. While one

might expect that the α = 2 term in (23) is of importance here, this is not the case, i.e.

G<
10(E) mainly determines the current, as already mentioned. The dominant contribution to

it comes in this case both from the scattering GR
11(E)Σ<

10(E)GA
00(E) term and the coherent

GR
11(E)Σ<

11(E)GA
10(E) term, where each of these becomes dominant at an appropriate energy,

as demonstrated in Fig. 9. In order to understand such behavior, one should note that the
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FIG. 7: Green’s functions and self-energies of the dominant contribution GR
11(E)Σ<

11(E)GA
10(E) to

coherence G<
10(E), at a field of F = 38.3kV/cm, corresponding to resonance of phonon replica with

the state of the neighboring period. The period of the structure is Lz = 10nm.

peaks in the spectral function Aii(E) appear not only at the energy of state i and its phonon

replica, but also at the energies of other states and their replicas. This is a consequence of

the fact that in the presence of an interaction the Wannier-Stark states are no longer the

eigenstates of the Hamiltonian of the system. The interaction then couples different Wannier-

Stark states, with peaks appearing in the density of states as a consequence. Resonances in

transport then appear when the peaks in the density of states of different periods overlap. In

this particular case, the peak at 1
2
ELO above the ground state of period i, being a consequence

of LO phonon coupling with the ground state of period (i − 1), becomes resonant with the

ground state of period (i+1). The scattering contribution to current between periods 1 and

0 therefore comes from the LO phonon scattering from the density of states at 1
2
ELO above

the ground state of period 1 to ground state of period 0. On the other hand, the coherent

contribution comes from tunneling from the ground state of period 1 to the density of states

at 1
2
ELO above the ground state of period 0. These two contributions are schematically

illustrated in Fig. 10. One therefore sees that the transport between the ground state of

period i and the ground state of period i− 2 which are at LO phonon resonance takes place

by a sequence of two events: tunneling event represented by horizontal arrows in Fig. 10

and scattering event represented by diagonal arrows. As the two types of events follow each
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FIG. 8: Current – field characteristics for different values of the period, when the temperature is

T = 77K. Convergent results are obtained with K = 4 when Lz = 8nm, K = 3 when Lz = 9nm,

and K = 1 when Lz ≥ 11nm.

other, they yield nearly the same contributions to G<
10, as demonstrated in Fig. 9.

When the dots in a superlattice are closer, additional peaks in the transport appear. For

example when the period is 8 nm, clearly visible peaks at VF = ELO, 1
2
ELO, 1

3
ELO, 1

4
ELO,

and even 2
3
ELO and 2

5
ELO, can be seen in Fig. 8.

The results obtained confirm the necessity of employing a model where coherent and

polaron effects are fully taken into account, such as in the nonequilibrium Green’s functions

formalism. A semiclassical Boltzmann equations model would not be able to predict the

doublet structure of the main peak and it would yield peaks in the current only at VF =

ELO/n (where n is an integer) when the transition rates are evaluated within first order

perturbation theory, while higher orders of perturbation theory would be necessary for the

other peaks.

VII. NONUNIFORMITIES OF THE QUANTUM DOT ENSEMBLE

The discussion so far has addressed ideal periodic quantum dot arrays. However, real

quantum dot ensembles are nonuniform and in a real experiment, one cannot expect to

obtain the results predicted by the theory assuming ideal periodicity. On the other hand,
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the inclusion of quantum dot nonuniformity in the theory requires detailed information

about the quantum dot size distribution and is obviously sample dependent. In order to

estimate the influence of nonuniformities, additional self-energies were included in the theory

according to the following approach.

Let V be the additional potential due to the difference between the potential of a real

ensemble of dots and an ideal dot superlattice. Within the SCBA, the contribution to

self-energy from this potential is given by

Σ<,R
αβ (E) =

∑

γδ

〈VαγVδβ〉G
<,R
γδ (E). (25)

The average value 〈VαγVδβ〉 contains information about the quantum dot nonuniformities,

and it should be in principle evaluated from the information provided by the experimental

dot size distribution, which is sample dependent. For the purpose of an estimate which

could be utilized regardless of the details of the dot distribution, a simple phenomenological

approach is adopted here. It is assumed that 〈VαγVδβ〉 = U2 when states α, β, γ and δ

belong to the same period, and 〈VαγVδβ〉 = 0 otherwise, where U is a constant roughly

representing the standard deviation of the position of quantum dot energy levels due to

nonuniformities. This approach therefore assumes zero overlap of the matrix elements of

the V -operator between the states of different periods, which is a reasonable assumption.

Additionally, it assumes there is no correlation between the influence of nonuniformities

on the states of different periods. Finally, the most severe assumption which makes this

approach only an estimate is that U is independent of α, β, γ and δ, when these belong

to the same period. However, when the transport takes place through ground states only,

and therefore only one state per period is involved, as is the case here, this approximation

becomes justified as well.

The current – field characteristics for several different values of U at T = 150K and

Lz = 10nm are presented in Fig. 11. As expected, an increase in U leads to broadening

of the current peaks, with weaker peaks eventually vanishing. The main peak however,

although broadened, remains clearly distinguishable.

It is also interesting to estimate how nonuniformity affects the doublet structure of the

main current peak. The I–F curve at T = 77K with different nonuniformity parameters

is presented in the left panel of Fig. 12 for the structure with the period length of Lz =

12nm. One can conclude that already a weak nonuniformity of U ∼ 0.5meV broadens the
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FIG. 11: Current – field characteristics for several values of phenomenological nonuniformity pa-

rameter U at T = 150K, when the period of the structure is Lz = 10nm.

stronger peak of the doublet in such a way that the weaker peak vanishes. Therefore, in

the InAs/GaAs material system the doublet structure could be observable only in extremely

high uniform samples. On the other hand, InAs/GaAs is a system with weak polar coupling

and one can expect a more favorable situation in systems with stronger coupling. The right

panel of Fig. 12 presents the current – field curve when the LO phonon interaction strength

is multiplied by a factor of 2. In this case, the doublet structure remains observable even for

nonuniformities of several meV. Therefore, although InAs/GaAs is not the most appropriate

system for observing the signature of polaronic effects in electron transport, one can expect

the effect to be observable in other systems.

VIII. CONCLUSION

Transport through bound states in periodic arrays of closely stacked quantum dots was

analyzed. An appropriate theoretical framework based on nonequilibrium Green’s functions

formalism was developed and applied to calculate the current – field characteristics. As

expected, the current exhibits a strong peak when the potential drop over a period is equal

to the LO phonon energy. The nature of charge transport at this resonance was analyzed in

detail. It was found that at low temperatures the peak exhibits a doublet structure with one
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FIG. 12: Current – field characteristics for several values of the phenomenological nonuniformity

parameter U at T = 77K, when the period of the structure is Lz = 12nm (left panel). The same

result when electron – LO phonon interaction Hamiltonian is multiplied by a factor of 2 is shown

in the right panel.

peak originating from LO phonon scattering between states of neighboring periods and the

other one from resonant tunneling to a phonon replica of the state of the neighboring period.

Therefore the doublet structure can be considered to be a transport signature of polaron

effects. The nonuniformities of the quantum dot ensemble act to suppress the weaker peaks,

while the main peak remains present.
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