
Parsing the Object Table

The object table contains offsets to all of the object's various data segments and also

determines the interrelation of those segments. When considering creating or visualizing a large,

multi-piece object, it is important to know which blocks position each individual piece, which

pieces are part of a larger structure, and which affect the model as a whole. All of this can be

gleaned from the basic structure of the object table.

Each table entry consists of six words, five of which define file offsets.

The first two words are used to dictate what kind of data is expected and where in the file it is

located. The other four offsets point to other entries in the object table and are used for ordering

the table.

There are two ways to link entries. Child entries share all of the attributes of their parents.

Display lists are almost always children of other commands, adopting their position from parent

position commands, the distance they are rendered at from distance commands, etc. By creating a

series of parent/child entries, many different attributes can be assigned to a part of the model.

 The next entry is the next table entry that has the same parent as the current command. The

next entry does not share the attributes of the current entry, but still shares those of its own

parents. All next and previous entries have the attributes of their parents but don't share attributes

with each other. If there is more than one model for an object, like a high-resolution model when

nearby and a lower-resolution model when at a distance, the near model's command will have a

next entry set to the far model.

To better illustrate the connections between each command, some examples use a simple

format giving the type of data, the offset of the object table entry, and brackets that reflect which

commands follow and are children of that entry.

Offset Type Data Offset Parent Offset Next Entry Previous Entry Child Offset
0x100 00020000 05000148 00000000 00000000 00000000 05000118
0x118 00180000 05000420 05000100 05000130 00000000 00000000
0x130 00180000 05000500 05000100 00000000 05000118 00000000

02:100 denotes a table entry at offset 0x100 in the file. The command type is 02, which sets

the position of a model part. It's first child entry is at 0x118, which is the next command. This is

an 18 display list, and because it is a child of 02:100 it appears in brackets next to it. The parent

offset is set to 0x100, it has no children of its own, and it is followed by another entry at 0x130.

This is also a 18 display list, and it has the same parent as the previous entry at 0x118. It is also a

child of 02:100 so it appears in brackets, but because it has no relation to 18:118 it is placed one

line down.

Being children of 02:100, both 18:118 and 18:130 will adopt the position data set by 02:100.

Technically the parts are rendered separately and moved to the position given in 02:100, but

functionally it is as if every point in both of the display lists has had the position's x, y, and z

values added to them. Neither 18 commands share any information with each other. If one of

these had children, ie:

02:100 {0A:118 {18:130}
18:148}

18:130 would be affected by 0A:118 and 02:100, since it is a child of both. However, 18:148 is

only a child of 02:100, so it receives the position data but not the affects of either 0A:118 or

18:130. Both of those commands are outside of 18:148's scope.

 Note though that parent's receive nothing from children. 02:100 in both examples receives no

attributes from any of its children. In the second example, 0A:118 adopts the position of its parent,

but the display list is beyond its own scope. Effects only compound from left to right.

Precedence becomes increasingly important in larger models. In guards and other large, multi-

segmented models each piece of the model will be formed with one or more display lists and

positioned relative to the rest of the model using one or more position commands. For instance, a

hand is positioned to touch a forearm, the hand and forearm positioned to touch the triceps, and the

whole arm is positioned on the chest, which is positioned above the legs to form the actual body.

01:B8 {02:D0 {02:3B8 {02:5B0 {02:5C8 {02:5E0 {0A:5F8 {18:610}}

0A:628 {08:640 {18:658}

08:670 {18:688}}}

0A:6A0 {08:6B8 {18:6D0}

08:6E8 {18:700}}

All of this code is used to render the left arm of Brosnan's tuxedo. 18:610 is the character's

left hand. 18:658 and 18:688 render their left forearm, using the 08 commands to indicate at what

distance each should be used. The 18:6D0 and 18:700 also trigger at specific distances and are

used to render the upper arm.

 Every point in 18:610 is moved a total of five times; 02:D0, 02:3B8, 02:5B0, 02:5C8, and

02:5E0 all affect it's final position. 18:658 and 18:688 are only moved four times since 02:5E0 is

outside their scope. 18:6D0 and 18:700 are only moved three times total, 02:5C8 and 02:5E0 both

being out of their scope.

To determine exactly what commands influence a certain table entry is as simple as gathering a

list of all its parents. For instance, if a full object table isn't handy and you need to know all the

position modifications needed to render the display list in command 18:700, you can retrieve its

parent's offset, then that parent's offset, etc., until finally the first entry is reached that lacks one.

All the commands that influence 18:700 are:

08:6E8, 0A:6A0, 02:5B0, 02:3B8, 02:D0, 01:B8.

Simple Display Lists: Position Translation

Display lists render each of the parts of an object. All display list types consist of a table of

points in the model as well as a list of display commands sent to the RDP. An example of a basic

display list is the type 04 command, broken down here.

 The mapping commands are numerous and complex, but for these purposes discussing them

isn't important. Instead, a brief look at point tables is in order. A point table is constructed of

many point structs, as seen here:

X Position Y Position Z Position Reserved S Image Pin T Image Pin RGBA Color

0 0020 FF96 0050 0000 0104 0099 676767FF

1 FFE0 FF96 0050 0000 00D5 0097 676767FF

2 FFE0 FF86 003B 0000 00D6 00A7 676767FF

3 0020 FF86 003B 0000 0104 00A9 676767FF

4 0020 0000 0000 0000 0106 00D4 676767FF

5 FFE0 0000 0000 0000 00D8 00D2 676767FF

Given above is a list of six points which would be used by the display list to render an object.

