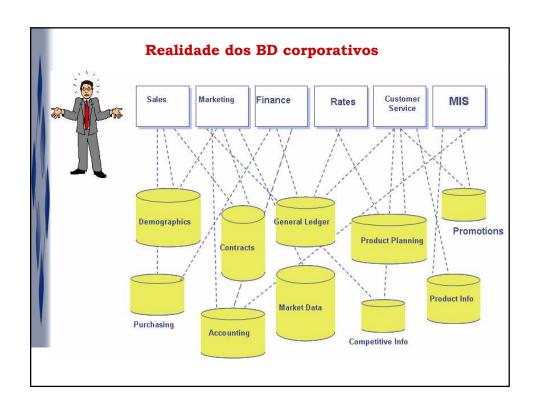
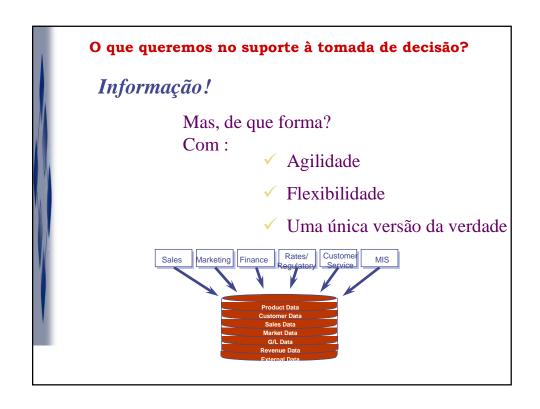
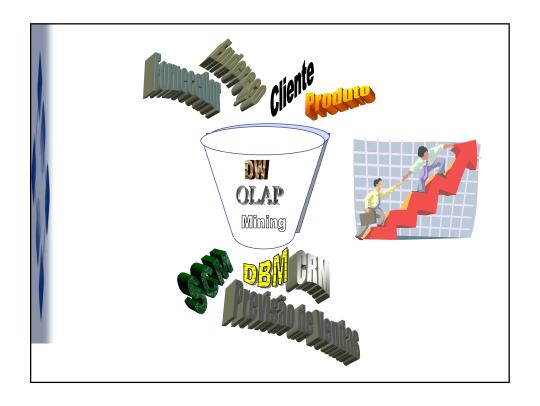

Data Warehousing


Agenda


- Suporte à Decisão
- · Data Warehousing: conceitos básicos
- Arquitetura dos ambientes de DW
- Principais componentes das soluções
- · Visão multidimensional
- Ferramentas e aplicações OLAP
- DW 2.0
- · Outras tendências



Ambiente de Aplicações

Operacionais

- Dão suporte às funções associadas à execução do negócio da empresa:
 - sistemas administrativos
 - controle de estoque
 - sistemas de expedição etc

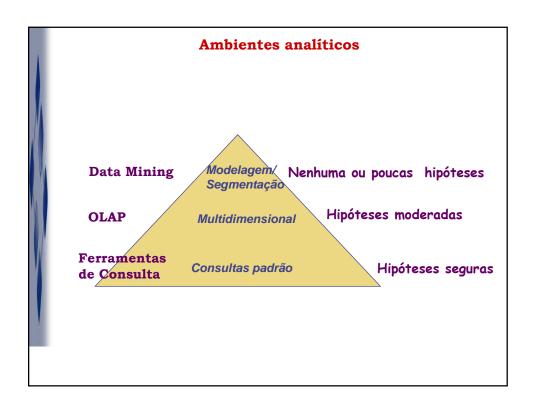
Suporte à Decisão

 Dão suporte às funções associadas à concepção do negócio da empresa

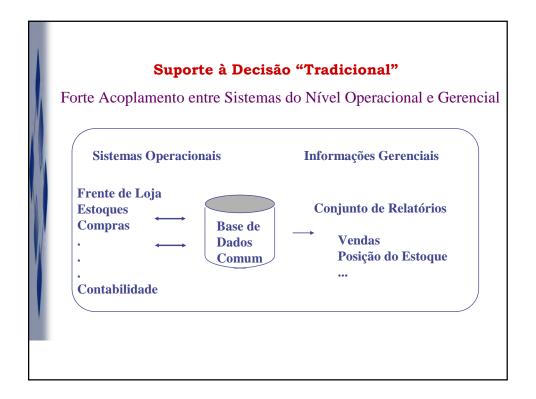
Operação do Negócio Planejamento do Negócio

Ambiente Operacional

- Tipo de processamento: OLTP
 - Baseado em transações
 - Voltado para velocidade e automação de funções "repetitivas"
 - Mantém usualmente situação corrente
 - ⇒ Atualizações e consultas em grande número
 - > Trabalha com alto nível de detalhe

