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Abstract. Theoretical modelling of the intraband absorption spectrum in

InAs/GaAs quantum dot infrared photodetectors is performed for several typical

structures reported in the literature. The calculations are performed within the

framework of the two methods: a simple and so far widely used effective mass method

with the values of conduction band offset and the effective mass modified to take

account of the effects of strain and band mixing on average and the more realistic

8-band k · p method with the strain distribution taken into account via the continuum

mechanical model. Both methods give qualitatively the same results, however the

peak positions obtained within the effective mass approach are blue shifted and the

absorption cross-sections overestimated, compared to the more accurate k ·p approach.
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1. Introduction

Quantum dot infrared photodetectors (QDIPs) comprising III-As self assembled

quantum dots have become a very important technology for the detection of mid-

and far infrared electromagnetic radiation [1–15]. Since their initial realization

and demonstration [1–3], there has been a lot of experimental success leading to

permanent improvements in their performance. For example, the concept of a current

blocking layer [4, 5] was introduced to reduce dark current. Quantum dots-in-a-well

photodetectors [6–8] provide a way to tune the detection wavelength within a certain

range by changing the well width and focal plane arrays based on QDIPs have also

been demonstrated [9, 10]. Most recently, room temperature operation of a resonant

tunneling QDIP has been achieved [11].

Following the experimental success in the field, there have been several theoretical

studies of intraband absorption in QDIPs aimed to understand the detection process and

assign the experimental peaks to transitions between certain states. In these studies,

the energy levels and wave functions in quantum dots, and then the absorption spectra,

have been calculated using mostly the 1-band effective mass approach [16–20], but also

the 8-band k · p method [21]. In InAs/GaAs, the most commonly used material system,

the large lattice mismatch induces a strong strain field and the small energy gap of InAs

causes significant band-mixing; effects that the 1-band method can hardly take into

account. The 8-band k ·p method is therefore obviously a more realistic model, however

the simpler and faster effective mass method is almost exclusively used [16–20], and the

question arises whether it may still perform well enough to be useful for modelling the

intraband absorption spectrum. One of the aims of this work is therefore to compare

the calculated theoretical spectra for several experimentally realized QDIPs, obtained

by the two methods and quantify the differences in the results. This contribution will

allow one to have a quantitative measure of the inherent limitations of the effective

mass method. Another aim is to simulate several typical QDIP structures reported in

the literature and compare the results obtained by the 8-band k · p method with the

experimental results.

2. Theoretical models

In this section, we shall review the two theoretical models used so far to model QDIP

absorption spectra and describe the method used in this work to solve them. It is

assumed throughout this paper that the quantum dot shape has cylindrical symmetry.

In most of the QDIPs reported in literature, the dots have the shape of lens [17], cone [22]

or truncated cone [7, 23], all belonging to the class of cylindrically symmetric dots.
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2.1. Effective mass model

Within the framework of the effective mass method the Hamiltonian is given by

Ĥ = −k
h̄2

2m∗(r)
k + V (r) + |e|Fz, (1)

where ki (i ∈ {1, 2, 3}) is the differential operator ki = −i ∂
∂xi

, F = Fez is the electric

field oriented along the z−direction, m∗(r) is the position-dependent effective mass

and V (r) the position-dependent potential, both assumed constant within the dot and

within the matrix (and within the well in the case of quantum dots-in-a-well structure).

The modified values of the effective mass in the dot of m∗ = 0.04m0 [24] (where m0 is

the free electron mass) and the conduction band offset V0 = 450meV [25] are used to

take the averaged effect of strain into account. The same recipe as in [26] for the order

of differential and multiplication operators was used throughout this work.
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Figure 1. Schematic view of a quantum dot in an embedding cylinder of radius Rt

and height Ht. The wetting layer width is dWL.

The orthonormal wave function expansion method was used to find the

eigenenergies and the corresponding wave functions. The method is based on embedding

the dot in a cylinder of radius Rt and height Ht (see figure 1) and assuming the wave

function as a linear combination of the expansion basis functions

ψ(r) =
∑

nl

Anlbnml(r, z, ϕ), (2)
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with the coefficients Anl (n ∈ {1, . . . , nmax} and l ∈ {−lmax, . . . , lmax}) to be determined.