The x, y, and z positions are used to produce the model itself. The s and t pins are used for

alignment when image mapping, and a red/green/blue/alpha quad affects the resulting color of the

generated point. The reserved short value is not used in basic display lists. For the rest of the

document, only the three position values will be considered.

 Each display list is rendered independently of each other but other commands in the object

table can change the way in which rendering occurs. For instance, 08 commands only allow the

display list to be rendered at certain distances, 12 commands can be used to select what kind of

mapping is used, etc.

A part can be repositioned when one of the position commands is used. Each point within a

subsequent child display list is offset by the given x, y, and z values, moving the whole part to a

new location. The most common of these are type 02 commands.

For our purposes, the only parts of these position commands that will be considered are the

three position values. The ordering and linkage values are used predominately by animation

routines to select particular parts and manipulate them. The position values are always important

though, since it is these that will be used to offset the point information in the child display list.

To apply the change, the given offsets are added to every position in its child point tables.

This requires first converting them from floating-point notation into their decimal equivalents, then

adding the values to each point in the table.

X modification 00000000 +0.

Y Modification C1AA6670 -21.30

Z Modification C21484ED -37.13

X Original Y Original Z Original X Moved Y Moved Z Moved

0 32 -106 80 32 -127.3 42.87

1 -32 -106 80 -32 -127.3 42.87

2 -32 -119 59 -32 -140.3 21.87

3 32 -119 59 32 -140.3 21.87

4 32 0 0 32 -21.3 -37.13

5 -32 0 0 -32 -21.3 -37.13

Multiple position commands can be applied to a point table. Below is the complete command

list of the display list. Another position command influences the position of the part shown.

02:68 {02:290 {04:2A8}

02:68 positions the 04:2A8 display list in addition to the changes made by 02:290. The same

process is used to move each of the points in the table. 02:68's position changes are shown in the

short table below.

X modification 00000000 +0.

Y Modification 379F6230 +0.000019

Z Modification C2FFE3EF -127.95

The larger table below shows how the changes are compounded to create the final position.

The original position values are given on the left, converted to their decimal equivalents. The

middle columns denote the position changes made by the 02:290 position command, and the right-

most columns illustrate the 02:68 position change.

X Org. Y Org. Z Org. X First Y First Z First X Final Y Final Z Final

0 32 -106 80 32 -127.3 42.87 32 -127.3 -85.08

1 -32 -106 80 -32 -127.3 42.87 -32 -127.3 -85.08

2 -32 -119 59 -32 -140.3 21.87 -32 -140.3 -106.08

3 32 -119 59 32 -140.3 21.87 32 -140.3 -106.08

4 32 0 0 32 -21.3 -37.13 32 -21.3 -165.08

5 -32 0 0 -32 -21.3 -37.13 -32 -21.3 -165.08

The right-most three columns are the final positions for each of the points in the point table.

The total position change is equal to the position changes made by each of the parent position

commands. Compounding position changes in this way moves the part to the final location in the

rendered model.

02:290 02:68 Total Change

X modification +0. +0. +0.

Y Modification -21.30 +0.000019 +21.300019

Z Modification -37.13 -127.95 -165.08

Complex Display Lists: Point Aliasing

Type 18 display list commands contain more than just basic points used for rendering. There

are two other groups of data contained in the block used for registering hit detection and merging

points with different parts of the model. A complete 18 command's data is shown below.

Collision tables are a separate index of the unique points found in the rendering point list. The

format differs slightly from the ordinary point tables, retaining x, y, and z position data but

including an index value and information used later to merge coordinates. The format of the point

structs will be discussed in the next section.

Contrast the two different kinds of point tables. On the left is a normal point table, and on the

right is the collision table assigned to the same display list. Notice the fourth column in the

collision point table, the index value, matches the point numbers on the left.

Rendering (Normal) Point Table Collision Point Table

0 FF9B 001E FFB2 0000 000C 000A 303030FF FF9B 001E FFB2 0000 00000000 FFFF 0000

1 FF9B FFC8 FFB8 0000 0037 000B 303030FF FF9B FFC8 FFB8 0001 00000000 FFFF 0000

2 FF9B 004B 00A2 0000 063E 002E 303030FF FF9B 004B 00A2 0002 00000000 FFFF 0000

3 FF9B FFCE 00AB 0000 067C 0030 303030FF FF9B FFCE 00AB 0003 00000000 FFFF 0000

4 FFBF 0026 0094 0000 05F8 0103 D4D4D4FF FFBF 0026 0094 0004 00000000 FFFF 0000

5 FFF7 0030 FFFC 0000 0236 0239 5E5E5EFF FFF7 0030 FFFC 0005 05000190 000D 0000

6 FFFC FFDC FFCC 0000 00FB 0256 5E5E5EFF FFFC FFDC FFCC 0006 05000190 0011 0000

7 FFBD FFEB 00AF 0000 06AA 00FB E2E2E2FF FFBD FFEB 00AF 0007 00000000 FFFF 0000

8 0002 000C FFBF 0000 00A6 0272 5E5E5EFF 0002 000C FFBF 0008 05000190 000F 0000

9 0003 FFE1 FFEF 0000 01E4 0281 5E5E5EFF 0003 FFE1 FFEF 0009 05000190 0010 0000

A 0002 FFE7 0015 0000 02DF 0284 5E5E5EFF 0002 FFE7 0015 000A 05000190 000E 0000

B FFFB 0020 FFE1 0000 0187 0252 5E5E5EFF FFFB 0020 FFE1 000B 05000190 000C 0000

The two tables shown above looked very similar because each and every point in the rendering

display list is unique. Often, though, this isn't the case. Only 16 points can be utilized at a time

from a rendering point table, so often a point will need to be repeated later in the model. In

addition, sometimes the same point will be used several times but utilize different mipmapping

coordinates or coloration. As was previously stated, collision point tables only list unique
coordinates, so it is not uncommon to see a collision table with fewer entries than a render table.