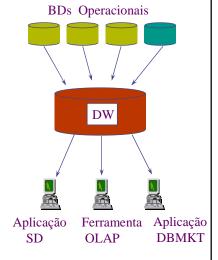

Ambiente de Suporte à Decisão (Analítico)

- Tipo de processamento: OLAP
 - "Pequeno" número de consultas "variáveis"
 - Necessidade de ver o dado sob diferentes perspectivas: aplicações dinâmicas
 - Operações de agregação e cruzamentos
 - Atualização quase inexistente, apenas novas inserções
 - Dados Históricos são relevantes
 - ⇒ Consistência é fundamental

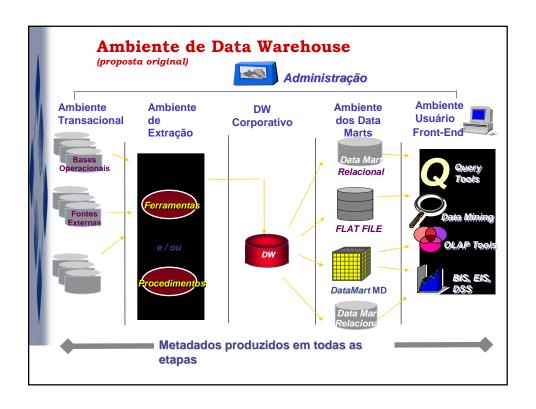

Requisitos de ambientes operacionais e analíticos

- Sistemas Operacionais
 - ⇒ Tempo de Resposta
 - Segurança
 - Recuperação de Falhas
 - Muitos usuários concorrentes
- Sistemas Analíticos ou "Informacionais"
 - Flexibilidade, facilidade de navegação
 - Consultas complexas, não antecipadas
 - Gerenciamento de enormes volumes de dados
 - Necessidade de examinar o dado em diferentes níveis de detalhe
 - Necessidade de acesso a dados de fontes de dados diversas

Análises


- Qual o desempenho dos nossos representantes em cada região?
- Para cada produto, qual o total de vendas no último ano?
- Como tem variado o índice de participação de cada produto em nossas vendas (Product Share) ao longo dos três últimos anos?
- Existe alguma relação entre o desempenho dos representantes e sua faixa de salário?

Porque um ambiente de Data Warehouse?


- ✓ Integrar dados de múltiplas fontes
- Facilitar o processo de análise sem impacto para o ambiente de dados operacionais
- ✓ Obter informação de qualidade
- Atender diferentes tipos de usuários finais
- Flexibilidade e agilidade para atender novas análises

Data Warehouse - Definição

Processos, ferramentas e recursos para gerenciar e disponibilizar informações de negócios precisas e inteligíveis para que indivíduos possam tomar decisões efetivas. (IBM)

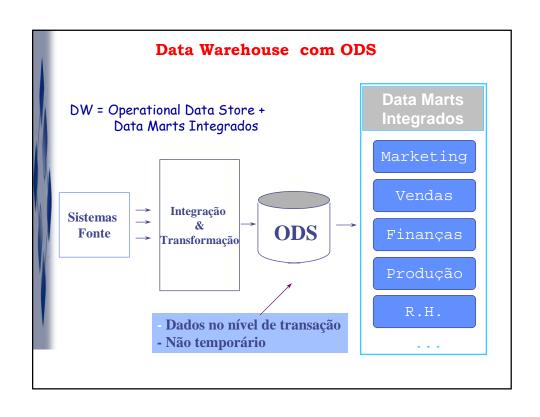
Um ambiente para adequadamente organizar, gerenciar e disponibilizar informações oriundas de fontes diversas, fornecendo um visão única de parte ou de todo o negócio com o objetivo de dar suporte a operações analíticas.

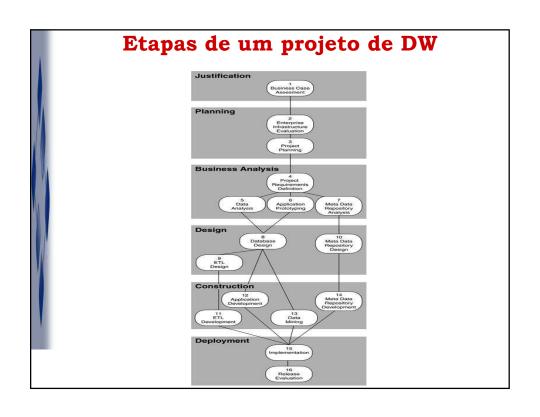
Estratégias de projeto de DW

- Data Warehouses Corporativos
 - de grande abrangência
 - complexos
 - o alta probabiblidade de insucesso
- Data Marts Setoriais
 - ⇒ Marketing, Financeiro, Admnistrativo, etc.
 - Projetos evolutivos
 - Enfoque inicial nos aspectos mais críticos
 - Aproveitamento da estrutura operacional disponível
 - > Retorno mais rápido
 - ⇒ Acúmulo de experiência : menor risco e menor custo

Data Mart - Conceito

"Um subconjunto lógico do Data Warehouse, geralmente visto como um data warehouse setorial." (Kimball)


Uma perspectiva top-down considera que um DW completo,centralizado deva ser desenvolvido antes que partes dele, sumarizadas, possam ser derivadas na forma de Data Marts.