The basis functions bnml are given by

bnml(r, z, ϕ) = fnm(r)gl(z)Φm(ϕ), (3)

where

fnm(r) =

√
2

Rt

Jm(knmr)
∣

∣

∣J|m|+1(knmRt)
∣

∣

∣

,

gl(z) =
1√
Ht

e
i 2π

Ht
lz
, (4)

Φm(ϕ) =
1√
2π
eimϕ,

where l and m are integers and n is a positive integer. Jm is a Bessel function of order m

and knmRt is its n-th zero. Due to the cylindrical symmetry of the dots, the Hamiltonian

commutes with the z−component of the orbital angular momentum, whose eigenvalue

m is then a good quantum number and therefore in (2) the summation needs to be

performed over n and l only.

After substituting the expansion (2) into the Hamiltonian eigenvalue problem one

arrives at an eigenvalue problem of the Hamiltonian matrix
∑

n′l′
Hnml,n′ml′An′l′ = EAnl, (5)

where

Hnml,n′m′l′ =
∫

V
b∗nmlĤbn′m′l′ r dr dz dϕ (6)

and the integration is performed over the volume of the embedding cylinder. The one-

band Hamiltonian contains only the terms of the forms T1, T2 and T3 (see Appendix)

and their corresponding Hamiltonian matrix elements can be evaluated as shown in the

Appendix.

The Hamiltonian Ĥ ′ of the interaction with the electromagnetic field is obtained

by replacing k with k + e
h̄
A in the Hamiltonian [27] (where A = Aε is the magnetic

vector potential, ε is the polarization vector of the radiation, e the magnitude of the

elementary charge and h̄ the reduced Planck’s constant), i.e. Ĥ ′ = Ĥ(k + e
h̄
A)− Ĥ(k).

In the dipole approximation A is considered constant in space, and furthermore all the

terms quadratic in A are neglected. The optical cross section of the i → f transition

due to absorption of electromagnetic radiation of angular frequency ω is given by [28]

σε

if (ω) =
2π

nε0cω

∣

∣

∣Mε

if

∣

∣

∣

2
g(Ef − Ei − h̄ω, 2σ), (7)

where n is the refraction index, c the speed of light in vacuum, ε0 the vacuum dielectric

constant and Ef and Ei are the energies of the final and the initial state, respectively.

Mε

if =
〈

i
∣

∣

∣Ĥ ′
∣

∣

∣ f
〉

/A is the matrix element which depends only on the direction ε of light

polarization and not on the amplitude of A. The inhomogeneous broadening due to size
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inhomogeneity of the quantum dot ensemble was taken into account by replacing the

delta function in Fermi’s golden rule with a Gaussian given by

g(x, 2σ) =
1

σ
√

2π
exp

(

− x2

2σ2

)

. (8)

The matrix element is equal to

Mε

if =
∑

nl

∑

n′l′
Ai∗

nlA
f
n′l′G(nl, n′l′), (9)

where the superscripts i and f refer to the initial and final state and the perturbation

Hamiltonian matrix elements

G(nl, n′l′) =
1

A

∫

V
b∗nmlĤ

′bn′ml′ rdrdz dϕ (10)

are of the form T5 (see Appendix) and can be therefore calculated in a similar manner.

From the last two expressions, the selection rules can easily be established: ∆m = 0 for

absorption of z−polarized radiation and |∆m| = 1 for in-plane polarized radiation.

2.2. 8-band k · p model

Within the framework of the 8-band k · p method the state of the system is a sum of

slowly varying envelope functions ψi(r) multiplied by the bulk Bloch functions |i〉

|Ψ〉 =
8
∑

i=1

ψi(r)|i〉, (11)

and the Hamiltonian is equal to Ĥ = Ĥk+Ĥs+|e|Fz, where Ĥk is the kinetic part and Ĥs

the strain part of the Hamiltonian whose explicit forms are given in [29]. The envelope

functions then satisfy the following system of coupled partial differential equations:

8
∑

j=1

Ĥijψj(r) = Eψi(r). (12)