Notice there is not a 1-1 correspondence between the two tables. Instead, you have to resort

to the index numbers in each table to see the relationship. Again, the rendered points are shown

on the left, and the corresponding collision points to the right. Each of the index values is

highlighted in blue.

Rendering (Normal) Point Table Corresponding Collision Point Table

0 000B 0009 FFDA 0000 02B1 00DD BCBCBCFF 000B 0009 FFDA 0000 050004F0 0011 0000

1 000A 0021 0005 0000 0188 003B BCBCBCFF 000A 0021 0005 0001 050004F0 0010 0000

2 0060 0017 FFDB 0000 0287 032C F0F0F0FF 0060 0017 FFDB 0002 00000000 FFFF 0000

3 0009 0017 0023 0000 00BD FFCD D4D4D4FF 0009 0017 0023 0003 050004F0 000F 0000

4 006B 0032 002E 0000 0047 0252 F0F0F0FF 006B 0032 002E 0004 00000000 FFFF 0000

5 0060 0017 FFDB 0000 00A1 0231 F0F0F0FF

6 0077 FFE7 FFCB 0000 0325 03A9 F0F0F0FF 0077 FFE7 FFCB 0006 00000000 FFFF 0000

7 000B 0009 FFDA 0000 015D FFE9 BCBCBCFF

8 000E FFE5 FFDF 0000 0336 0094 D4D4D4FF 000E FFE5 FFDF 0008 050004F0 000D 0000

9 000E FFDF 0020 0000 02A3 038B D4D4D4FF 000E FFDF 0020 0009 050004F0 000E 0000

A 0082 FFE3 0033 0000 03D1 0028 F0F0F0FF 0082 FFE3 0033 000A 00000000 FFFF 0000

B 0009 0017 0023 0000 0026 0340 D4D4D4FF

C 006B 0032 002E 0000 000D 003D F0F0F0FF

D 000E FFE3 FFFE 0000 026D 0018 D4D4D4FF 000E FFE3 FFFE 000D 050004F0 000C 0000

E 000E FFE5 FFDF 0000 0143 002B D4D4D4FF

F 0077 FFE7 FFCB 0000 FFFF 028E F0F0F0FF

10 0082 FFE3 0033 0000 03DA 028F F0F0F0FF

11 000E FFDF 0020 0000 03AF 0002 D4D4D4FF

12 000E FFE3 FFFE 0000 026D 0018 D4D4D4FF

13 0077 FFE7 FFCB 0000 FFFF 028E F0F0F0FF

14 0077 FFE7 FFCB 0000 FFE9 021E F0F0F0FF

15 0060 0017 FFDB 0000 00A5 0348 F0F0F0FF

16 0082 FFE3 0033 0000 03B1 023E F0F0F0FF

17 006B 0032 002E 0000 03B8 0416 F0F0F0FF

Only the first instance of a point will be listed in the table. Notice in the table above point five,

which doesn't have a collision table entry, is the same as point two. Normally, determining which

collision entries pertain to rendering points would require string comparisons. Point usage tables

circumvent this problem. The point usage table is a simple list of short integer values that indicate

if other points in the table share the same location. The usage table for the above struct is given

below.

A point usage value is usually FFFF, meaning the point is not shared by another in the table. If

a value is given, though, it indicates the next entry ID that will use the exact same point. For

instance, if entry 0's value is 0007, entry 7 will use the same collision point. This is noted in the

table below.