Uma perspectiva botton-up, considera que um DW possa ser composto a partir de Data Marts previamente desenvolvidos.

Abordagem corrente

Estratégia:

- Visão Integrada
- Dividir para conquistar
- Errar pequeno
- Desenvolver Incrementalmente
 - > Planejamento Top-Down
 - Desenvolvimento Botton-Up, um DM de cada vez, resultados devem ser atingidos em pequenos ciclos (ex.: a cada 3 meses)
 - Cada Data Mart deve ser encarado de forma evolutiva:
 ✓ complexidade do modelo, volume de dados, investimentos
- Desafio
 - Garantir a coerência entre os vários Data Marts

Transporte de Dados (Data Staging)

- Extração
 - Coleta de dados nos sistemas existentes
 - Operação demorada e complexa
 - Muitas vezes, desenvolvimento ad-hoc
- Transformação
 - ⇒ Fundamental para clareza e integração
 - ⇒ Recodificação de categorias: (m/f, male/female to M/F)
 - Alterações e uniformização de unidades de medida, nomes de campos, datas...
- Limpeza
 - Fundamental para qualidade da informação extraída
- Carga e Realimentação
 - Trade-off (muito frequente tem alto custo, pouco significa dados "velhos")

Ferramentas de ETL

- Deve-se considerar "desenvolver versus comprar": inicialmente, muitos empresas escrevem seus próprios programas;
- Produtos incluem geradores de código ou "transformadores proprietários";
- Muitas ferramentas são voltadas para áreas específicas, embora com funcionalidades em comum;
- A maioria dos produtos são bastante novos, mas evoluíram rapidamente
- As ferramentas são geralmente muito caras, embora um novo modelo de preços esteja surgindo;
- Estas ferramentas são mais adequadas para ambientes complexos (múltiplas fontes e destinos, muitas transformações, muita limpeza necessária).

Gerência de Metadados

- O grande desafio na construção e manutenção de um DW
 - Formatos de dados inconsistentes
 - Dados inexistentes ou inválidos
 - Diferentes níveis de agregação
 - ⇒ Inconsistências semânticas
 - Qualidade de dados e janela de tempo
 - Acesso global (distribuído e replicado)
 - ⇒ Administração e controle
- Integração do DW com outras ferramentas aumenta o problema

Componentes Potenciais do Ambiente de DW

- 1. Repositório de Metadados
- 2. Ferramentas de Projeto CASE
- 3. Ferramentas de Extração, Transformação e Carga (ETL)
- 4. Ferramentas para Qualidade e Limpeza
- 5. Ferramentas para Replicação
- 6. Provedores de Interfaces de BD ODBC/OLE
- 7. Ferramentas de Gateway para BD Legados
- 8. Bancos de Dados Relacionais
- 9. (Bancos de Dados Não-Relacionais Legados)
- 10. Bancos de Dados Multidimensionais

Componentes Potenciais do Ambiente de DW

- 11. Ferramentas OLAP
- 12. Ferramentas de Relatório e Consulta
- 13. Ferramentas de Data Mining
- 14. Cross-Platform Batch Schedulers
- 15. Ferramentas de Monitoramento e Controle
- 16. Pacotes de Aplicação para Data Warehouse

Todos estes componentes manipulam/ geram metadados

Diferentes tipos de metadados

- Metadado Técnico e Administrativo
 - altamente estruturado
 - informações com definições, transformações, gerência e operação
 - geralmente tratável através de uma ferramenta de repositório
- Metadado de Negócio
 - 😊 tanto não-estruturado quanto estruturado
 - mais difícil de ser tratado e integrado por uma ferramenta altamente estruturada tipo um repositório
 - o necessidade de integrá-lo para o usuário final

Importância de um Repositório

- Repositório de Metadados
 - √ ferramentas que provêem armazenamento e funcionalidade de gerência e acesso a metadados
- Visão global e integrada de metadados
- Gerenciamento do ciclo de vida dos metadados
- Integração com ferramentas de outros fornecedores

Ferramentas de Administração

- Diferentes ferramentas com diferentes funcionalidades
- · Mais produtos surgindo no Mercado
- · Muitas voltadas para automação e schedulling
- · Algumas oferecem monitoramento e tuning

ERP e Suporte à Decisão

- Soluções ERP tem seu foco para o nível <u>operacional</u> dos ambientes corporativos
- Solução de suporte à decisão dos fornecedores de ERP apresentam vantagem na integração
- Fornecedores tradicionais em suporte à decisão em geral ofereciam produtos mais potentes e especilizados do que as soluções apresentadas de suporte à decisão pelos fornecedores de ERP, mas estas evoluiram rapidamente
 - exemplo: BW