The symmetry of the kinetic part of the 8-band k · p Hamiltonian Ĥk applied to

cylindrically symmetric quantum dots is equal to the intersection of the symmetry

of the geometrical shape of the dot and the symmetry of the zinc-blende crystal

lattice. Since the crystal symmetry is lower than cylindrical it turns out that the

system considered is only C4 symmetric. However, the deviations of the Hamiltonian

from the cylindrically symmetric form are only slight and one often employs the

axial approximation [30] in which Ĥk becomes exactly axially symmetric. This is

highly desirable as such an approximation effectively reduces the problem from a three

dimensional to a two dimensional and therefore significantly reduces the computational

cost, without influencing the accuracy. Such an approximation is therefore used in this

work, too. Furthermore, the strain part Ĥs also slightly deviates from the cylindrically

symmetric form and it would also have to be modified to be able to exploit the cylindrical

symmetry and reduce the computational complexity. A slightly different approach

is used here. The wave functions are assumed in the form they would have if the
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Hamiltonian was exactly cylindrically symmetric, and therefore its parts that deviate

from symmetry give a zero contribution in the Hamiltonian matrix elements (15).

Since the 8-band model inherently takes into account the spin-orbit interaction,

the good quantum number in this case is the quantum number mf (where mf is half

integer) of the z−component of the total orbital angular momentum [30] (rather than

just the orbital angular momentum) given as a sum of the orbital angular momentum of

the envelope function and total angular momentum of the Bloch function. The envelope

functions of the quantum state having mf can then be assumed in the form

ψi(r) =
∑

nl

Ainlbnm(i)l(r, z, ϕ), (13)

where m(i) = mf −mj(i) and mj(i) is the eigenvalue of the z-component of the total

angular momentum of the Bloch function |i〉 (its explicit values for one choice of the

Bloch function basis can be found for example in [26]). After inserting the envelope

function expansion of (13) into the Hamiltonian eigenvalue problem (12) one arrives at
∑

i′n′l′
Hinm(i)l,i′n′m(i′)l′Ai′n′l′ = EAinl, (14)

where

Hinml,i′n′m′l′ =
∫

V
b∗nmlĤii′bn′m′l′ r dr dz dϕ. (15)

The 8-band Hamiltonian contains the terms of the form T1 −T10 (see Appendix), whose

corresponding Hamiltonian matrix elements are given in the Appendix.

The strain was modelled using the continuum mechanical model and the strain

distribution was found using the finite element method in a manner that follows. The

total elastic strain energy in the continuum mechanical model is given by [31]

W =
1

2

∫

dV
∑

ijkl

λijkl

[

eij(r) − e
(0)
ij (r)

] [

ekl(r) − e
(0)
kl (r)

]

, (16)

where eij(r) are the elastic strain tensor components, λijkl is the elastic modulus tensor

and e
(0)
ij (r) the local intrinsic strain induced by the changes in the lattice constant

e
(0)
ij (r) =

a(r) − a

a
, (17)

where a(r) is the unstrained lattice constant at r and a the GaAs substrate lattice

constant. In the crystals with zinc-blende crystal lattice the elastic tensor is of the form

λijkl = C12δijδkl + C44 (δikδjl + δilδjk) + Can

3
∑

p=1

δipδjpδkpδlp, (18)

where C12, C44 and Can = C11 − C12 − 2C44 are the elastic constants. In order to find

the strain distribution, the continuum space is discretized on a nonuniform rectangular

grid and the components of the displacement in each point of space are expressed in

terms of the displacements in the 8 neighbouring nodes of the grid, where first order

Lagrange interpolation is used. Consequently, the elastic energy of the system W is

a quadratic functional of the displacements at the nodes of the grid. Its minimization
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therefore leads to a sparse system of linear equations for the displacements at the nodes,

which is solved using the conjugate gradient method [32].