Usage Table Entry Corresponding Collision Point Table

0 0007 Entry 7 is identical to entry 0 000B 0009 FFDA 0000 050004F0 0011 0000

1 FFFF No matching entries 000A 0021 0005 0001 050004F0 0010 0000

2 0005 Entry 5 is identical to entry 2 0060 0017 FFDB 0002 00000000 FFFF 0000

3 000B Entry B is identical to entry 3 0009 0017 0023 0003 050004F0 000F 0000

4 000C Entry C is identical to entry 4 006B 0032 002E 0004 00000000 FFFF 0000

5 0015 Entry 15 is identical to entry 5 0060 0017 FFDB 0002 00000000 FFFF 0000

6 000F Entry F is identical to entry 6 0077 FFE7 FFCB 0006 00000000 FFFF 0000

7 FFFF No matching entries 000B 0009 FFDA 0000 050004F0 0011 0000

8 000E Entry E is identical to entry 8 000E FFE5 FFDF 0008 050004F0 000D 0000

9 0011 Entry 11 is identical to entry 9 000E FFDF 0020 0009 050004F0 000E 0000

A 0010 Entry 10 is identical to entry A 0082 FFE3 0033 000A 00000000 FFFF 0000

B FFFF No matching entries 0009 0017 0023 0003 050004F0 000F 0000

C 0017 Entry 17 is identical to entry C 006B 0032 002E 0004 00000000 FFFF 0000

D 0012 Entry 12 is identical to entry D 000E FFE3 FFFE 000D 050004F0 000C 0000

E FFFF No matching entries 000E FFE5 FFDF 0008 050004F0 000D 0000

F 0013 Entry 13 is identical to entry F 0077 FFE7 FFCB 0006 00000000 FFFF 0000

10 0016 Entry 16 is identical to entry 10 0082 FFE3 0033 000A 00000000 FFFF 0000

11 FFFF No matching entries 000E FFDF 0020 0009 050004F0 000E 0000

12 FFFF No matching entries 000E FFE3 FFFE 000D 050004F0 000C 0000

13 0014 Entry 14 is identical to entry 13 0077 FFE7 FFCB 0006 00000000 FFFF 0000

14 FFFF No matching entries 0077 FFE7 FFCB 0006 00000000 FFFF 0000

15 FFFF No matching entries 0060 0017 FFDB 0002 00000000 FFFF 0000

16 FFFF No matching entries 0082 FFE3 0033 000A 00000000 FFFF 0000

17 FFFF No matching entries 006B 0032 002E 0004 00000000 FFFF 0000

When a point is adopted, it is as if that information is copied from the current location to the

one given. Data copied in this way is highlighted in yellow above. This makes it possible to

sequentially change multiple entries.

Entry 6 is copied four times above. Entry 6 is copied to entry F, the new entry F is copied to

entry 13, and this new entry 13 is copied to entry 14. So long as the list is always processed from

beginning to end, the table integrity will remain intact.

A single entry's collision entry can be recovered by examining the table. If a matching ID isn't

found in the collision table, check for the value in the usage table. Then, check that the new entry

isn't also aliased. Here is an example of the method, recovering the collision entry corresponding

to entry 0x13.

Obtaining matching data from the collision table may not seem useful at the moment. However,

it is essential to merging points between different pieces in models correctly.

Complex Display Lists: merging points

Point merging involves borrowing points from a different display list. Some models, most

notably guards, are designed to be animated during play. To mask the gaps between each section

of their body when moving point merging is used, connecting points in one model part to another.

This is a complicated process, involving four steps. Firstly, merging points should be done

when translating positions. The reason for this is because the point taken from one part of a model

may not be positioned the same as another part of the model. Just placing the point at its final

position saves effort later when its location needs to be known.

The first step is determining which point is being replaced, and what point it is being replaced

with. To understand how this is done, it is necessary to revisit the collision point table.

There are two values in the collision table used to look up and merge points. The offset to
merge table, when set, indicates the display list that contains the point being taken. The merge
point number states which point it is in the table. If the merge table pointer is NULL and the merge

point number is -1, then no merging occurs. The point is as given.

When an offset appears in the merge table pointer, then the point at the specified index is

connected physically to another part of the object. The offset will specify a display list command

in the Object Table. Jump to the offset in the file and retrieve the command.

Offset Type Data Offset Parent Offset Next Entry Previous Entry Child Offset
0x4F0 00180000 0500356C 050004D8 00000000 00000000 00000000

The 18 command shown at the offset is the display list that contains the point being copied.

The next step requires getting either the point table offset or the collision point table offset in the

display list at offset 0x356C. It is easier to retrieve positions from the point table than parsing the

collision points. Here is the display list data.

Offset Mapping Offsets Point Table Points / Collision Col. Table Usage Table
0x356C 050066F8 00000000 05003140 0026 0018 050033A0 05003520 0003 0000

The idea is to look up a particular point from this table, then copy the data over the original

position given in the example above in red. The point number being copied is the merge point
number highlighted above in purple. In this case, you want the point with ID 0x10. Point 0x10 will

be copied from the point table at 0x3140. Only the x, y, and z values are required; copying the s/t

values or RGBA can actually cause undesirable effects.

Offset Point ID X Position Y Position Z Position
0x3240 0x10 000E FFDF 0020

Merging Points pt.2: point translation

However, points usually can not be copied as is. In most cases, different parts are positioned

separately using the 02 position commands, as mentioned in the previous section. Usually every

point in an object model is translated using the object's own position information as outlined in the

point translation section above. However, the goal of merging points is to borrow a single point

from another part of the model, and this part could be – and probably is – positioned differently. To

correctly import a point, then, involves also determining its final location.

 To properly import points, first the effects of any position commands have to be accounted

for. To do this requires taking one more look at the object table command from before.

Offset Type Data Offset Parent Offset Next Entry Previous Entry Child Offset
0x4F0 00180000 0500356C 050004D8 00000000 00000000 00000000

This time the parent offset is necessary. By gathering a list of all the parent commands, any

position commands that influence the display list can be noted. This was outlined in the last

section on parsing the object table. A breakdown of these is shown below.

01:B8 {02:D0 {02:3B8 {02:448 {02:460 {0A:4C0 {08:4D8 {18:4F0}}}}}}}

There are four different position commands at work: 02:D0, 02:3B8, 02:448, and 02:460. Point

translation is done normally on the point, as outlined in the point translation section. For

convenience sake, the actual data is listed here

02:D0 02:3B8 02:448 02:460 Total Change

X modification +0. +1.23 +211.71 +218.11 +431.05

Y Modification +0. +62.04 +272.09 +66.79 +400.92

Z Modification +0. +0. +0. +8.44 +8.44

X PositionY Position Z Position
Original Hex 000E FFDF 0020

Original Decimal 14 -33 32
New Positions 445.05 367.92 40.44

These new positions are copied over the original X, Y, and Z values from the point in the

original example. Translation will become clearer in the final section, Example of Object Output,

when an entire point table is translated and an object displayed at its final position. For now, lets

focus on the last necessary part of point merging, replacing point data.