Modelagem Dimensional para DW

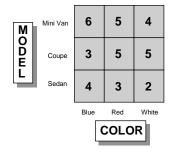
- Hierarquias
- Agregados
- Esquema Estrela e Snowflake

Modelagem para Data Warehouse

- Requisitos distintos das aplicações do ambiente transacional:
 - flexibilidade quanto às análises a suportar
 - medidas a analisar precisam ser vistas sob diferentes perspectivas
- Abordagem utilizada:
 - » MODELAGEM MULTIDIMENSIONAL

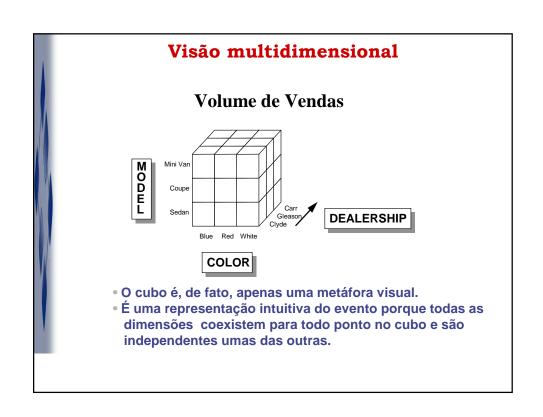
Visão multidimensional

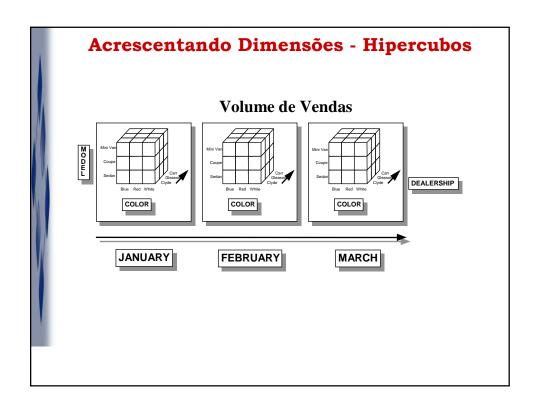
- Facilita o entendimento e visualização de problemas típicos de suporte à decisão
- Mais intuitiva para o processamento analítico
- Utilizada pelas ferramentas OLAP
- Qual a diferença da visão multidimensional para a visão tabular do ambiente relacional?

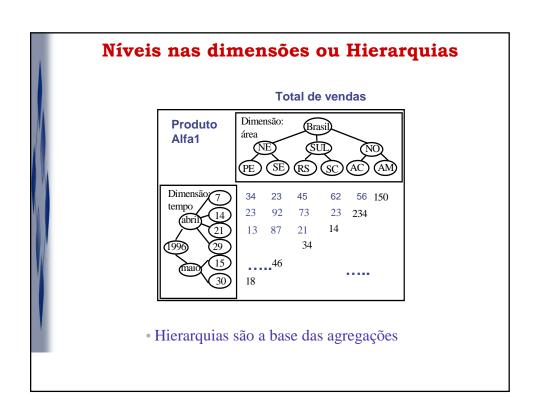

Estrutura Relacional

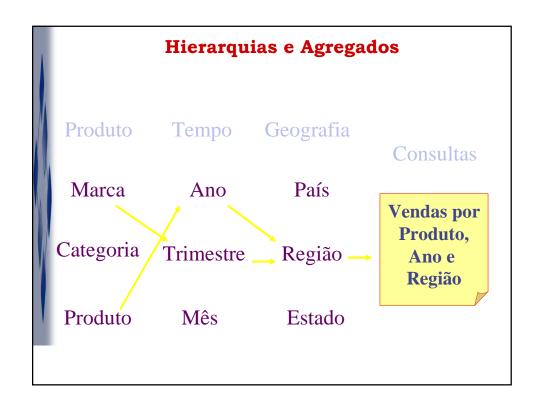
Volume de vendas para a concessionária CLYDE

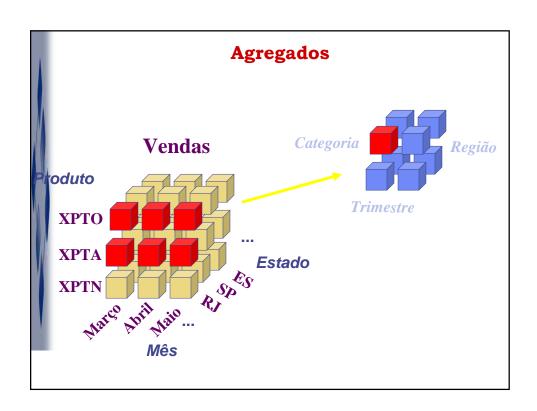
MODEL	COLOR	SALES VOLUME
MINI VAN	BLUE	6
MINI VAN	RED	5
MINI VAN	WHITE	4
SPORTS COUPE	BLUE	3
SPORTS COUPE	RED	5
SPORTS COUPE	WHITE	5
SEDAN	BLUE	4
SEDAN	RED	3
SEDAN	WHITE	2

