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HOME RANGE AND CORE AREA ESTIMATION USING GIS

Summary

1. Home-range estimation has traditionally been achieved through use of specific software

packages.  Such systems are inherently limited in their flexibility of analysis.  GIS offers the

potential of performing such estimation, of integrating habitat data and of performing two

and three-dimensional analysis.  Additionally, their increased flexibility should allow more

complex hypotheses regarding animal movement to be tested.

2. To develop a GIS-based home-range estimation package it is first necessary to determine the

limitations of in-built functions of GISs.  Methods of home-range estimation were developed

in a proprietary GIS, ArcInfo© (Environmental Systems Research Institute, Inc., Redlands,

California).  Methods developed include minimum-convex-polygon, gridcell, harmonic-

mean, fixed kernel and digitised polygon estimators.

3. Red fox and American Bittern data-sets were used to test the estimators.  Comparison with

the output from a commercial GIS software package, RangesV (ITE, Furzebrook, 1992)

showed that methods developed in ArcInfo give significantly different home-range area

estimations that RangesV.  However, a comparison with a related GIS-based package,

ArcView © (Environmental Systems Research Institute, Inc., Redlands, California) indicated

that there were no significant differences between mcp estimates, as would be expected,

suggesting that output from the RangesV package should be treated with caution.  However a

comparison of harmonic-mean and fixed kernels estimators between ArcInfo and RangesV

shows that both methods pick-out similar internal range-use configurations.

4. The use of in-built functions in a proprietary GIS to develop home-range estimators is, thus,

possible.  Developing an integrated GIS-based home-range package is more difficult because

of the statistical limitations of currently in-built functions, thus at present there is a need for

soft linkages to other software packages.

5. Preliminary work shows that GIS has the potential for novel methods of core-area estimation

to be developed, however time limitations prevented these being developed sufficiently.
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Introduction

Geographic Information Systems (GIS) are integrated systems of hardware and software for the

analysis and display of spatially distributed data and have traditionally been the domain of

geographers in which GISs were developed for specific applications, for example hydrologic

modelling.  An emphasis in current years has been to extend GIS into other subject areas

becoming increasingly general and more flexible in their ability to link with other data formats

and software (Batty and Xie 1994).  The traditional emphasis on data organisation and mapping

(Batty and Xie 1994) has meant that basic operations which are relevant to all spatial analyses are

integrated within proprietary GISs.  However, one drawback of this historical reliance on specific

applications has been that in-built features are often limited and thus an increasing emphasis in

GIS development has been an attempt to link existing software to GIS through the use of macro-

language.  Before this is done is useful to see what the limits of in-built functions are, thereby

allowing areas which need further development to be identified.

The use of GIS in ecology dates back to the late 1980s, mainly within the emerging discipline of

landscape ecology.  The first ecological-GIS publication was presented in 1990 (Johnston 1990)

and whilst the number of such publications has grown steadily they are still relatively

uncommon.  The use of GIS in wildlife management is no exception.  Its use has been limited to

habitat mapping, design of management units for specific species (see Waller and Mace 1997)

and the development of habitat suitability models (see Kliskey et al. 1999).  There have been

limited application of GIS in the arena of animal movement analysis.  Rather, animal movements

have traditionally been analysed through the use of specialist software.  GIS has much to offer in

this arena: it is capable of both two and three dimensional analysis; it allows the integration of

multiple layers of spatial data;  has the ability to analyse spatial data, and allows  an investigation

of species-habitat relationships.

The aim of this research is to show how a well-developed proprietary GIS, ArcInfo©

(Environmental Systems Research Institute, Inc., Redlands, California), can be used  to extend

the traditional use of GIS into the arena of wildlife management and animal movement analysis

in particular.  ArcInfo© was chosen as the GIS of choice since it is well established with access
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by many researchers and professionals alike, thereby our methods will be easy to replicate by

others.  Additionally, ArcInfo is being made increasingly general with respect to its functionality

and availability on a diverse range of hardware platforms.  Emphasis here will be on the use of

in-built functions and so analyses can also be implemented on other proprietary GISs and it is

therefore the principles of the analysis which are important.

Specifically our aim here is to extend ArcInfo's abilities into the arena of home-range and core-

area estimation.  Home range estimators will be developed and used to provide home-range

estimates using 11 data-sets of animal fixes of urban red foxes (Vulpes vulpes) and American

Bittern (Botarus lentiginosus).  The resultsing estimates will then be compared to the outputs of

another commercial home-range package: RangesV© (ITE, Furzebrook, 1992).  MCP estimates

will also be compared to the output of ArcView’s Animal Movement Analysis Extension

(AMAE) in which home-range estimators have been incorporated through use of Avenue Scripts

(Hooge, Eichenlaub and Solomon 1999).

HOME-RANGE ESTIMATION

The concept of the home-range was introduced in 1943 (Burt 1943, quoted in Seaman and

Powell 1996) in which it was defined as "that area traversed by the individual in its normal

activities of food gathering, mating, and caring for young."  This definition has led to more

explicit definitions such as the ‘Utilization Distribution’ (UD), first developed by Van Winkle

(1975) as “the two-dimensional relative frequency distribution for the points of an animal over a

period of time”.  Thus the UD is a probabilistic model which describes the relative amount of

time that an animal spends in one place.

Home-range estimation has interested biologists for decades.  An analysis of an animals

movement patterns allows the testing of many types of hypotheses about animal behaviour

(including static and dynamic interactions (cf. Doncaster 1990)), its use of resources (for

example species habitat relationships), and animal distributions at various spatial scales.  Such

investigations require information on how an animal uses its range and many methods have been

developed to estimate home-range usage.  Such 'estimators' can be conveniently categorised into

three types: those methods which estimate the home-range using information on the peripheral
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points, such as the mcp, the second are parametric methods, which make statistical assumptions

about home-range use, and finally the non-parametric methods, which do not involve such

assumptions.

GIS offers the potential to develop a fully automated package with all components strongly

coupled so that home-range functions are presented.  Such a venture should be seen as a long-

term goal and will necessitate the use of ArcInfo's macro-language interface (Arc Macro

Language - AML).  The work undertaken here is a necessary step towards this goal as it identifies

current limits of the in-built functions and identifies areas of ArcInfo GIS which will need further

development.

We have focussed on the development of polygon and non-parametric methods of home-range

estimation.  Parametric methods were avoided because of their reliance on often complex

statistical functions which are not integral functions of GIS as proprietary GISs can often only

perform rudimentary statistical operations (Johnston 1998).

HOME RANGE ESTIMATORS

The theory behind currently used home-range estimators, their utility in home-range estimation

together with their advantages and disadvantages have received much attention in the literature

and thus these will not be repeated here.  Rather, the readers attention is drawn to several reviews

of home-range estimators (Priede 1992, White and Garrott 1990, and Worton 1989).  The basics

of each estimator to be developed are mentioned below:

MINIMUM CONVEX POLYGON (MCP)

The mcp estimator is one of a number of 'polygon' methods which link the peripheral locations in

a given data set such that all interior angles are less than 180o  (see Worton 1987 for information

on other polygon methods).  Due to its simplicity and comparability the MCP has become one of

the widest used home-range estimator, however because of this simplicity the MCP has many

disadvantages.  The method gives no information on the internal space usage, areas are included
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which are likely never visited by the animal and the resulting size of the home range is highly

correlated with the number of locations used in the analysis especially at low sample size.

GRIDCELL

The gridcell estimator uses a grid upon which the animal fixes are superimposed.  Each cell is

given a value based on the number of coincident points (Voight and Tinline 1980).  The home-

range is then calculated by summation of the areas of cells including fixes.  The method gives

information not only on the home-range boundary but on the internal space-use including areas

of concentrated activity and areas of disuse.   There are a number of variations of the simple grid-

cell method which link successive observations by various joining rules (see Voight and Tinline

1980), however only the simple grid-cell method is developed here.