Merging Points pt. 3: point replacement

The final step, after translating the point, is to copy the point into the normal point table so the

part can be displayed properly. As stated before, merging points is best done when the point table

has been or is already being translated, and so this section assumes that every point has already

been translated to its final position, ready for rendering. For this reason, all the position data

shown below will be decimal values.

Now that the point has been translated, it is time to copy the point from the collision point table

into the final point table. The point at the given index number and any other points that share the

same location will be replaced with the new data. This has already been touched upon in the

section on point aliasing, but now it will be practically applied.

The first step is to refer to the point usage table to determine what points will be replaced.

Match the ID value for the collision point to the same entry in the point usage table. Below is a

table illustrating this; note the points given in the table have already been translated.

Usage Table Entry Corresponding Collision Point Table

0 0007 Entry 7 is identical to entry 0 692.85 410.18 -22. 0000 050004F0 0011 0000

1 FFFF No matching entries 445.05 367.92 40.44 0001 050004F0 0010 0000

... Points 3-16

17 FFFF No matching entries 788.85 451.18 62. 0004 00000000 FFFF 0000

Point #1 is highlighted in yellow above. The table shows no other points share the same

position, so only point 0001 will be replaced in the rendering point table. If other entries shared

the same position, those would be replaced as well.

Now, to replace the matching entry in the point table. Since other entries share the position,

only the ID given is changed, point ID #1. Below, highlighted in yellow and already translated to

their new positioned, are the original rendering point and the matching collision point.

Rendering Point Table, Translated Collision Point Table, Translated

0 692.85 410.18 -22. 0000 02B1 00DD BCBCBCFF 692.85 410.18 -22. 0000 050004F0 0011

1 691.85 434.18 21. 0000 0188 003B BCBCBCFF 445.05 367.92 40.44 0001 050004F0 0010

... Points 2-16

17 788.85 451.18 62. 0000 03B8 0416 F0F0F0FF

Copy and replace the original point table value with the new, converted point...

New Rendering Point Table, Translated

1 445.05 367.92 40.44 0000 0188 003B BCBCBCFF

Example of Object Output: CdjbondZ Right Hand

This isn't so much an example as a complete conversion of the right hand from Bond's dinner

jacket model. The point positions are translated from their current positions to their final ones, all

shared points merged, and the final model rendered. This example focuses on just one display list

command, found at offset 0x4A8.

Offset Type Data Offset Parent Offset Next Entry Previous Entry Child Offset
0x100 00180000 050030F0 05000490 00000000 00000000 00000000

First, before anything else can be done, all the position commands affecting the part have to be

determined. This is as simple as finding all the parent commands affecting the display list

command. Retrieve the parent offset from the display list, then that command's parent and so on

until the first command with no parent is found. This was described in the section on parsing the
object table. Listed below are all the commands that affect the display list.

01:B8 {02:D0 {02:3B8 {02:448 {02:460 {02:478 {0A:490 {18:4A8}}}}}}}}

As mentioned before, the value before the colon is the command type, and the value after the

colon is the offset to the command. Five of the commands are 02 position types. Read each of

these command's data pointers, then copy the position data found at that offset. A table of the

values, converted to their decimal equivalents, is listed below.

02:D0 02:3B8 02:448 02:460 02:478 Total Change

X modification +0. +1.23 +211.71 +218.11 +250.8 +681.85

Y Modification +0. +62.04 +272.09 +66.79 +0.26 +401.18

Z Modification +0. +0. +0. +8.44 +7.56 +16.0

The total change done to each point in the point table is equal to the sum of each of the position

commands affecting it. The total change is given in the blue column to the very right.

The next step involves looking at the 18 command's data. Jump to the offset given in the

command, 0x30F0. It contains the offsets to the point tables, usage table, and rendering

commands. Right now, you need the point table offset. There are 24 (0x18) points in the table

total.

Offset Mapping Offsets Point Table Points / Collision Col. Table Usage Table
0x356C 05006650 00000000 05002EA0 0018 000A 05003020 050030C0 0003 0000

 Now, every point in the rendering point table is moved to the final position using the total

change value. Simply add the change in x value to each point's x value, the change in y to the y

values, and change in z to z values. This sets each point to their final positions. Notice in this

table, only the x, y, & z values are shown, and each is converted to its decimal equivalent.

Org. X Org. Y Org. Z New X New Y New Z
0 11 9 -38 692.85 410.85 -22
1 10 33 5 691.85 434.18 21
2 96 23 -37 777.85 424.18 -21
3 9 23 35 690.85 424.18 51
4 107 50 46 788.85 451.18 62
5 96 23 -37 777.85 424.18 -21
6 119 -25 -53 800.85 376.18 -37
7 11 9 -38 692.85 410.85 -22
8 14 -27 -33 695.85 374.18 -17
9 14 -33 32 695.85 368.18 48
A 130 -29 51 811.85 372.18 67
B 9 23 35 690.85 424.18 51
C 107 50 46 788.85 451.18 62
D 14 -29 -2 695.85 372.18 14
E 14 -27 -33 695.85 374.18 -17
F 119 -25 -53 800.85 376.18 -37
10 130 -29 51 811.85 372.18 67
11 14 -33 32 695.85 368.18 48
12 14 -29 -2 695.85 372.18 14
13 119 -25 -53 800.85 376.18 -37
14 119 -25 -53 800.85 376.18 -37
15 96 23 -37 777.85 424.18 -21
16 130 -29 51 811.85 372.18 67
17 107 50 46 788.85 451.18 62

The columns on the right show the final, transcribed positions. When the model is rendered at

these locations, it will appear at the correct position relative to the rest of the body.