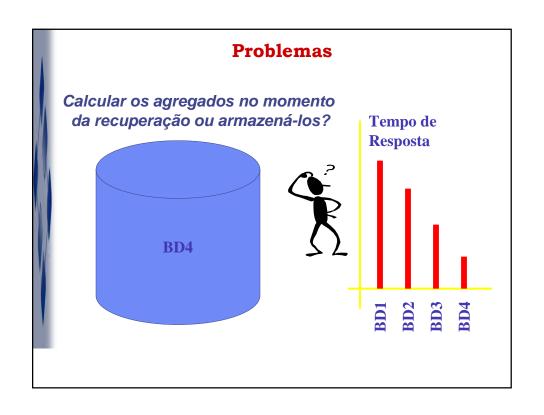

Visão matricial ou multidimensional

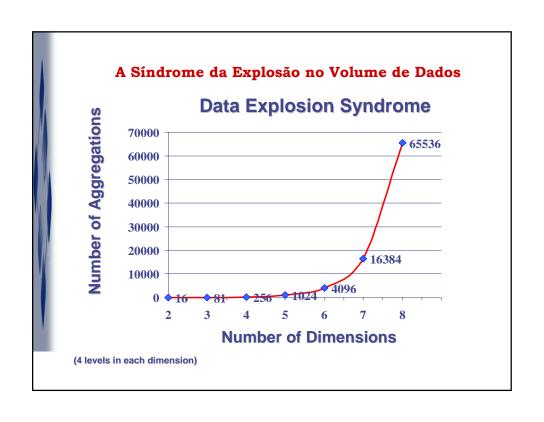

Volume de Vendas

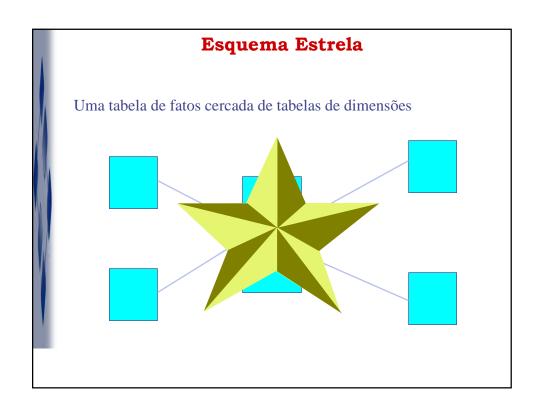


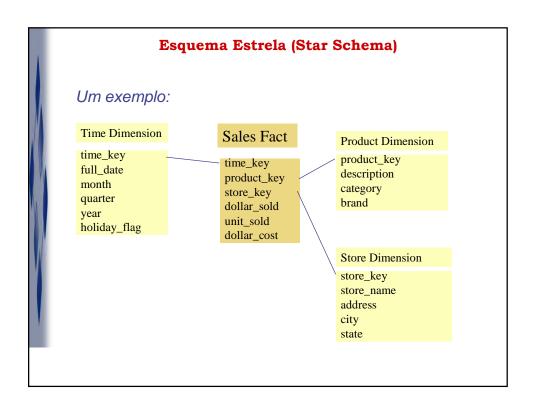

- √ Um array multidimensional tem um número fixo de dimensões e os valores são armazenados nas células
- ✓ Cada dimensão consiste de um número de elementos


	MODEL	COLOR	DEALERSHIP	VOLUME
Volume de Vendas	MINI VAN	BLUE	CLYDE	6
para todos os	MINI VAN	BLUE	GLEASON	6
	MINI VAN	BLUE	CARR	2
fornecedores	MINI VAN	RED	CLYDE	3
	MINI VAN	RED	GLEASON	5
	MINI VAN	RED	CARR	5
	MINI VAN	WHITE	CLYDE	2
	MINI VAN	WHITE	GLEASON	4
	MINI VAN	WHITE	CARR	3
	SPORTS COUPE	BLUE	CLYDE	2
	SPORTS COUPE	BLUE	GLEASON	3
	SPORTS COUPE	BLUE	CARR	2
	SPORTS COUPE	RED	CLYDE	7
	SPORTS COUPE	RED	GLEASON	5
	SPORTS COUPE	RED	CARR	2
	SPORTS COUPE	WHITE	CLYDE	4
	SPORTS COUPE	WHITE	GLEASON	5
	SPORTS COUPE	WHITE	CARR	1
	SEDAN	BLUE	CLYDE	6
	SEDAN	BLUE	GLEASON	4
	SEDAN	BLUE	CARR	2
	SEDAN	RED	CLYDE	1
	SEDAN	RED	GLEASON	3
	SEDAN	RED	CARR	4
	SEDAN	WHITE	CLYDE	2
	SEDAN	WHITE	GLEASON	2
	SEDAN	WHITE	CARR	3