HARMONIC-MEAN ESTIMATOR

The harmonic-mean method  calculates the mean of the inverse distances from each point in a

lattice to all activity loci. Areas of equal value can then be joined by contouring to give isopleths,

interpreted as the average distance from the isoline to the activity loci.  The harmonic-mean

value for each lattice point is calculated according to equation (1) (Dixon and Chapman 1980):
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FIXED KERNEL

The most sophisticated non-parametric method for estimating the UD are the kernel methods

described by Worton (1989).  The kernel estimator can be thought of as follows: a probability

density function, the kernel, is placed over each data point and the UD is estimated by

summation of the individual kernels (for further discussion see Brunsdon 1995 or Silverman

1986 and Fig. 3).  Thus where there is a concentration of points the kernel estimate has a higher

density than when there are few points.  Since each kernel is a density function the resulting

estimate is a true probability density function.  The smoothing parameter, h, controls the amount
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of variation in each component of the estimate.  If a small value of h is used, the fine details of

the data can be observed, while a larger value of h obscures all the most prominent features.  The

simplest estimator is where the smoothing parameter is fixed over the entire plane, called the

fixed kernel.

There are several methods of choosing the smoothing parameter, but the most commonly used

are:

•  Standard Distance, or SD (Fotheringham, Brunsdon, and Charlton,  2000)

•  Reference Bandwidth, or REFER (Silverman 1986)

•  Least Squares Cross Validation, or LSCV (Silverman 1986)

•  A method quoted in Wray et al. (1992) which we will refer to as WORTON which is followed

by visual inspection of UDs calculated with varying proportions of WORTON, selecting the

value of h which gives a stable UD (see Appendix 2 for further details).

 

 ADAPTIVE KERNEL ESTIMATORS

 

 The adaptive kernel estimator is similar to the fixed kernel estimators except that rather than

utilising a fixed smoothing parameter to estimate the UD, the adaptive kernel estimator varies the

smoothing parameter based on the local density of points (Silverman 1986).

 

 CORE-AREA ESTIMATION

 

 Core-areas can be defined as areas of the home-range in which activity is concentrated.  An

investigation of such areas should be of great interest to ecologists since it is these areas in which

feeding, resting and  rearing young are likley to be focussed.  The subject has recived little

attention in the literature however.  Several methods have been developed to estimate core-areas:

 

•  Wray et al. (1992) developed guidelines for the identification of core-areas in which the core-

area is said to resolve at between those isopleths separated by the greatest increase in area.

•  Wray, Cresswell and Rogers (1992) developed a non parametric using Dirichlet Tesselations.
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•  Samuel, Pierce and Garton (1985) developed a technique of identfying core-areas which

received more activtity that would be expected from a uniform distribution.

•  White, Saunders and Harris (1996) identified core areas as those areas enclosed by the

isopleth containing 50% of the maximum kernel density.
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 METHODS

 

 The following home-range estimators were developed in ArcInfo:

 

•  Minimum-Convex Polygon

•  Grid-Cell

•  Harmonic-Mean

•  Fixed Kernel

•  Digitized Polygons

Additional home-range functions developed  are included in Appendix 2

The approach taken to develop the estimators was to reduce the computation time wherever

possible, to reduce the number of steps in each aml (by reducing the number of coverages and

grids needed), to reduce the amount of end-user input and to reduce the amount of filespace

required to carry out an analysis.  Below I describe the general approach taken for each estimator

and the in-built functions used.  More in-depth information and the AMLs developed can be

found in Appendix 2.

Home-range areas obtained in ArcInfo were compared between methods using Wilcoxon's signed

ranks test to see if there were significant differences between estimates for each data set.  Results

were tested between packages to see if they were significantly different from zero by using paired

t-tests.  However, such area comparisons are not sufficient to compare different estimators since

not all home-range estimators should be used for home-range boundary delineation.  Therefore,

in addition, the utility of our methods for examining internal-range use was examined by visual

inspection of contours between outputs from ArcInfo and RangesV.   To see whether data-sets

had sufficient fixes for mcp estimates the results of our asymptote.aml were compared to the

results of an mcp bootstrap routine included in ArcView’s AMAE.



9

DEVELOPMENT OF HOME-RANGE ESTIMATORS IN ARCINFO

MCP

To develop an mcp home-range estimator in ArcInfo we used the concept of the Triangulated

Irregular Network  (TIN).  A TIN is a type of vector data structure which is built from known

points into a series of triangles based on a Delauney Triangulation.  Each animal fix is

represented by a node and these are connected to each neighbouring node by pointers.  The total

mcp area is then calculated by summation of the areas of individual triangles.  The outer

boundary of the mcp is shown by drawing the hull, or the outermost nodes of the resulting TIN.

Fig. 1 shows an example of a TIN and the resulting mcp outer boundary for the American Bittern

data-set br96224.

GRID-CELL

Implementation of the gridcell estimator in ArcInfo is simple.  The point coverage, containing

the animal fixes, is converted to a grid using the POINTGRID command with the value of each grid

cell reflecting the number of coincident datapoints.  An example of the output from the gridcell

estimator is given in Fig. 2 for the fox data-set m1800au.  Choice of grid-cell size should be

based on the error inherent in gaining the animal locations.  Home-range area is calculated using

a zonal function.

HARMONIC-MEAN ESTIMATOR

The concept of finding the proximity of a set of points to a centre is one which has a well

established  basis in GIS through the analysis of Networks.

The ArcInfo function ACCESSIBILITY provides an aggregate measure of how accessible a location

is to other locations. The basic principle being that the effect of one location on another is

directly proportional to its supply and inversely proportional to its distance. The effects of

distance can be scaled to model a particular phenomenon using a distance-decay function (ß) and
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appropriate supply and demand functions for each centre and each individual point respectively

(ArcInfo help).  Accessibility values are calculated according to equation (2):

∑
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Equations (1) and (2) are essentially of equivalent form.  However they are not numerically

equivalent.  To do this, equation (2) must be multiplied by the reciprocal of the number of points

in the data set, and the distance-decay function, beta and the attractiveness of location j, Wj ,

should be set to 1.  These additional steps are easily done in ArcInfo.  First, the lattice must be

converted to a grid, using the accessibility values for each lattice point as the resulting grid cell

values.  The grid can then be manipulated easily within GRID.  The attractiveness, Wj , and the

distance-decay function, ß can be given a value of one in the accessibility command.

Visualisation of the surface is done by converting the lattice to a TIN and contouring the surface.

It is common to delineate the home-range boundary as the isopleth containing 95% of activity

loci.  This requires a method of determining the number of points within a given isopleth.  This

was done by selecting values above a given threshold value and then using a zonal function to

determine the number of points within this new grid.  This must be done a number of times until

the ‘correct’ level is found by trial and error.  This adds both user input-time, computation time

and increased disk space requirements.  In ArcInfo this method is difficult to automate without

resorting to programming, which, whilst conceptually easy, is outside of the scope of this

research project.  We attempted to partially automate the method by displaying on screen the

percentage of points enclosed by the harmonic-mean value used in the AML.  However this

method is not accurate and often gives values over 100% even when data points are clearly

outside the level are enclosed.  It is thought that this is a problem in using the POINTDENSITY

command to generate the data for the zonal function rather than a problem with our reasoning

and methodology.

A flow diagram of the steps necessary is given in Appendix 1.
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FIXED KERNEL METHOD

The POINTDENSITY function calculates the density of points in a specified neighbourhood around

each output grid cell.  There are several options with the POINTDENSITY command.  The KERNEL

option utilises a probability density function, or kernel, to fit a smoothly tapered surface to each

point.  The resulting surface is then calculated by summing the individual probability density

functions:

The radius of each individual kernel is equivalent to the smoothing parameter, h.  There are a

number of kernel functions, each with a different form, which can be used.  However, Worton

(1989) argues that the form of the kernel is unimportant and that the choice of smoothing

parameter is important.  Despite this, the kernel function used in the POINTDENSITY function has

several advantages:

Figure 3.  Kernel density estimation through

summation of individual probability density functions.