Now that all the rendering points are transcribed, points can be merged. To do this requires a

look at the collision point table. There are only 10 point entries in this table. Any of those with a

NULL merge offset can be ignored. Only those highlighted in yellow below are going to be used;

the rest are not merged positions. Each one will be done individually.

X Position Y Position Z Position Index Merge Offset Merge #

000B 0009 FFDA 0000 050004F0 0011 0000

000A 0021 0005 0001 050004F0 0010 0000

0060 0017 FFDB 0002 00000000 FFFF 0000

0009 0017 0023 0003 050004F0 000F 0000

006B 0032 002E 0004 00000000 FFFF 0000

0077 FFE7 FFCB 0006 00000000 FFFF 0000

000E FFE5 FFDF 0008 050004F0 000D 0000

000E FFDF 0020 0009 050004F0 000E 0000

0082 FFE3 0033 000A 00000000 FFFF 0000

000E FFE3 FFFE 000D 050004F0 000C 0000

Notice all of the selected merged points have the same merge offset. This is rather handy,

since they'll all draw from the same point table. Right now lets take the first entry with a merge

offset, the one with index 0000. You need point #11 from the table in 0x4F0. First, we'll extract

the point from the proper display list entry. Jump to the command at offset 0x4F0. This is the

same block the original point merging example referred to.

Offset Type Data Offset Parent Offset Next Entry Previous Entry Child Offset
0x4F0 00180000 0500356C 050004D8 00000000 00000000 00000000

Highlighted in blue is the offset to the display list data. In yellow is the parent offset, in order

to find all the position entries that affect the point. This will be done first. You could translate

every point table's entries before attempting to merge points, but in this example it is assumed only

the current block has been translated. As described before, retrieve a list of all the parent

commands, then filter out the ones that set part positions.

01:B8 {02:D0 {02:3B8 {02:448 {02:460 {0A:4C0 {08:4D8 {18:4F0}}}}}}}

There are four different position commands at work: 02:D0, 02:3B8, 02:448, and 02:460. Point

translation is done normally on the point, as outlined in the point translation section. For

convenience sake, the actual data is listed here

02:D0 02:3B8 02:448 02:460 Total Change

X modification +0. +1.23 +211.71 +218.11 +431.05

Y Modification +0. +62.04 +272.09 +66.79 +400.92

Z Modification +0. +0. +0. +8.44 +8.44

Once the point in question has been extracted, the values in the total change column are added

to the point, converting it to its final position. To extract the point, jump to the display list data

offset at 0x356C – the one highlighted in blue in the table above.

Offset Mapping Offsets Point Table Points / Collision Col. Table Usage Table
0x356C 05006650 00000000 05002EA0 0018 000A 05003020 050030C0 0003 0000

You need to get the 11th point from the point table. Every point in the table is 16 (0x10) bytes

long, so the address of the point you need is at 0x110 + 0x2EA0, or 0x2FB0. Retrieve the x, y,

and z values of this point...

000E FFDF 0020

-and add the total position modifier from the total change column for this part.

X PositionY Position Z Position
Original Hex 000E FFDF 0020

Original Decimal 14 -33 32
New Positions 445.05 367.92 40.44

The new position will replace the x, y, and z of any points set to the original location. In order

to do replacement, we need to look at the point usage table for the original point. Any entries that

share the same point as index 0 will also be moved. The point usage table is at 0x30C0. Each

entry is two bytes, so each entry can be looked up by its ID.

2*ID + 0x30C0 = offset to matching entry

Both points 0 and 7 in the original point table will be replaced with the new values. Now, a

quick look at the point table so far. Each entries coordinates have been translated to the new

position. Entries 0 and 7, highlighted in purple, have both been replaced with their new, merged

positions.

New X New Y New Z - S img T img RGBA
0 445.05 367.92 40.44 0000 02B1 00DD BCBCBCFF
1 691.85 434.18 21 0000 0188 003B BCBCBCFF
2 777.85 424.18 -21 0000 0287 032C F0F0F0FF
3 690.85 424.18 51 0000 00BD FFCD D4D4D4FF
4 788.85 451.18 62 0000 0047 0252 F0F0F0FF
5 777.85 424.18 -21 0000 00A1 0231 F0F0F0FF
6 800.85 376.18 -37 0000 0325 03A9 F0F0F0FF
7 445.05 367.92 40.44 0000 015D FFE9 BCBCBCFF
8 695.85 374.18 -17 0000 0336 0094 D4D4D4FF
9 695.85 368.18 48 0000 02A3 038B D4D4D4FF
A 811.85 372.18 67 0000 03D1 0028 F0F0F0FF
B 690.85 424.18 51 0000 0026 0340 D4D4D4FF
C 788.85 451.18 62 0000 000D 003D F0F0F0FF
D 695.85 372.18 14 0000 026D 0018 D4D4D4FF
E 695.85 374.18 -17 0000 0143 002B D4D4D4FF
F 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
10 811.85 372.18 67 0000 03DA 028F F0F0F0FF
11 695.85 368.18 48 0000 03AF 0002 D4D4D4FF
12 695.85 372.18 14 0000 026D 0018 D4D4D4FF
13 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
14 800.85 376.18 -37 0000 FFE9 021E F0F0F0FF
15 777.85 424.18 -21 0000 00A5 0348 F0F0F0FF
16 811.85 372.18 67 0000 03B1 023E F0F0F0FF
17 788.85 451.18 62 0000 03B8 0416 F0F0F0FF

The next point to do is index 0001, calling for point #10 from the table in 0x4F0. This is the

same table as before, so it isn't necessary to recompute the position modifiers and get the offsets –

it has already been done before. Read the x, y, and z values from the 10th point in 0x2EA0: 0x100

+ 0x2EA0, or 0x2FA0. After retrieving the point, apply the position modifier.