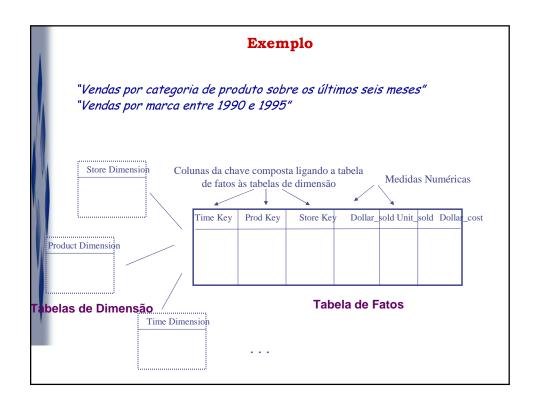


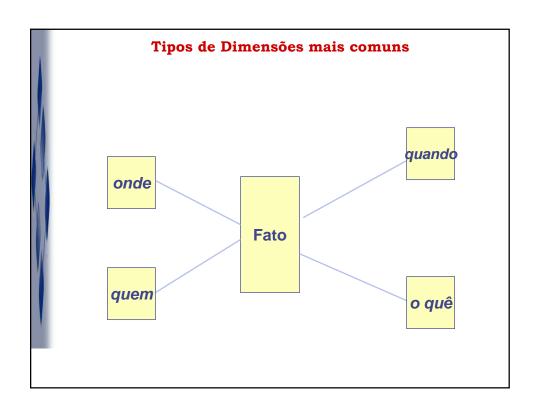


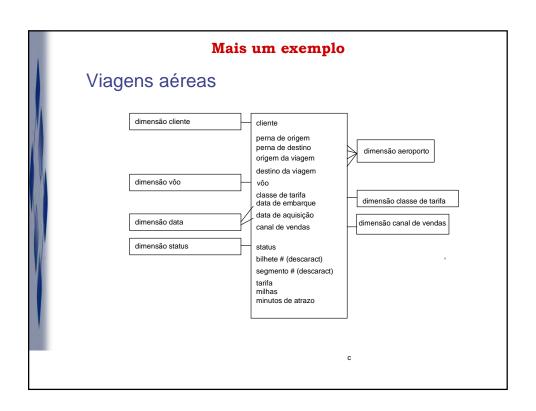


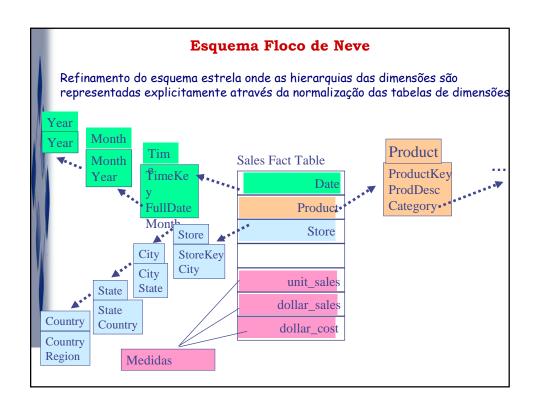

Armazenamento de Agregados

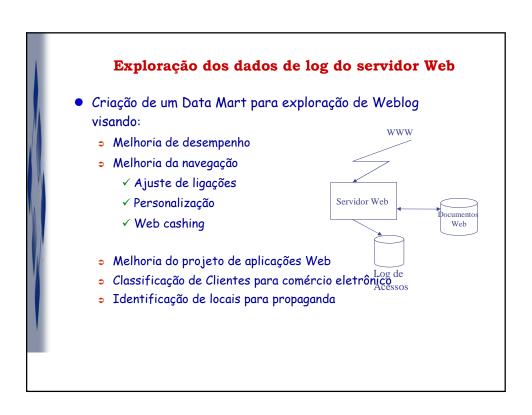
- Como é tratado o armazenamento de agregados pelas ferramentas OLAP?
 - Geralmente existe a opção de armazenar parte dos agregados
 - Tratamento para dados esparsos