Individual kernels are represented as thin lines and the

UD is shown as a thick line.  Taken from Brunsdon

(1995).
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This function has high differentiability properties thereby making computation time minimal

(Silverman, 1986).  Additionally, Silverman (1986) suggests using as coarsest grid as possible to

reduce computation time however, in our experience this is unnecessary when using the

POINTDENSITY command because it takes very little time to compute in ArcInfo (a matter of

several seconds) even for large data-sets.

ADAPTIVE KERNEL

In order to develop this method in ArcInfo a way of altering the value of h across the grid is

needed.  Using the KERNEL option it is possible to specify the radius of the individual kernels,

however there is no option to vary the radius in any way.  If it were possible to vary the kernel

radius dependent on the density of points within a neighbourhood then it would be a simple

operation to develop an adaptive kernel estimator.  However, as Worton (1989) has noted, the

adaptive kernel estimator has few advantages over the fixed kernel estimator and indeed the fact

that adaptive kernel estimators do not have rigorously tested statistical properties makes their use

in home-range studies disadvantageous (Seaman and Powell 1996).  Thus, we made no further

attempt to develop this estimator further.

DP

DP was originally developed within a GIS.  The method used here was as stated in the original

paper (Ostro et al. 1999).  The basic approach is to link successive points, then buffer with a

user-defined width and then to include areas which are too large to be lacunae (a subjective

judgement) and then to use a zonal function to calculate the resulting area.

CORE-AREA ESTIMATION

We were unable to succesfuly develop the method of Samuel, Pierce and Garton (1985) in

ArcInfo.  In order to compare the UD with a uniform ditribution it is necessary to sum the
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volume of the UD and calculate an ‘average usage’ per unit area.  This should be possible,

however due to time restraints this was not attempted.

Equally, the method of Wray et al. (1992) should be possible to implement in ArcInfo.  However,

it is not clear whether using this method results would be comparable.  It is not stated at what

intervals contouring should be carried out in order to identify the point of core area resolution.  It

is likely that since the UD is continuous, there are many values at which the core-area would

appear to resolve and which of these is chosen would clearly depend on the choice of contouring

interval.  The core-area boundary would then be somewhat subjective.  Because of uncertainties

in contouring, and a lack of time this method was not fully developed.

The method of White, Saunders and Harris ( 1996) also has notable problems.  There is no

reasonable argument which suggests that 50% of the maximum kernel density corresponds to

50% of the UD (and thus the area where the animal is active 50% of the time).  This argument is

developed further in the discussion section.  An alternative methodology is adopted here where

the volume of the UD is summed and then proportions selected out.  This should more accurately

reflect  the range-usage.  However, this way of selecting core-areas is still problematic since the

delineation of the boundary may have little biological meaning; a true core-area boundary should

reflect a disproportionatley large rate-of-change in space-usage.  We partially developed a

method with this aim in mind (see Appendix 2, Fig. 13 and ‘further work’ section for further

details).

Additionally we partially developed the method of Wray, Cresswell and Rogers (1992).

However, we were unable to fully develop this method.  See Appendix 2 for further details.

Thus, the development of methods for the identification of core-areas has not been successful,

however this is due more to time restraints rather than the in-built limitations of ArcInfo.
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RESULTS

Table 1 gives the estimated home-range areas obtained in ArcInfo using 5 home-range estimators

for the 11 data-sets.  Friedman’s test showed that there are significant differences between area

measurements for each data-set using ArcInfo (chi squared = 24.10, df = 4, P <0.001).  This is to

be expected due to the differing ways of delimiting home-range boundaries by different

estimators.

MINIMUM CONVEX POLYGON

Area estimates for the three home-range packages, ArcInfo, ArcView and RangesV, are given in

Table 2.  Wilcoxon’s signed ranks test showed that area estimates were significantly different

between RangesV and the other methods (RangesV–ArcInfo: Z=-2.934, p=0.003 and RangesV-

ArcView: Z=-2.943, p=0.003) but that our method was not significantly different from the

ArcView package (ArcInfo-ArcView, Z=-0.460, p=0.646).  Fig. 4 gives an example of the output

from each package.  This significant result is likely due to a consistent difference between the

RangesV output and ArcInfo and ArcView outputs, however the Friedman test indicated that the

differences in area estimates between RangesV and the other packages are significantly different

from zero (RangesV-ArcInfo: chi squared = 24.10, df = 4, P < 0.001; RangesV-ArcView: chi

squared = 11, df = 1, P = 0.001) but that the difference in area between the two GIS packages is

not significantly different from zero (ArcInfo-ArcView: chi squared = 0.5 , df = 1 , P = 0.48).

MCP ASYMPTOTES

The number of data-points at which an mcp asymptote was reached using our method is shown in

Table 1.  All data sets, except m2332su and br96224, reached an indicating that data collection

was sufficient in all but these cases.  Fig. 5 shows that m2332su does not reach an asymptote but

rather the mcp area continues increasing in a step-wise fashion despite the data-set consisting of

673 locations.  The method used in the ArcView’s AMAE, which is more rigorous, shows a

different pattern.  Fig. 6 shows that, using this method, the m2332su mcp does reach an
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asymptote although the point at which this is reached is diffuse.  Because of time restraints only

several data-sets were tested in ArcView.

GRIDCELL

Table 1 shows the area estimates for all data-sets using the gridcell estimator.  It can be seen that

area estimates for the fox data-sets are comparable to the other home-range estimators and are

very similar to the mcp estimates, however the gridcell estimator seriously underestimates the

home-range area for the American Bittern data.  Fig. 2 gives a visual comparison between

gridcell and mcp estimators for the br96025 and m1800au data-sets.

DIGITIZED POLYGONS (DP)

DP estimates for all data-sets are shown in Table 1.  The dp estimator serious underestimates the

home-range area for the American Bittern data-sets but is comparable to the other methods for

the fox data-sets.   Fig. 7 gives a visual comparison between dp and mcp estimators for two data-

sets, br96025 and m1800au.

HARMONIC-MEAN METHOD

Table 1 shows the harmonic-mean area estimates for all data-sets.  Wilcoxon’s signed ranks test

showed that there are significant differences for area estimates between ArcInfo and RangesV (Z

= -2.934, P = 0.003).  Fig. 8 shows boxplots of the areas estimates for all data-sets.  The ArcInfo

method tends to underestimate the home-range area.

Fig. 9 visually compares the internal structure of the 3 data-sets calculated using ArcInfo and

RangesV.  The ArcInfo method represents the home-range differently than RangesV, especially

for the American Bittern data-sets.  However, superficially it identifies similar internal structures

for all data-sets.  We made no attempt to examine the stability of internal contours.

FIXED KERNEL ESTIMATOR



16

Table 1 shows the fixed kernel area estimates for all data-sets. Wilcoxon’s signed ranks test

showed that there are significant differences between our method and the RangesV fixed kernel

area estimates (Z=-2.934, P = 0.003).  Fig. 10 shows a boxplot of fixed kernel area estimates for

all data-sets using ArcInfo and RangesV.  Thus ArcInfo tends to overestimate the home-range

area.

WORTON was used to estimate the smoothing parameter used to calculate the data in Table 1.  Fig.

11 shows that the choice of smoothing parameter is a critical factor for visualisation of the

internal structure of the home-range.  Table 3 shows the smoothing parameters for all data-sets

calculated using three different methods.  Smoothing parameters calculated by LSCV are similar

to those calculated using WORTON but these are largely different from those calculated using the

STANDARD DISTANCE method.  Fig. 11 shows that using LSCV gives an undersmoothed surface

whereas using STANDARD DISTANCE gives a grossly oversmoothed surface.  In contrast WORTON

appears to give a slightly oversmoothed surface.