Within the framework of the k ·p method the perturbation Hamiltonian is obtained

by performing the same replacement in the kinetic part of the Hamiltonian as in the

case of effective mass method. The absorption matrix element is then given by

Mε

if =
∑

inl

∑

i′n′l′
Ai∗

inlA
f
i′n′l′G(inl, i′n′l′), (19)

where the superscripts i and f refer to the initial and final state and the perturbation

Hamiltonian matrix elements

G(inl, i′n′l′) =
1

A

∫

V
d3

rb∗nm(i)lĤ
′bn′m(i′)l′ (20)

are of one of the forms T1, T4 and T5 (see Appendix) and can be therefore calculated

in a similar manner. After explicit calculation one can straightforwardly derive the

selection rules: ∆mf = 0 for z−polarized radiation and |∆mf | = 1 for in-plane polarized

radiation.

3. Results

The two methods described in section 2 have been applied to calculate the optical

absorption matrix elements and the intraband absorption spectra for quantum dots

of several different shapes and sizes reported for experimentally realized QDIPs. In

typical QDIP operating conditions only the ground state is significantly occupied as the

occupation of the excited states would lead to a much larger dark current. The intraband

absorption spectrum is therefore calculated by adding the contributions from transitions

from the ground state to each of the excited states (bound or continuum). The material

parameters in the calculation were taken from [33]. The standard deviation of the

Gaussian lineshape was taken to be equal to 10% of the transition energy in the case

of the transitions to bound states and 20% in the case of the transitions to continuum

states. These are the typical values observed in the experiments [7, 17, 22]. In further

discussion the states obtained within the framework of the 8-band model will be labelled

as nemf
, which represents the n−th electron state having the quantum number of the

z−component of total angular momentum mf (note that for each state nemf
, there is

another state ne−mf
with the same energy), and in a similar manner the state obtained

by the effective mass method nem represents the n−th electron state having the quantum

number of the z−component of orbital angular momentum m (note that for each state

nem there also is an ne−m state of the same energy). The dimensions of the embedding

cylinder taken in all calculations are Rt = 40nm, Ht = 50nm, while the number of

basis functions is determined from nmax = 10 and lmax = 20. It has been assumed in all

calculations that a 0.5 nm wide wetting layer is present beneath each dot.

Since the choice of the embedding cylinder dimensions is arbitrary one has to check

whether an increase in its dimensions leads to changes in the calculated spectrum. This

is especially important when the transitions to continuum states dominate the spectral
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response, as the continuum states are artificially discretized by embedding the quantum

dot in a cylinder of finite size. Furthermore, it also has to be checked whether the

number of basis functions taken in the calculation is sufficiently large. Such tests were

performed by increasing each of the parameters Rt, Ht, nmax and lmax, while keeping

the rest of them constant. No observable changes in the absorption spectra occurred

during these tests.

It has also been checked that for all structures considered in this work the changes

in absorption spectra with electric field are only slight and therefore the spectrum

obtained at zero bias can be considered as representative of the spectrum for any

value of the field. More specifically, in the range of fields typically used in QDIPs

−50kV/cm < F < 50kV/cm, the positions of the absorption peaks change by less

than 5% for all the structures considered (see figure 2 as an example). Clearly, these

peaks cannot be observed in responsivity spectra at zero bias, but only when the bias

is sufficient that the absorbed carriers can form photocurrent.
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Figure 2. Intraband optical absorption spectrum for quantum dot of conical shape

with the diameter D = 25nm and height h = 7nm in the case of z−polarized radiation.

The corresponding spectrum for in-plane polarized radiation is shown in the inset. The

absorption spectrum of z−polarized radiation calculated using the 8-band model at the

fields of F = −50kV/cm and F = 50kV/cm is shown, as well.

We first compare the absorption spectrum obtained by the two methods for a

quantum dot of conical shape with the diameter D = 25nm and height h = 7nm, which

are approximately the reported dimensions of quantum dots in a QDIP structure in [22]

(the structure labelled as S-GaAs therein) based on the combination of atomic force

microscopy and cross-sectional transmission electron microscopy measurements [22,34].
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The quantum dot is assumed to be of pure InAs as the growth conditions reported

in [22] are such that intermixing between InAs and GaAs is minimized. The optical

absorption spectrum in the case of z−polarized radiation is shown in figure 2. The two

peaks in the spectrum originate from the transitions between bound states 1e1/2 → 3e1/2

and 1e1/2 → 5e1/2 (k · p model based labelling of states), i.e. 1e0 → 2e0 and 1e0 → 3e0

(effective mass model based labelling of states). The states 2e1/2 and 4e1/2 have opposite

values of spin from 1e1/2 and transitions to them are therefore forbidden due to spin

selection rules. The transitions to continuum states give a much smaller contribution to

the spectrum. One can see from figure 2 that the results obtained by the two methods are

qualitatively similar, however there are significant quantitative differences. The effective

mass method gives larger values of transition energies and predicts stronger absorption.