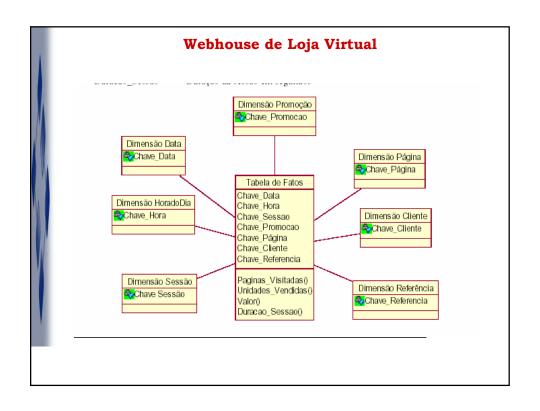

Modelagem Multidimensional: Esquema Estrela


- Dominante no projeto de DW
- Características:
 - Distingue melhor as dimensões dos fatos medidos
 - ⇒ Simplifica a visualização dimensional
 - Na verdade é uma mistura de modelagem conceitual com modelagem lógica, pois já é bastante voltada para a abordagem relacional (a literatura fala sempre em tabelas)






				E	xem	plo	de t	tabe	la 1	Геm	po				
											week				
			day	day		day		week	week	week	begin		month		
date			num in	num	day	abbre	weekday	num in	num	begin	date		num	month	month
key	full date	week	month	overall	name	٧	flag	year	overall	date	key	month		name	abbrev
1	1/1/96	1	1		Monday	Mon	у	1	1	1/1/96	1	1		January	Jan
2	1/2/96	2			Tuesday		У	1	1	1/1/96	1	1		January	Jan
3	1/3/96	3			Wednesd		у	1	1	1/1/96	1	1		January	Jan
4	1/4/96	4			Thursday		У	1	1	1/1/96	1	1		January	Jan
5	1/5/96	5			Friday	Fri	У	1	1	1/1/96	1_	1		January	Jan
6 7	1/6/96	6 7			Saturday		n	1	1	1/1/96	1	1		January	Jan
8	1/7/96 1/8/96	1			Sunday Monday	Sun	n	1 2	1 2	1/1/96	8	1		January January	Jan Jan
9	1/9/96	2			Tuesday		y v	2	2	1/8/96	8	1		January	Jan
9	1/9/90		9	9	Tuesday	rue	У			1/0/90	0			January	Jan



Cadeias de Valor Clickstream

- Muitas consultas necessitam dados além do clickstream
- Algumas dimensões são típicas de dados Web (Página, Sessão)
- DM de Transações de Vendas
 - Uma linha para cada venda concretizada
 - Dimensão CANAL acompanha o canal de vendasl (loja, web, telefone,..)
- DM de Contatos com o Cliente
 - Uma linha para cada contato com o cliente (loja, web, telefone,..)
 - □ Tabela de Fatos "Factless", acompanha um evento
- DM de Lucratividade na Web
 - Uma linha para cada item vendido
 - Pode responder muitas perguntas interessantes!

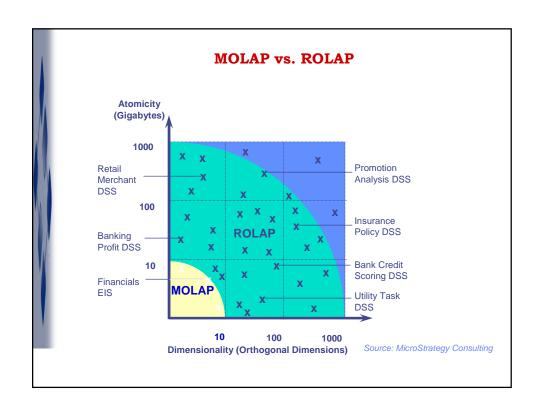
OLAP

- On-line Analytical Processing
- Refere-se ao conjunto de processos para criação, gerência e manipulação de dados multimensionais para análise e visualização pelo usuário em busca de uma maior compreensão destes dados.
- É usual a expressão "ferramenta" OLAP, referindo-se aos sistemas com estas funcionalidades e que são, juntamente com o SGBD, a base do ambiente de DW.

Funcionalidade de Ferramentas OLAP

- Natural habilidade de definir uma estrutura de dados em termos de multiplas dimensões
- Habilidade de apresentar a multidimensionalidade em telas através de uma configuração tridimensional de linhas, colunas e páginas
- Habilidade de visualisar hierarquias e navegar pelas dimensões
- Habilidade de definir fórmulas e associá-las a membros de dimensões

Facilidade para fazer análises, definindo agregações e cruzamentos, permitindo visualizar os dados através de múltiplos níveis de hierarquias e diferentes perspectivas.