Fig. 12 compares the internal structure for three data-sets using ArcInfo and RangesV.  ArcInfo

tends to represent the outer home-range boundary differently than RangesV however the internal

structure is surprising similar between packages.  It could be argued that our method delineates

core-areas more clearly than the RangesV package.
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DISCUSSION

Each home-range estimator has its own advantages and disadvantages.  The lack of commonality

between estimators makes comparisons difficult and each method should be evaluated with this

in mind.  Because of this we chose to use a variety of techniques to compare our methods with

other home-range estimation packages.  In addition to area estimates and the internal structure

variables such as  the time of computation, ease of use, amount of user input required, and file-

space requirements were used.

MCP

A comparison of areas is satisfactory for the mcp since it is only useful for delimiting home-

range boundaries.  That our method gives different mcp area estimates is understandable because

of the different algorithms used in different software packages (Worton 1989).  However, that

these differences are significant is surprising.  Given that the mcp area estimates using ArcInfo

are not significantly different from those obtained using ArcView suggests that the problem is

with RangesV rather than with our method.  This also highlights that comaprisons with RangesV

should be treated with caution and therefore additional comparisons with other packages would

be useful.  Further comparisons with the Calhome software package (Kie, Baldwin and Evans

1996) were planned, however this package is only capable of using a maximum of 500 locations

and there are uncertainties of how the package calculates the smoothing parameters for adaptive

kernel estimators; thus further comparison was not done.

The method we used to determine whether an asymptote for mcp is reached, whilst useful, is

clearly not sufficient.  Our method is simple relying on the sequential deletion of data points with

no replacement.  The method used in ArcView’s AMAE is more rigorous relying on

bootstrapping using random deletion with replacement. A comparison of Figs 5 and 6 show that

the conclusions drawn from our method are unreliable.  The ArcInfo method should not be used

and the asymptote results in Table 1 treated with caution.
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GRIDCELL

The importance of using a data-set with sufficient data-points to be representative of the home-

range, is shown in Fig. 2.  The estimated distance error for the American Bittern data-sets is

56.6m (Azure, 1998), therefore our choice of a 50m grid cell-size is appropriate.  However it is

difficult to ensure that a data-set adequately represents internal range-usage.  It is common

practice, when collecting preliminary data, to check that the data-set gives an asymptote for an

mcp, however this is not routinely done for other methods of home-range estimation.  There is no

reasonable argument to assume that because a data-set gives an asymptote for an mcp it is

sufficient for other methods of home-range estimation.  Additionally whilst it may be possible to

determine the minimum number of points needed to produce an asymptote for a home-range area

for a given estimator, it does not follow that there are sufficient points to adequately describe

internal range-usage.

DIGITIZED POLYGONS

DP is not appropriate for every data-set.  It was designed to be used for which a group spread, or

the average spacing of a group of individuals within a group, can be estimated.  Thus, dp is likely

to be most useful when applied to flock of birds or a variety of mammal species, especially

highly social animals and group herbivores.  For red foxes, dp may well be appropriate as they

live in social groups, although direct interaction between members of social groups is often

minimal (Doncaster and Macdonald 1990). Therefore its suitability is a matter for discussion.

Despite this, it gives similar area estimates for both gridcell and mcp for all fox data-sets (see

Table 1).  An advantage of using dp is in an investigation of avoidance of lacunae.  When the dp

estimator is integrated with habitat data it should be possible to determine if lacunae are due to

topographical features or, more interestingly, unsuitable habitat or areas which are avoided for

other reasons such as human disturbance. However, whether an area is classed as ‘use’ or as

‘lacunae’ in this method is highly dependent on two factors, 1) the choice of group spread and 2)

the definition of  lacunae being larger than 1% of the mcp area, a seemingly arbitrary value.

Despite this, important aspects of a species ecology may be inferred from the integration of the

dp estimator with habitat data.
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To the best of my knowledge American Bitterns do not travel in social groups or flocks and thus

the dp method is unlikely to be appropriate in this case.

HARMONIC-MEAN METHOD

There are several problems with our harmonic-mean method.  Firstly it tends to underestimate

the home-range area when compared to RangesV.  In order to verify this, it would be useful to

compare with other home-range estimation packages, however because of time limitations this

was not possible.  Despite this, our method does pick out similar internal structures to RangesV.

The harmonic-mean method is mostly commonly used for this specific purpose and so this is not

be a significant problem.  The ArcInfo method also identifies similar internal structures to the

ArcInfo Kernel estimator thereby confirming its utility.  Additionally it appears that our method

seems to be influenced more than other methods by individuals point locations; ths is likely

because our lattice was fairly course (we used a 50 by 50 lattice for all data-sets).  Again, this is

not likely to be a significant problem when examining internal range-use, merely that it is less

visually appealing.  The resolution of the lattice was not changed since this significantly

increasing computation time.  For the largest data-set (970 points) computing ACCESSIBILITY took

circa. 5 minutes which is not unreasonable for a data-set of this size.  Thus, our harmonic-mean

method is useful for examining the internal-usage of the home-range but should not be used as an

areal estimator nor a boundary delimiter.  Because of its utility in examining internal range-use it

is also likely to be a good method for delimiting core-areas.

FIXED KERNEL METHOD

The first thing that should be mentioned when assessing the use of the fixed kernel method is the

problem of choosing the optimal smoothing parameter.  Many studies have shown that the LSCV

method is the most reliable and gives a good estimate (for example see Seaman and Powell 196,

Silverman 1986, and Worton 1989).  Our research here has indicated that the LSCV method gives

a grossly undersmoothed surface (see Fig. 11) which is contradicted by all previous work.   In

contrast, the STANDARD DISTANCE method gives a grossly oversmoothed surface.  We found that

the WORTON method was most useful.  However, it does have notable drawbacks, at least in the

way it was developed in ArcInfo.  Firstly, the method requires a great deal of user input and
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repetition.  We automated the method as much as possible without resorting to programming

however the user must still add significant amounts of information into the amls at numerous

stages of the process and this takes considerable time.  It is puzzling that RangesV uses and yet

using this value with our method gives a grossly undersmoothed surface.  This suggests that there

is a problem of our method, most likely with units, however I was unable to find an error in the

units used.  This is clearly an avenue for further work.  Despite these problems, our method

works well using the WORTON method followed by visual inspection.  An added advantage of our

method is the small amount of time it takes to calculate the appropriate surface once the correct

smoothing parameter is known.  Even with the largest data-set (970 points), the pointdensity

command took just several seconds to compute.  As noted earlier this is partially due to the

choice of kernel function used in the pointdensity command.

Our method gives a significantly larger home-range area estimate than any other estimators we

developed.  This is because during the method a kernel density function is placed over the

outermost points (which lie along the vertices of the mcp), therefore depending on the value of h

(equivalent to the radius of the density function), the area of the kernel method will always be

larger (shown in Fig. 13(e)).  The larger the value of h, the larger the resulting home-range.  The

way we select out 95% of the UD goes someway towards correcting this since much of this outer

area, which will have low usage, is removed by selecting out the areas of lowest usage.  Indeed

the method of selecting 95% is likely to be different from RangesV and other home-range

packages.  There are a number of options:

1) To select out 95% of the kernel area enclosed by the outer boundary,

2) Take 95% of the maximum kernel density,

3) Take 95% of the UD which was first standardized to an approximate bivariate normal

distribution.