Since both the one and eight band method predict approximately the same position of

the ground state with respect to the GaAs continuum (305 meV in one band vs. 295 meV

in k ·p), one can ascribe these differences to non-parabolicity effects that are not properly

taken into account within the simple effective mass approach. The one band model

therefore underestimates the effective mass of the excited states which leads both to

larger intersublevel energies and larger absorption matrix elements. The corresponding

absorption spectrum for in-plane polarized incident radiation is presented in the inset

of figure 2. There is a single peak in the spectrum which is due to the transition from

the ground state 1e±1/2 to a pair of nearly degenerate first excited states 2e∓1/2, 1e±3/2.

As in the case of z−polarized radiation, the peak position energy obtained by one band

model is larger, which can be attributed to the same cause. The matrix elements of the

dominant transition calculated within the effective mass method are larger. However,

the difference between the transition energies (on the relative scale) is more prominent

than in the case of z−polarized radiation, which therefore leads to only a slightly larger

value of the peak absorption cross section within the effective mass model.

Next, the theoretical results obtained by the two methods are compared with the

experimental results from [22] (figure 7a therein). One should have in mind that due to

uncertainty in the determination of the dot size, as well as due to possible effects of In

segregation and interdiffusion, any comparison between theoretical and experimental

results should be taken with caution. The experimental intraband photocurrent

spectrum exhibits the main peak at 175 meV and a much smaller peak at 115 meV, in

excellent agreement with the results obtained for z−polarized incident radiation within

the 8-band model where the corresponding peaks occur at 179 meV and 114 meV,

respectively. It should be mentioned here that although the photocurrent spectrum

in [22] is measured in the normal incidence geometry, the z−polarized component

of incident radiation still exists due to the effects of off-normal axis experimental

missalignment and extrinsic light scattering (For a nice discussion on this effect see for

example [17,35], where the polarization dependent measurements in [17] have attributed

the response measured in normal incidence geometry in [35] to z−polarized radiation,

rather than in-plane polarized radiation). As already mentioned, the effective mass

method gives peak positions at larger energies, which is only in qualitative agreement
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with the experimental results.
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Figure 3. Intraband optical absorption spectrum for quantum dot in the shape of a

truncated cone with the diameter of D = 15 nm, height h = 7nm and base angle of

α = 600, with In0.15Ga0.85As layers of thickness d = 6 nm positioned both under and

above the dot, surrounded by GaAs barriers, in the case of z−polarized radiation. The

corresponding spectrum for the in-plane polarized radiation is shown in the inset.

We further analyze the intraband spectrum for the quantum dot in the shape

of a truncated cone with the diameter of D = 15nm, height h = 7nm and base

angle of α = 600 with In0.15Ga0.85As layers of thickness d = 6nm positioned both

under and above the dot and surrounded by GaAs barriers. The dimensions were

chosen to approximately match the dimensions of the quantum dots-in-a-well structure

studied in [7] (the structure labelled as F therein). The optical absorption spectrum for

z−polarized radiation is given in figure 3, while the inset shows the spectrum for the in-

plane polarized radiation. In this case, there is a single peak for z−polarized radiation

originating from 1e1/2 → 3e1/2 (1e0 → 2e0) transition (2e1/2 has opposite value of spin

to 1e1/2), while the same states as in the previous case are responsible for absorption of

in-plane polarized radiation. Similarly to the previous structure considered, the effective

mass approach predicts larger peak absorption energies and stronger absorption, which

may be attributed to the same effect, as the positions of the ground state with respect

to continuum calculated by the two methods are again almost the same (270 meV in

eight band vs. 280 meV in one band model). The experimental results in [7] give the

peak spectral response wavelength at 9.5 µm (figure 2 therein, curve labelled as F), the

k · p method predicts the value of 8.6 µm, while the effective mass method gives 6.5 µm.