X PositionY Position Z Position
Original Hex 0082 FFE3 0033

Original Decimal 130 -29 51
Modifier +431.05 +400.92 +8.44

New Positions 561.05 371.92 59.44

Now, to check the point usage table. Again, the table is found at 0x30C0. This time, index

0001 is going to be checked. You can determine the address by multiplying the index by 2 and

adding it to the table offset.

0x30C2 FFFF

No other points share this position, so only point #1 will be replaced. The newly changed value

is highlighted in purple in the table below, and those changed previously in blue. Again, the point

list as it stands now. Only four more points to go...

New X New Y New Z - S img T img RGBA
0 445.05 367.92 40.44 0000 02B1 00DD BCBCBCFF
1 561.05 371.92 59.44 0000 0188 003B BCBCBCFF
2 777.85 424.18 -21 0000 0287 032C F0F0F0FF
3 690.85 424.18 51 0000 00BD FFCD D4D4D4FF
4 788.85 451.18 62 0000 0047 0252 F0F0F0FF
5 777.85 424.18 -21 0000 00A1 0231 F0F0F0FF
6 800.85 376.18 -37 0000 0325 03A9 F0F0F0FF
7 445.05 367.92 40.44 0000 015D FFE9 BCBCBCFF
8 695.85 374.18 -17 0000 0336 0094 D4D4D4FF
9 695.85 368.18 48 0000 02A3 038B D4D4D4FF
A 811.85 372.18 67 0000 03D1 0028 F0F0F0FF
B 690.85 424.18 51 0000 0026 0340 D4D4D4FF
C 788.85 451.18 62 0000 000D 003D F0F0F0FF
D 695.85 372.18 14 0000 026D 0018 D4D4D4FF
E 695.85 374.18 -17 0000 0143 002B D4D4D4FF
F 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
10 811.85 372.18 67 0000 03DA 028F F0F0F0FF
11 695.85 368.18 48 0000 03AF 0002 D4D4D4FF
12 695.85 372.18 14 0000 026D 0018 D4D4D4FF
13 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
14 800.85 376.18 -37 0000 FFE9 021E F0F0F0FF
15 777.85 424.18 -21 0000 00A5 0348 F0F0F0FF
16 811.85 372.18 67 0000 03B1 023E F0F0F0FF
17 788.85 451.18 62 0000 03B8 0416 F0F0F0FF

The next entry being merged is index 0003, requesting point 0xF from display list command

0x4F0. Do this point just like the last two, computing position and retrieving the point from the

point table. Since the position is the same as the last two, compute the offset to the point. 0xF0 +

0x2EA0 = 0x2F90. The point data is shown below, and the position modification is applied.

X PositionY Position Z Position
Original Hex 0077 FFE7 FFCB

Original Decimal 119 -25 -53
Modifier +431.05 +400.92 +8.44

New Positions 550.05 375.92 -44.56

Now, to check the point usage table again. You want entry 3, which is found at 2*3 + 0x30C0

= 0x30C6.

Now, replace both entries 3 and B in the point table with the new entries. The current list is

below, and again, the new entries are in purple and other replaced entries in blue.
New X New Y New Z - S img T img RGBA
0 445.05 367.92 40.44 0000 02B1 00DD BCBCBCFF
1 561.05 371.92 59.44 0000 0188 003B BCBCBCFF
2 777.85 424.18 -21 0000 0287 032C F0F0F0FF
3 550.05 375.92 -44.56 0000 00BD FFCD D4D4D4FF
4 788.85 451.18 62 0000 0047 0252 F0F0F0FF
5 777.85 424.18 -21 0000 00A1 0231 F0F0F0FF
6 800.85 376.18 -37 0000 0325 03A9 F0F0F0FF
7 445.05 367.92 40.44 0000 015D FFE9 BCBCBCFF
8 695.85 374.18 -17 0000 0336 0094 D4D4D4FF
9 695.85 368.18 48 0000 02A3 038B D4D4D4FF
A 811.85 372.18 67 0000 03D1 0028 F0F0F0FF
B 550.05 375.92 -44.56 0000 0026 0340 D4D4D4FF
C 788.85 451.18 62 0000 000D 003D F0F0F0FF
D 695.85 372.18 14 0000 026D 0018 D4D4D4FF
E 695.85 374.18 -17 0000 0143 002B D4D4D4FF
F 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
10 811.85 372.18 67 0000 03DA 028F F0F0F0FF
11 695.85 368.18 48 0000 03AF 0002 D4D4D4FF
12 695.85 372.18 14 0000 026D 0018 D4D4D4FF
13 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
14 800.85 376.18 -37 0000 FFE9 021E F0F0F0FF
15 777.85 424.18 -21 0000 00A5 0348 F0F0F0FF
16 811.85 372.18 67 0000 03B1 023E F0F0F0FF
17 788.85 451.18 62 0000 03B8 0416 F0F0F0FF

The next point being merged is index 0008, retrieving point 0xD from the command 0x4F0.

Again, since the same table is being used, the position and offsets are the same as before.

Calculate the offset to the data, copy it, then apply the position change. The point is found at 0xD0

+ 0x2EA0 = 0x2F70.