The first option is clearly insufficient as it does not take into account different rates of usage

within the home-range.  I suspect that RangesV and other home-range packages use the second

option although this could not be substantiated from the literature which accompanied the

software.  However this is the method used in the software program Calhome (Kie, Baldwin, and

Evans, 1996).  The second method has been used to select out core areas (for example see Azure
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1998 and White, Saunders and Harris 1996) at the 50% level.  This method is flawed since 50%

of the maximum kernel density will not correspond to 50% of the UD.  Thus the third method

deserves more attention.  Here we realise that the only true way of selecting 95% of the UD is to

sum the volume of the UD and then to select 95% of this volume.  This is possible by finding the

cut-off kernel density (by subtracting 1.645 standard deviations from the mean value (for a one-

tailed distribution)), however this assumes a bivariate normal distribution.  Instead we took the

approach of first standardising the distribution to an approximate bivariate normal, then selecting

95% of the volume and then transforming back to the original distribution.  We found that using

a square-root transformation works reasonably well for most distributions but in some cases a

cube root was necessary.  The user must check the distribution before and after transformation

and alter the transformation accordingly.  This is easily done in ArcInfo.

Above I have shown that it is been possible to successfully develop the most commonly used

home-range estimators in a proprietary GIS.  These methods are generally comparable with other

commercially available packages of home-range estimation.  Whilst they often give differing area

estimates for each method this is not only to be expected but of little importance since most

home-range estimators are used for examining internal range-usage.  The methods developed in

ArcInfo do indeed show similar patterns of internal usage and despite problems with selecting

the appropriate smoothing parameter for the fixed kernel estimator, it can be argued that it is

possible to use in-built functions to extend the capabilities of ArcInfo into the arena of wildlife

management.  There is a clear argument for further extending its capabilities through the use of

AML which would enable an integrated home-range package to be developed; this is even more

apparent when one considers the statistical limitations of ArcInfo.  Currently, however, soft

linkages with other software are needed.

Further Work

Given the potentially significant problems with calculating an optimal smoothing parameter for

the fixed kernel estimator I believe this should be a priority area in future work.  However, it will

first be necessary to determine why LSCV gives a grossly undersmoothed surface in ArcInfo as

this contradicts previous work.
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Due to time and file-space limitations, our foray into core-area estimation and use of species-

habitat relationships was limited.  This is unfortunate as GIS has great potential for furthering of

their understanding.  However, now that the basic home-range estimators have been developed it

should be relatively straightforward to develop methods of core-area estimation as discussed

above.  The development of methods to examine species-habitat relationships is likely to take

more effort, however GIS offers the ability to integrate the UD with habitat data and use the

probabilistic nature of the UD to further an understanding of habitat selection, rather than relying

on an examination of animal fixes and habitat data.  This would be a significant step forward.

The subject of core-area identification has received little attention in the literature.  We attempted

to develop a novel method of identifying core-areas but were unable to develop the method

sufficiently.  Preliminary results are shown in Fig. 13.  Here we use the SLOPE and CURVATURE

functions used commonly in hydrologic modelling to identify areas of the UD for which the rate

of usage drops off disproportionately greater than would be expected from the rest of the UD.  It

is clear from Fig. 13. that this method needs much development, however, this is an area in

which we should be able to develop novel techniques using GIS.  Much of the attention which

has been given to core-area estimation identifies core-area boundaries with little biological

significance (in the sense that although use is concentrated in these areas there appears to be no

biological reason for delimiting a boundary).  Our method offers the possibility of identifying

biologically-relevant core-area boundaries which is essential if this information is to be used to

look at species-habitat relationships amongst others.  Above I have discussed the other methods

used to delineate core-areas, despite their problems these should be developed, at least for

comparative purposes.  It is clear that this is possible in ArcInfo.

Word Count: 6014

Acknowledgements

I would like to thank Dr. Colin McClean for his supervision and assistance with GIS and

statistical-related efforts.  Additionally, Dr. Piran White should be thanked for sharing his red fox

data-set and his assitance in gaining several references.  Special attention should be payed to

Gary Huschle of the U.S. Fish and Wildlie Service for his assitance in co-ordinating the transfer



23

of American Bittern data-sets between the far-reaches of Northern Minnesota and the UK.

Further thanks should go to David Azure, also of the U.S. FWS, for sharing his American Bittern

Data.  Thanks also go to Ben Dean and Tom Day for working as a team throughout the course of

this project.

References:

Azure, D.A. (1998)  Aspects of American Bittern Ecology in Northwest Minnesota.

Unpublished MS thesis, University of North Dakota, USA.

Batty, M. and Xie, Y. (1994) Urban analysis in a GIS environment: population density

modelling with ARC/INFO.  In Spatial Analysis and GIS (eds S. Fotheringham and

P. Rogerson) pp 189-221. Burgess Science Press, Basingstoke.

Brunsdon, C. (1995)  Estimating probability surfaces for geographical point data: An Adaptive

Kernel algorithm.  Computers and Geosciences, 21, 877-894.

Burrough, P.A. and McDonnell, R.A. (1998)  Principles of Geographic Information Systems.

Oxford University Press, Oxford.

Dixon, K.R. and Chapman, J.A. (1980)  Harmonic-mean measure of animal activity areas.

Ecology, 61, 1040-1044.

Doncaster, C.P. (1990)  Non-parametric estimates of interaction from radio-tracking data.

Journal of Theoretical Biology, 143, 431-443

Doncaster, C.P., and Macdonald, D.W. (1990)  Drifting territoriality in the red fox, Vulpes

vulpes.  Journal of Animal Ecology, 60, 423-439.

Fotheringham, A.S., Brunsdon, C. and Charlton, M. (2000) Quantitative Geography:

perspectives on spatial data analysis.  Sage Publications, London

Gautestad, A.O. and Mysterud, I. (1995) The home range ghost.  Oikos, 74, 195-204.

Hooge, P.N. and Eichenlaub, B. (1997) Animal movement extension to arcview. ver. 1.1. Alaska

Biological Science Center, U.S. Geological Survey, Anchorage, AK, USA.

Hooge, P.N., Eichenlaub, B., and Solomon, E.K. (1999)  Using GIS to Analyze Animal

Movements in the Marine Environment.  Unpublished paper.

http://www.absc.usgs.gov/glba/gistools/Anim_Mov_UseMe.pdf

Johnston, C.A. (1990) GIS: more than a pretty face. Landscape Ecology, 4, 3-4.



24

Johnston, C.A. 1998  Geographic Information Systems in Ecology. Blackwell Scientific,

London.

Kenward, R.E. and Hodder, K.H. (1992) Ranges V: An analysis system for biological location

data. Institute of Terrestrial Ecology, Furzebrook Research Station, Wareham, Dorset, BH20

5AS, UK.

Kie, J.G., Baldwin, J.A. and Evans, C.J. (1996) CALHOME : a program for estimating animal

home ranges. Wildlife Society Bulletin, 24, 342-344.

Kliskey, A.D., Lofroth,E.C., Thompson, W.A., Brown, S., and Schreier, H. (1999) Simulating

and evaluating alternative resource-use strategies using GIS-based habitat suitability

indices. Landscape and Urban Planning, 45, 163-175.

Ostro, L.E.T., Young, T.P., Silver, S.C., and Koontz, F.W. 1999.  A Geographic Information

System method for estimating home range size. Journal of Wildlife Management, 63(2):

748-755.

Priede. I.G. (1992)  Wildlife telemetry: an introduction.  In Wildlife telemetry.  Remote

Monitoring and Tracking of Animals (eds I.G. Priede and S.M. Swift) pp 3-29.  Ellis

Horwood, Chichester.

Samuel, M.D., Pierce, D.J. and Garton, E.O. (1985) Identifying Areas of Concentrated Use

within the Home Range.  Journal of Animal Ecology, 54, 711-719.

Silverman, B.W. (1986)  Density Estimation for statistics and data analysis. Chapman and Hall,

London.

Siniff, D.B. and Tester, J.R. (1965)  Computer analysis of animal movement data obtained by

telemetry. Bioscience, 15, 104-108.

Van Winkle, W. (1975)  Comparison of several probabilistic home-range models.  Journal of

Wildlife Management, 39, 118-123.

Voight, D.R. and Tinline, R.R. (1980) Strategies for analysing radio tracking data.  A handbook

on Bioltelemetry and Radio Tracking (ed. C.J. Amlaner and D.W. Macdonald), pp387-404.