The discrepancy between the results obtained by the k ·p method and the experiment is
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most likely due to the effects of intermixing of InAs and GaAs during growth at elevated

temperatures.
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Figure 4. Intraband optical absorption spectrum for quantum dots in the shape of a

lens with the diameter of D = 20 nm, height h = 3 nm for z−polarized radiation. The

corresponding spectrum for in-plane polarized radiation is shown in the inset.

Finally, we study a lens-shaped quantum dot, with a diameter D = 20nm and a

height h = 3nm. Quantum dots of similar shape and size were reported in several

experiments [3, 14, 17, 35] and this is therefore one of the most typical shapes of

InAs/GaAs self assembled quantum dots. The intraband optical absorption spectrum

calculated by the two methods is shown in figure 4. The effective mass calculation

was performed with two different values of the conduction band offset V0 = 450meV

and V0 = 500meV, because the calculated hydrostatic strain profile suggested that a

larger value of V0 than the conventional one (of 450 meV) should be used. Furthermore,

the position of the ground state with respect to the onset of the GaAs continuum,

calculated using the value V0 = 500meV is approximately the same as in the case of

the k · p method (approximately 230 meV), in contrast to the smaller value of 190 meV

when the conventional value of V0 is used.

The dominant line in the absorption spectrum for in-plane polarized incident

radiation stems again from the transition to a pair of (nearly) degenerate excited states.

The position of the peak, at 66 meV, calculated within the k · p framework is within

the range of experimentally observed values 55−85 meV [3, 17], while the effective

mass method gives somewhat larger values. On the other hand, the main peak in

the spectrum for z−polarized radiation originates from transitions to resonance states
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in the continuum. In this case, the absorption spectrum calculated by the two methods

gives almost the same peak position of 280 meV, when the same value of the conduction

band offset is chosen as in the previous cases. The overestimation of intraband energies,

due to the neglect of non-parabolicity effects, exists in the effective mass method in this

case too, but it is compensated by the underestimation of the ground state position

with respect to the continuum. When a larger value of the conduction band offset is

taken, which puts the ground states at the same position, the peak calculated within the

effective mass method appears at a larger energy. On the other hand, the experimental

results in [3, 14, 17, 35] give the peaks in the range 150–300 meV.

While this work was focused on quantum dots whose shape exhibits cylindrical

symmetry when the computational problem can be effectively reduced from three

dimensional to two dimensional, we would like to briefly comment on the influence

of the commonly reported truncated pyramidal shape on the results and conclusions of

this work. It is not expected that for such a shape the overall conclusions in terms of

identification of the dominant transitions for different polarizations of incident radiation

and comparison of the two methods should change. To verify this, we have calculated

the intraband absorption spectrum for an InAs/GaAs quantum dot in the shape of a

truncated square-based pyramid with the base width of b = 20nm, height h = 5nm and

base angle of α = 600, using the symmetry-based method described in [26] and [28].

The k · p method yields the absorption peak of in-plane polarized radiation originating

from the transition from the ground state to a pair of nearly degenerate first excited

states and the absorption peak of z−polarized radiation at 192 meV originating from

the transition to one of the higher excited states having the same symmetry as the

ground state. The effective mass method yields the corresponding peak at 289 meV.

The results are therefore in agreement with our expectations. We have additionally

performed calculations using the shape of a truncated cone of a similar size to the

truncated pyramid and obtained peaks at similar energies, confirming the fact that

there are no fundamental aspects of the findings that change when the shape is changed

from a truncated cone to a truncated pyramid.

4. Conclusion

A simulation of several typical InAs/GaAs QDIP structures reported in the literature

and a systematic comparison of the two methods used to calculate the intraband

absorption is given. The results obtained by the two methods are in qualitative

agreement – the transition from the ground state to the pair of first excited states

is responsible for absorption of in-plane polarized radiation, while the absorption of

z−polarized radiation is due to the transition to a higher excited bound state in the

case of larger dots and due to the transition to resonance states in the continuum

in the case of small and flat dots. On the other hand, quantitatively, the effective

mass method overestimates both the transition energies and optical absorption cross

sections. Therefore, while the simple and fast effective mass method can be quite useful
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for general understanding of intraband absorption and assignment of the experimental

peaks to different transitions, the k · p method is more appropriate for a study aiming

to provide quantitative predictions.