Operações usuais em ferramentas OLAP

- Navegação pelas hierarquias e seus elementos: permite selecionar as perspectivas sob as quais se deseja visualisar as variáveis ou medidas
- Cruzamentos: permitem sumariar fatos segundo diferentes combinações das dimensões
- Drill down: navegação ao longo das dimensões na direção de maior detalhe
- Roll up (Drill up): navegação ao longo das dimensões na direção de menor detalhe
- Rotação: capacidade de inverter colunas e linhas navegação ao longo da dimensões na direção de maior detalhe
- Slice: seleção definindo um subcubo (Ex: vendas onde cidade = 'Porto Alegre' e data = '1/15/90')
- Cálculo e ranking (Ex: top 3% das cidades por média de rendimentos)

Alternativas para a multidimensionalidade

- MOLAP
 - ⇒ MD Real
 - Armazena os dados em formato multidimensional
 - Não usa SQL como linguagem de acesso aos dados
 - HOLAP
 - Híbrida
 - Mais usual atualmente

- ROLAP
 - ⇒ MD Virtual
 - Armazena os dados em formato relacional
 - Comandos SQL são gerados para acesso aos dados

Alternativas para Ferramentas OLAP em ambientes de DW

- Soluções proprietárias ou de um único fornecedor:
 - menos flexíveis e abertas
 - mais fáceis de implantar e manter
 - geralmente menos potentes que uma solução mista
- Soluções envolvendo múltiplos fornecedores:
 - maior funcionalidade como resultado final, usa-se o melhor para cada necessidade
 - maior complexidade e fragilidade por causa de incompatibilides entre os sistemas
 - maior necessidade de tunning acurado

Riscos em projetos de DW

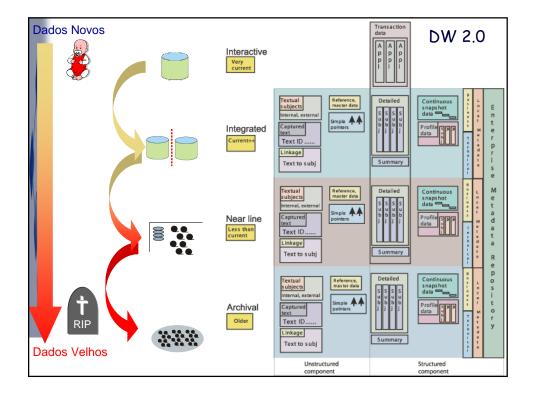
- Descasamento dos objetivos da organização
- Qualidade dos dados e dos metadados desconhecida
- Falta de capacidade técnica para lidar com outra abordagem ou tecnologias
- Falta de software de apoio, questões com forncedores
- Patrocinador pouco comprometido ou não existente
- Questões políticas ou culturais
- Falta de suporte por parte do usuário, expectativas pouco realistas
- Projeto e arquitetura da solução inadequados
- Escopo amplo demais e mudanças de requisitos

Estratégia de Projetos de DW

DW deve ser construído iterativamente - não como "um big bang" A primeira iteração é a mais crítica, por isso é importante restringir seu escopo

Fundamental seguir trilhas de desenvolvimento paralelas:

- ETL
- ⇒ Acesso
- Metadados
- Administração


Plano de Projeto para o DW

- Mantém atividades de um projeto de sistemas tradicional, mas inclui:
 - Identificação e definição de fontes de dados
 - ⇒ Integração de metadados
 - Definição e gerência de agregados
 - Desenvolvimento de estratégias de carga
 - Seleção de produtos e foco em interoperabilidade
 - Preparar especificações de extração e transformação

Bill Inmon e o DW 2.0..

- DW 2.0 é uma marca registrada
- Empresas que desenvolvem um DW 2.0 ganham um certificado
- Ênfase:
 - Integração de dados não estruturados
 - Metadados fortemente acoplados ao ambiente do DW
 - Diferentes níveis de dados, desde o mais corrente até o menos utilizado

Tendências

- SGBDs com majores facilidades para DW
 - Estruturas de armazenamento e acesso especializadas
 - ⇒ Extensões ao SQL
 - Maior exploração de paralelismo
- OLAP Híbrido (HOLAP) se tornando o mais utilizado
- DWs/OLAP associados a ambientes ERPs
- Maiores facilidades para integração de informações heterogêneas
 - ⇒ Tratamento de dados não estruturados
- Ambientes de múltiplas camadas
- Forte ênfase em gerência de metadados
 - Uso de Repositórios
- XML como intermediário para troca de informações
- Uso de taxonomias e ontologias para conhecimento do domínio e como suporte à gerência de recursos

Bibliografia

Livros de referência (entre muitos outros):

- Barbieri, Carlos, Bl- Business Intelligence: Modelagem e Tecnologia, Axcel Books, 2001
- Kimball, R. Reeves, L., Ross, M., Thornthwaite, W., *The Data Warehouse Lyfecycle Toolkit*, John Wiley & Sons, 1998.
- W. H. Inmon, Claudia Imhoff, and Ryan Sousa, Corporate Information Factory, Wiley, 2000.
- Marco, D. Building and Managing the Meta Data Repository, Wiley, 2000.
- Carvalho, L.A, Data Mining: A Mineração de Dados no Marketing, Medicina, Economia, Engenharia e Admiinistração, Ed. Érica, 2001.

Revistas Técnicas

• Intelligent Enterprise, Data Management Review, B2B, SQL Magazine