Pergamon Press, Oxford.

Waller, J.S., & Mace, R.D. (1997) Grizzly bear habitat selection in the Swan

Mountains, Montana. Journal of Wildlife Management, 61:1032-1039.

White, G.C. and Garrott, R.A. (1990)  Analysis of wildlife radio-tracking data. Academic Press,

San Diego California, USA.

White, P.C.L., Saunders, G. and Harris, S. (1996). Spatio-temporal patterns of home-range use



25

by foxes (Vulpes vulpes) in urban environments.  Journal of Animal Ecology, 65, 121-125.

Worton, B.J. (1987)  A Review of Models of Home Range for Animal Movement.  Ecological

Modelling, 38, 277-298.

Worton, B.J. (1989)  Kernel methods for estimating the utilization distribution in home-range

 studies.  Ecology, 70,164-168.

Wray, S., Cresswell, W.J. and Rogers, D. (1992)  Dirichlet tesselations: a new, non-parametric

approach to home range analysis.  In WildlifeTelemetry: Remote monitoring and Tracking

of Animals (eds I.G. Priede & S.M. Swift), pp.256-271.  Ellis Horwood, Chichester.

Wray, S., Cresswell, W.J., White, P.C.L. & Harris, S. (1992) What if anything is a core areas?

 An analysis of the problems of describing internal range configurations.  In Wildlife

Telemetry: Remote monitoring and Tracking of Animals (eds I.G. Priede & S.M.

 Swift), pp.256-271.  Ellis Horwood, Chichester.



25

Table 1. Areas of home-range estimators for red fox and American Bittern data sets.  All areas are in hectares.
File Points cell size MCP

area
MCP

asymptote
Gridcell

area
95% Fixed Kernel

area
95% Harmonic mean

area
Digitized Polygon area

m2332au 970 19 22.469 606 22.75 36.653 15.915 19.914
m2332sp 195 16 14.544 800 14.25 31.501 10.675 13.553
m2332su 673 25 21.156 180* 18 49.737 12.688 17.062

m1800au 679 28 51.75 400 44.25 103.877 35.986 40.768
m1800su 488 25 45.281 439 38.5 83.21 39.25

br96025 27 79 216.74 22 6.5 795.285 63.034 36.158
br961510 44 68 207.732 33 10 610.102 59.187
br96224 39 48 160.297 no asymptote 8.5 312.352 36.403

mo96025 32 59 156.443 10 7.75 369.899 45.601 21.197
mo961510 14 151 773.047 9 3.5 1814.73 123.15
mo96224 38 23 34.822 38 6.5 70.607 13.278 10.506

* m2332su seems not to reach an absolute asymptote but continues increasing in steps.  This may indicate a temporally changing home-range.
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Table 2.  MCP area results for three home-range packages. ArcView uses a bootstrap
routine and so area measurements are the mean over 50 bootstraps. All areas are in
hectares.

File ArcView mean mcp area ArcInfo mcp area Rangesv

br96025 201.8 216.74 217.21
br961510 207.7324 207.732 208.15
br96224 160.2969 160.297 160.61

m1800au 51.75 51.75 51.92
m1800su 45.28125 45.281 45.44
m2332au 22.46875 22.469 22.59
m2332sp 14.54375 14.544 14.64
m2332su 21.15625 21.156 21.26

mo96025 140.77205 156.443 156.81
mo961510 773.04715 773.047 773.97
mo96224 34.8219 34.822 34.97
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Table 3.  Smoothing parameters for red fox and American Bittern files
calculated using three different methods.  Note the similarity between WORTON

and LSCV methods but the difference between these methods and STANDARD

DISTANCE.
File WORTON SD LSCV

m2332au 40.6 180.3 34.537
m2332sp 47.5 161.4 31.87
m2332su 37.9 364.8 32.069
m1800au 68 286.7 78.221
m1800su 76 257 72.53

br96025 336.5 808.8 284.61
br961510 255 670.2 248.7
br96224 166.5 428 155.36
mo96025 223.7 554.8 177.24
mo961510 709.6 217.9 690.72
mo96224 85 1501.2 83.622
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a) b)

Figure 1. (a) Delauney triangulation for br96224.  Locations occur at each node
forming triangles.  The mcp area is calculated by summing the areas of each triangle.
The outer boundary of the mcp (b) is formed when the outermost nodes are drawn
forming a hull.
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a) br96025 gridcell estimate b) br96025 mcp

c) m1800au gridcell estimate d) m1800au mcp

Figure 2.  Comparison between gridcell and mcp home-range estimators using one
bittern data-set, br96025, and one fox data-set, m1800au.  A grid cell size of 50m was
used for each since this is suitable for the fox data-set (White, Saunders and Harris,
1996).  A poor estimation for the bittern data-set is likely becuase the data-set
comrises too few locations to accurately describe internal usage of the home-range.
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ArcInfo RangesV ArcView
 Figure 4.  MCP home-ranges for br96025 using three home-range packages.  Animal
 locations are superimposed.
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Figure 5. Effect of sample size on mcp home-range area in ArcInfo for m2332su
dataset.  Note how the mcp area increases dramatically at low sample sizes but begins
to reach an asymptote.  However the data set never actually reaches an asymptote
depite having 673 points.  This may indicate a ‘drifting’ home-range (cf. Doncaster
and MacDonald 1990) or a non-linear relationship between sample size and home-
range area (cf. Gautestad and Mysterud 1995).
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Figure 6.  Effect of sample size on mcp area using ArcView’s Animal Movement
Analysis Extension for data-set m2332su.  A bootstrap routine is utilised with
replacement thereby increasing accuracy.  A comparison with figure 3 shows the
differences between the method developed in ArcInfo and this, more complicated,
method.
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a) br96025 Digitised Polygon b) br96025 mcp

c) m1800au Digitised Polygon d) m1800au mcp

Figure 7.  Comparison between Digitised Polygon and fixed kernel home-range
estimators for br96025, and m1800au.  Both dp estimates used a path width of 50m.
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Figure 8.  Boxplots showing the variation in area estimates using the harmonic-mean
estimator for all data-sets using ArcInfo (GISAREA) and RangesV (RVAREA).
ArcInfo tends to underestimate the home-range area which is defined as the area
enclosed by the isopleth containing 95% of animal fixes.
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a) ArcInfo mo96025 b) RangesV mo96025

c) ArcInfo m1800au RangesV m1800au

e) ArcInfo m2332sp f) RangesV m2332sp
Figure 9.  Comparison of harmonic-mean method of home-range estimation for three
data-sets using the ArcInfo and RangesV packages.  Mote that RangesV gives a
different outer boundary especially with the bittern data-sets (br96025), however both
methods tend to pick out similar internal structures.
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 Figure 10.  Boxplots for fixed kernel estimates calculated using ArcInfo
(GISAREA) and RangesV (RVAREA).  ArcInfo tends to overestimate the
home-range area (defined as the area enclosed by the isopleth which includes
95% of the Utilisation Distribution).  This may be due to the way we define our
outer boundary.  See discussion section for further details.
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m2332su (h=32) m2332su (h=32) contours m2332su (h=364.8) contours

m2332su (h=138) m2332su (h=138) contours

Figure 11.  Effect of altering the smoothing parameter, h, on fixed kernel home-range estimates.  Shown are the grids and their resulting contours
for m2332su.  Surfaces were calculated using the pointdensity command for three values of h calculated by the LSCV method (h = 32), STANDARD