Appendix

In order to calculate the Hamiltonian matrix elements, one needs to evaluate expressions

of the form

Ui =
∫

V
b∗nml(r, z, ϕ)Tibn′m′l′(r, z, ϕ) r drdz dϕ.

The one-band Hamiltonian contains the terms of the form

T1 = F (r, z),

T2 = (k2
x + k2

y)F (r, z),

T3 = k2
zF (r, z),

and therefore after performing the integration one can see that the Hamiltonian matrix

elements will only have terms of the form

U1 = δmm′

∫ Rt

0
dr rfnmfn′m′Fl−l′(r),

U2 = δmm′

∫ Rt

0
dr

(

r
dfnm

dr

dfn′m′

dr
+mm′ fnmfn′m′

r

)

Fl−l′(r),

U3 = δmm′

∫ Rt

0
dr rfnmfn′m′

(

2π

Ht

)2

ll′Fl−l′(r),

where

Fl−l′(r) =
1

Ht

∫ Ht/2

−Ht/2
dz e

−i 2π
Ht

(l−l′)z
F (r, z).

The explicit form of the functions F (r, z) is

Fa(r, z) = PQDχQD(r) + PBχB(r) + PQWχQW(r),

and when the external bias is also included additional terms appear, which are of the

form

Fb(r, z) = |e|Fz.
PQD, PB and PM are the values of the material parameter P in the dot, barrier and well

respectively and χQD, χB and χQW are the functions equal to 1 inside and 0 outside the

dot, barrier and quantum well (without the dot) region, respectively. The quantum

well term clearly exist only in the case of quantum dots-in-a-well structures. The

integral Fl−l′(r) can then be performed analytically for each of quantum dot shapes with

cylindrical symmetry. However, in the more general case when the indium composition

varies smoothly (for example when the effects of segregation or intermixing occur),

Fa(r, z) is not piecewise constant, and the integration in Fl−l′(r) has to be performed

numerically. We have chosen this approach and performed numerical integration to keep
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our simulation general enough such that the effects of a smooth variation of indium

composition can be included as well.

In addition to the terms of type T1, T2, T3, the elements of the kinetic part of the

8-band Hamiltonian contain the terms

T4 = kzF (r, z),

T5 = k∓F (r, z),

T6 = kzk∓F (r, z),

T7 = k2
∓F (r, z),

where k± = kx ± iky. After the integration one finds that the corresponding terms in

the Hamiltonian matrix are of the form

U4 =
π

Ht
(l + l′)U1,

U5 = − i

2
δm,m′∓1

∫ Rt

0
dr rFl−l′(r) ×

×
[

fnm

(

dfn′m′

dr
±m′ fn′m′

r

)

− fn′m′

(

dfnm

dr
∓m

fnm

r

)]

,

U6 = −i π
Ht
δm,m′∓1

∫ Rt

0
dr rFl−l′(r) ×

×
[

lfnm

(

dfn′m′

dr
±m′ fn′m′

r

)

− l′fn′m′

(

dfnm

dr
∓m

fnm

r

)]

,

U7 = δm±1,m′∓1

∫ Rt

0
dr rFl−l′(r) ×

×
(

dfnm

dr
∓m

fnm

r

)(

dfn′m′

dr
±m′fn′m′

r

)

.

The strain part of the Hamiltonian has terms of the type

T8 = F (r, z)eij,

T9 = F (r, z)eijk∓,

T10 = F (r, z)eijkz,

where eij are the strain tensor components. After performing the integration over ϕ,

one gets

U8 =
∫ Rt

0
dr rfnmfn′m′

1

Ht

∫ Ht/2

−Ht/2
dz e

−i 2π
Ht

(l−l′)z
eij(r, z),

where

eij(r, z) =
1

2π

∫ 2π

0
dϕe−i(m−m′)ϕeij(r, z, ϕ),

and therefore the term U8 becomes of the same form as U1. In a similar manner, the

terms U9 and U10 are of the same form as U5 and U4.
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