X PositionY Position Z Position
Original Hex 000E FFE3 FFFE

Original Decimal 14 -29 -2
Modifier +431.05 +400.92 +8.44

New Positions 445.05 371.92 6.44

Now, check the point usage table to see if any other points in the table share the same location.

Now simply replace both points 8 and E with the new position computed above. The new table

is listed below with the new points highlighted in purple.
New X New Y New Z - S img T img RGBA
0 445.05 367.92 40.44 0000 02B1 00DD BCBCBCFF
1 561.05 371.92 59.44 0000 0188 003B BCBCBCFF
2 777.85 424.18 -21 0000 0287 032C F0F0F0FF
3 550.05 375.92 -44.56 0000 00BD FFCD D4D4D4FF
4 788.85 451.18 62 0000 0047 0252 F0F0F0FF
5 777.85 424.18 -21 0000 00A1 0231 F0F0F0FF
6 800.85 376.18 -37 0000 0325 03A9 F0F0F0FF
7 445.05 367.92 40.44 0000 015D FFE9 BCBCBCFF
8 445.85 371.92 6.44 0000 0336 0094 D4D4D4FF
9 695.85 368.18 48 0000 02A3 038B D4D4D4FF
A 811.85 372.18 67 0000 03D1 0028 F0F0F0FF
B 550.05 375.92 -44.56 0000 0026 0340 D4D4D4FF
C 788.85 451.18 62 0000 000D 003D F0F0F0FF
D 695.85 372.18 14 0000 026D 0018 D4D4D4FF
E 445.85 371.92 6.44 0000 0143 002B D4D4D4FF
F 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
10 811.85 372.18 67 0000 03DA 028F F0F0F0FF
11 695.85 368.18 48 0000 03AF 0002 D4D4D4FF
12 695.85 372.18 14 0000 026D 0018 D4D4D4FF
13 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
14 800.85 376.18 -37 0000 FFE9 021E F0F0F0FF
15 777.85 424.18 -21 0000 00A5 0348 F0F0F0FF
16 811.85 372.18 67 0000 03B1 023E F0F0F0FF
17 788.85 451.18 62 0000 03B8 0416 F0F0F0FF

Only two points remain. The first is index 9, drawing point 0xE from the 0x4F0 command.

Compute the offset to the point, copy it, and apply the position modifier. The point is located at

0xE0 + 0x2EA0, or 0x2F80. The data is shown in the table below.

X PositionY Position Z Position
Original Hex 000E FFE5 FFDF

Original Decimal 14 -27 -33
Modifier +431.05 +400.92 +8.44

New Positions 445.05 373.92 -24.56

Now check entry 9 in the point usage table. The offset is 2*9 + 0x30C0, or 0x30D2.

Before showing the updated table the final merged point will be handled. This uses index 000D

and calls for point C from the 0x4F0 display list. Again, since this is the same binary as the rest of

the points, all the same positions and offsets are in effect. Draw the point from the calculated

offset: 0xC0 + 0x2EA0 = 0x2F60

X PositionY Position Z Position
Original Hex 006B 0032 002E

Original Decimal 107 50 46
Modifier +431.05 +400.92 +8.44

New Positions 538.05 450.92 54.44

Look up entry D in the point usage table. Replace all the points that share this new position.

Now, just replace the points in the rendering table with the new ones. Below is the final point
table. You are now ready to render the object, and with the updated point data this part will render
at exactly the correct position relative to the rest of the model.

In conclusion, point merging is slightly complicated but by no means difficult. You apply the

same technique to every part of the model. Scan though the point usage table for a merge pointer.

Use that pointer to retrieve a list of its parent commands to determine the position mod to apply to

the point. Use its data offset to retrieve the correct merge point number, then copy the result to

every identical location in the original part.

-Zoinkity

New X New Y New Z - S img T img RGBA
0 445.05 367.92 40.44 0000 02B1 00DD BCBCBCFF
1 561.05 371.92 59.44 0000 0188 003B BCBCBCFF
2 777.85 424.18 -21 0000 0287 032C F0F0F0FF
3 550.05 375.92 -44.56 0000 00BD FFCD D4D4D4FF
4 788.85 451.18 62 0000 0047 0252 F0F0F0FF
5 777.85 424.18 -21 0000 00A1 0231 F0F0F0FF
6 800.85 376.18 -37 0000 0325 03A9 F0F0F0FF
7 445.05 367.92 40.44 0000 015D FFE9 BCBCBCFF
8 445.85 371.92 6.44 0000 0336 0094 D4D4D4FF
9 445.05 373.92 -24.56 0000 02A3 038B D4D4D4FF
A 811.85 372.18 67 0000 03D1 0028 F0F0F0FF
B 550.05 375.92 -44.56 0000 0026 0340 D4D4D4FF
C 788.85 451.18 62 0000 000D 003D F0F0F0FF
D 538.05 450.92 54.44 0000 026D 0018 D4D4D4FF
E 445.85 371.92 6.44 0000 0143 002B D4D4D4FF
F 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
10 811.85 372.18 67 0000 03DA 028F F0F0F0FF
11 445.05 373.92 -24.56 0000 03AF 0002 D4D4D4FF
12 538.05 450.92 54.44 0000 026D 0018 D4D4D4FF
13 800.85 376.18 -37 0000 FFFF 028E F0F0F0FF
14 800.85 376.18 -37 0000 FFE9 021E F0F0F0FF
15 777.85 424.18 -21 0000 00A5 0348 F0F0F0FF
16 811.85 372.18 67 0000 03B1 023E F0F0F0FF
17 788.85 451.18 62 0000 03B8 0416 F0F0F0FF