DISTANCE (h=364.8), and WORTON (h = 138).  Note that the resulting contours differ significantly.  Therefore conclusions about internal range-use
are likely to be greatly affected by the choice of smoothing parameter.
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a) br961510  ArcInfo kernel b) br961510 RangesV kernel

c) m1800au ArcInfo kernel d) m1800au RangesV kernel

e) m2332su ArcInfo kernel f) m2332su RangesV kernel

Figure 12. Fixed kernel home-range estimates for 3 datasets using ArcInfo and
RangesV packages.  Note the similarity in internal structure for all data-sets shown.
However,the outer boundaries are not consistent between the two packages.  For
some data-sets, for example br961510, (a) and (b), our method, arcInfo seems better
at delineating core-areas.
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a) m2332su fixed kernel grid b) m2332 fixed kernel slope

d) m2332su fixed kernel curvature e) m2332su 95% kernel boundary and mcp

 Figure 13.  Developing novel methods of identifying core areas using slope and
 curvature functions within ArcView.  (a) shows the Utilization Distribution surface
 calculated using ArcInfos pointdensity command, (b) shows the first derivative, or
 slope, of the UD grid, (c) shows the second derivative, or curvature, of the UD.  (d)
 shows the 95% fixed kernel boundary and the mcp as a reference.  The first derivative
 should pick out areas of rapidly changing use within the  home-range whilst the
 second-derivative should pick out breaks in the slope.  Neither has been
 developed sufficiently to be used as a method of identifying core areas.
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Appendix 1.  Flowcharts showing the order in which amls must be used for home-
range estimators.

setcell

mcp

harmonic kernelpd

smooth

smooth10

harmonic2 kernelpd2 smooth9

smooth1kernelpd3harmonic3

 Harmonic-mean         Fixed kernel estimator         Worton
     estimator

Note:  For the fixed kernel estimator, WORTON should be run first to determine the
appropriate smooth parameter.
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  Appendix 2.  AML files for home-range estimation. Areas which need user-input are shown in
  {} and  italics.

SETCELL

Generate sites
input {data-file}
points
quit
build sites point
tables
select sites.pat
additem sites.pat spot 4 4 b
calculate spot = 1
select sites.bnd
calculate XMAX = XMAX + {x}
calculate XMIN = XMIN -  {x}
calculate YMAX = YMAX + {x}
calculate YMIN = YMIN – {x}
additem sites.bnd cellsize 4 4 b
calculate cellsize = ( ( XMAX – XMIN ) + ( YMAX - YMIN ) ) /
100

list
select sites.pat
quit

MINCP

createtin tin
cover sites point
end
arcplot
display 9999
mapex mcp
tinhull tin
points sites
volume tin

     Creates an ArcInfo point coverage from data-file

     Increases the boundary of the point coverage by
     1 kernel radius (x)

     Calculates and lists the cellsize needed to give a
     50 x 50 grid

     Creates a TIN from the ArcInfo coverage

      Displays mcp, overlays the point coverage
     and lists the mcp area.
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ASYMPTOTE

generate asy
input {data-file}
points
quit
build asy point
tables
select asy.pat
additem asy.pat spot 4 4 b
calculate spot = 1
quit
reselect asy asy1 point
reselect asy# < x
~
n
n
createtin tasy1
cover asy1 point
end
volume tasy1 # asym
kill asy1
kill tasy1
reselect asy asy2 point
reselect asy# < {# of data points}
~
n
n
createtin tasy2
cover asy2 point
end
volume tasy2 # asym
kill asy2
kill tasy2
reselect asy asy3 point
reselect asy# < {# of data points}
~
n
n
createtin tasy3
cover asy3 point
end
volume tasy3 # asym
kill asy3
kill tasy3…
tables
select asym
additem asym hectares 4 12 f 3
calculate hectares = area / 10000

     Creates a new ArcInfo coverage from original
     the data-set

      Reselects a number of points and calculates an
      mcp and its area.

      This step must be repeated a user-defined
      number of times with a sequentially greater
      number of points.
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additem asym no_data_points 4 4 b
calculate no_data_points = $recno * {# of divisions}

quit
arcplot
display 9999
graphextent asym info no_data_points hectares
graphlimits 3 3 16 12
units graph
axis horizontal
axisruler no_data_points
axis vertical
axisruler area_hectares
graphpoint asym info no_data_points hectares

GRIDCELL

pointgrid sites gridcell spot
{grid cell-size}
y
nodata
grid
gridcellarea = zonalarea(gridcell) / 10000
display 9999
mapex gridcellarea
gridshades gridcellarea
cell gridcellarea *

DP

generate dig
input {data-file}
lines
quit
build dig lines
buffer dig dp # # {buffer width} # line
polygrid dp bufgrid inside
{grid cell-size}
y
polygrid dp lacgrid area
{grid cell-size}
y
grid
if(lacgrid < {1% of mcp area}) lacgrid2 = 1 else
lacgrid2 = 0
if(lacgrid2 == 1 or bufgrid == 100) dpgrid = 1
endif
dparea = zonalarea(dpgrid) / 10000
display 9999
mapex dparea

       Draws a graph of mcp area against number of
       points

       Converts point coverage to a grid

     Calculates total gridcellarea and visually
     displays estimate

     Creates a line coverage from the original data-
     file in which sequential points are linked.

      Lines are buffered and converted to a grid.

       Selects out lacuane with areas <1% mcp

       Calculates total area of DP
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gridshades dparea
cell dparea *
HARMONIC

tinarc tin hmpoly poly
grid
setcell {grid cell-size}
setwindow sites
latgrid = polygrid(hmpoly)
latgrid2 = isnull(latgrid)
if (latgrid2 >= 0) latgrid3 = 1
endif
quit
gridpoint latgrid3 lat
tables
select lat.pat
additem lat.pat spot 4 4 b
quit
append hm point
sites
lat
~
y
y
build hm point
arcplot
accessibility hm point access # spot
quit
pointgrid hm hmgrid access
{grid cell-size}
y
nodata
grid
setcell {grid cell-size}
setwindow sites
hmgrid3 = {# of data-points} / hmgrid
hmgrid4 = con(isnull(hmgrid3), 1, hmgrid3)
countgrid = pointdensity(sites, spot, #, simple, #, rectangle, {grid cell-size},
{grid cell-size})

countgrid2 = countgrid * ({grid cell-size} * {grid cell-size} )

quit
tables
select hmgrid3.sta
additem hmgrid3.sta range 4 12 f 3
calculate range = ( MAX - MIN ) / 20
additem hmgrid3.sta l1 4 12 f 3
calculate l1 = MIN + range
additem hmgrid3.sta l2 4 12 f 3
calculate l2 = l1 + range
additem hmgrid3.sta l3 4 12 f 3

        Converts mcp TIN to a polygon coverage

        Creates a 50 x 50 lattice.

       Joins lattice and point coverage to new
       coverage

        Calculates accessibility values for each lattice
        point

      Creates a grid where the cell values are
       equivalent to the accessibility values of the
       coincident points

       Converts accessibility values to the numerical
         equivalent of the Harmonic-mean (equation 1)
       Calculates the number of points in each
         gridcell

       Calculates and lists 20 levels between the
       maximum and minimum values from which to
       choose the level which includes 95% of the
       points.
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calculate l3 = l2 + range
additem hmgrid3.sta l4 4 12 f 3
calculate l4 = l3 + range
additem hmgrid3.sta l5 4 12 f 3
calculate l5 = l4 + range
additem hmgrid3.sta l6 4 12 f 3
calculate l6 = l5 + range
additem hmgrid3.sta l7 4 12 f 3
calculate l7 = l6 + range
additem hmgrid3.sta l8 4 12 f 3
calculate l8 = l7 + range
additem hmgrid3.sta l9 4 12 f 3
calculate l9 = l8 + range
additem hmgrid3.sta l10 4 12 f 3
calculate l10 = l9 + range
additem hmgrid3.sta l11 4 12 f 3
calculate l11 = l10 + range
additem hmgrid3.sta l12 4 12 f 3
calculate l12 = l11 + range
additem hmgrid3.sta l13 4 12 f 3
calculate l13 = l12 + range
additem hmgrid3.sta l14 4 12 f 3
calculate l14 = l13 + range
additem hmgrid3.sta l15 4 12 f 3
calculate l15 = l14 + range
additem hmgrid3.sta l16 4 12 f 3
calculate l16 = l15 + range
additem hmgrid3.sta l17 4 12 f 3
calculate l17 = l16 + range
additem hmgrid3.sta l18 4 12 f 3
calculate l18 = l17 + range
additem hmgrid3.sta l19 4 12 f 3
calculate l19 = l18 + range
additem hmgrid3.sta l20 4 12 f 3
calculate l20 = l19 + range
list
y
quit

HARMONIC2

if(hmgrid4 < {value from harmonic}) level = 1
endif
lcont = zonalsum( level, countgrid2 ) / {# of data points /100}

display 9999
mapex lcont
gridshades lcont value linear
points sites
cell lcont *

        Selects out the appropriate level

        Calculates the percentage of points in the new
        level

        Lists the percentage of points within the level
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HARMONIC3

area = zonalarea( level ) / 10000
display 9999
mapex area
gridshades area
harcon = contour(hmgrid4, list, {desired contour value},…,…)

arcs harcon
cell area *

KERNELPD

grid
setwindow sites
kernel=pointdensity(sites,spot,#,kernel,#,{smoothing parameter})

kpd = kernel * 100000
if(kpd > {value}) kpd2 = kpd
endif
kpd3 = pow(kpd2,0.5)
quit
tables
select kpd3.sta
additem kpd3.sta sd95 4 12 f 3
calculate sd95 = ( mean - ( stdv * 1.645 ) ) ** 2

list
quit

KERNELPD2

grid
if(kpd2 > {value from kernelpd}) kpd95 = kpd2
endif
quit
tables
select kpd95.sta
additem kpd95.sta interval 4 12 f 3
calculate interval = ( max - min ) / 7
list
quit

KERNELPD3

grid
if(kpd95 > 0) kpd95b = 1
endif
kpdarea = zonalarea(kpd95b) / 10000
display 9999

       Calculates the area of the level

        Contours the resulting UD

        Lists the area of the 95% UD

       Estimates the UD

       Converts the UD to an approximate bivariate
        normal distribution

       Calculates the upper kernel density which is
       equivalent to 95% of the UD

      Calculates a new grid with 95% of the UD

       Calculates area estimate for 95% UD
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mapex kpd95
shadeset colorrange
gridshades kpd95 value linear
kpdcontour = contour(kpd95, interval, {value from kernelpd2})

kpdbnd = gridpoly(kpd95b)
linecolor red
arcs kpdcontour
linecolor yellow
arcs kpdcontour
cell kpdarea *

Stability

reselect sites pnts point
res $recno < {desired # of points}
~
n
n
grid
k5a = pointdensity(pnts,spot,#,kernel,#,{h})
k5b = k5a * 100000
k5bcon = contour(k5b,interval,{contour interval})
quit
clean k5acon k5acont # # poly
tables
select k5acont.pat
list
quit
kill k5a
kill k5b
reselect sites pnts1 point
res $recno < {desired # of points}
~
n
n
grid
k10a = pointdensity(pnts1,spot,#,kernel,#,{h})
k10acon = contour(k10a,interval,{contour interval})

quit
clean k10acon k10acont # # poly
tables
select k10acont.pat
list
quit
kill k10a
reselect sites pnts2 point
res $recno < {desired # of points}
~
n

       Contours UD

Stability.aml was an attempt to develop a routine
based on our mcp asymptote.aml.  In each step it
takes  a sequential number of points and calculates a
fixed kernel estimate.  However, unlike
asymptote.aml we could find no way of exporting
the area estimate into an attribute table and so after
each iteration the area is displayed on screen.  We
were unable to run this routine due to a lack of
filespace (the grids which results are large).
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n
grid
k15 = pointdensity(pnts2,spot,#,kernel,#, {h})

k15con = contour(k15,interval, {contour interval})
quit
clean k15con k15cont # # poly
tables
select k15cont.pat
list
quit
kill pnts1
kill k15
reselect sites pnts3 point
res $recno < {desired # of points}
~
n
n
grid
k20 = pointdensity(pnts3,spot,#,kernel,#, {h})

k120con = contour(k20,interval, {contour interval})
quit
clean k20con k20cont # # poly
tables
select k20cont.pat
list
quit
kill pnts3
kill k20

Thiessen

dirichlet sites tiles
tables
select tiles.pat
sort AREA
additem tiles.pat order 4 4 b
calculate order = $recno
reselect order < {# of data points} AND order > 0
statistics
sum AREA
sort tiles#
quit
reselect tiles tilesb
res order < {# of data points} AND order > 0
~
n
n
arcplot
display 9999

Thiessen.aml was an attempt to develop a new non-
parametric method of identifying core-areas (Wray
et al. 1992).  This method uses a dirichlet
tesselation to create a surface based on the animal
fixes.  Where points are dense the resulting
polygons are small.  Therefore, by ordering the
resulting tiles in increasing area it is possible to
select out proportions of these tiles which will
reflect different levels of usage (50% is often used
to delineate core-areas - however, see discussion).

We were unable to fully develop this method as it
requires splitting the resultant tiles when animal
fixes are duplicated in the data-set.  We could find
no easy way to do this within ArcInfo.
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mapex sites
polys tilesb

3D

shadeset colorrange
surface lattice kgrid
surfaceextent surface
surfacetarget 356200 177000
surfaceobserver relative 120 6 15000
surfacezscale 5
surfaceprojection perspective
surfacedrape gridshades {grid} value linear

Calculation of h using WORTON

Smooth

grid
setwindow sites
k10 = pointdensity (sites,spot,#,kernel,#, {h})
k10sc = k10 * 1000000
list k10sc.sta

smooth10

k10con = contour(k10sc, interval, {contour interval})
k9 = pointdensity (sites,spot,#,kernel,#,( {h} * 0.9))

k9sc = k9 * 1000000
list k9sc.sta

smooth9

setwindow sites
k9con = contour(k9sc, interval, {contour interval})
k8 = pointdensity (sites,spot,#,kernel,#,( {h} * 0.8))

k8sc = k8 * 1000000
list k8sc.sta

smooth1

k1con = contour(k1sc, interval, {contour interval})

windows

display 9999
mapex sites

3D.aml  is a routine which displays a 3D
representation of a grid.  This is sometimes useful
for visually inspecting UDs and being able to
visualise where core-areas may be or where lacunae
may be present.

This set of amls implements the routine of Wray et
al. (1992) for selecting an appropriate smoothing
parameter. It takes the smoothing parameter
calculated by one of the methods mentioned in the
methods section.  UDs are estimated using this
smoothing parameter and 0.1 proportions of this
parameter down to 0.1.  Each of these UDs is then
visually inspected to see if there are a range of
parameters which give a similar outer boundary and
similar internal configurations.  The smoothing
parameter which then is represented by this 'best-fit'
kernel is then chosen as the appropriate smoothing
parameter.

Amls smooth, smooth10, smooth9…smooth1
(intervening amls not shown)  must all be run
sequentially but neccessitates user-input at the end
of each aml into the next to facilitate similar
contouring between UDs so that comparisons can
be made.  The 10 UDs can then be visualised using
windows.aml and windows2.aml, however only a
maximum of 5 windows can be open at once.

This method, whilst giving a reasonable output, is
extremely laborious and needs extensive user-input
and a large amount of filespace.
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shadeset colorrange
linecolor red
imageview create k10
imageview create k9
imageview create k8
imageview create k7
imageview create k6
imageview k10sc value linear # # k10con k10
imageview k9sc value linear # # k9con k9
imageview k8sc value linear # # k8con k8
imageview k7sc value linear # # k7con k7
imageview k6sc value linear # # k6con k6

windows2

imageview create k5
imageview create k4
imageview create k3
imageview k5sc value linear # # k5con k5
imageview k4sc value linear # # k4con k4
imageview k3sc value linear # # k3con k3
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