MARQUEE
The new MARQUEE tag enables you to create a scrolling text marquee. Here is an example of one:
<MARQUEE BGCOLOR=#FFFFBB DIRECTION=RIGHT BEHAVIOR=SCROLL SCROLLAMOUNT=10 SCROLLDELAY=200>This is a scrolling marquee.</MARQUEE>
Adding a mailto Link

Have you ever clicked someone’s e-mail address at the bottom of a page and had a mail window open? This is done with a mailto link. If you do use a mailto link, you should also give your e-mail address so people with nasty old browsers, or the stand-alone version of Navigator, can still send you e-mail. Here’s how it works:

Contact me atinfo@yourdomain.org.

Where info@yourdomain.org is your e-mail address.

Adding a to a java Script function
You can also keep a link to a java script function as shown below
<HTML>

<HEAD>

<TITLE></TITLE>

<SCRIPT language="javascript"><!--

function BgcolorChange()

{

 window.document.bgColor=”#dedede”;

 window.alert(“bgcolor changed”);

}

//--></SCRIPT>

</HEAD>

<BODY BGCOLOR="#BBDDCC">

Click here to change this document's background color.

</BODY>

</HTML>

Form

Forma are the element for collecting information from your site visiotor.

How does it works:

1. You place a data entry field on you page this can be

 Radio button,Text Fiels,Check Box,TextArea and other Elements

2. User fills the form and submit it.

3. The information is sent over the internet to your server

4. Your server takes action on the data

5. Conformation is provided to the visitor.

Types of method used to submit a form.

How the form input is sent to the server depends on the METHOD and ENCTYPE attributes.Form inputs can be sent by any of the two methods. Post and get
1. Get: When you use get method yu send data as a part of the URL.You are limited to 100 character.In get method ,the data captured in the form elements are appended to the URL.i.e When the METHOD is get (the default), the form input is submitted as an HTTP GET request with ?form_data appended to the URI specified in the ACTION attribute. Using the get method allows the form submission to be contained completely in a URL. This can be advantageous in that it permits bookmarking in current browsers, but it also prevents form data from containing non-ASCII characters such as "é" and "©". As well, the amount of form data that can be handled by the get method is limited by the maximum length of the URL that the server and browser can process. To be safe, any form whose input might contain non-ASCII characters or more than 100 characters should use METHOD=post.Post method is used when small (data that need not to be secure) data is being sent back to web server.
[image: image1.png]
2. Post: With the “post” method, no limits exist on the number of characters you can send.Also, the values of all the input fields aren’t displayed on the browser’s location line, the way they are with the “get” method. Generally speaking, “post” is the preferred method of sending form data to a script..With post method data is send as a separate bit of stream.
Action:
When the user submits the form, through an INPUT or BUTTON element with TYPE=submit, the form values are submitted to the URL given in FORM's required ACTION attribute. ACTION usually points to a CGI script or Java servlet that handles the form submission.Ideally your action wil be the URL of the file containing a script that does something with the data or the URL containing server side scripting.
With your e-mail address as the action of the script, mailto: sends the field names (as set by you in the name attributes) and their values to you via e-mail. The problem with this technique is, while you have the data, you don’t have the data in any particularly useful form. All that is returned to you is a list with each line containing a field name and the value entered for that field.

last_name = Miller

first_name = John

email = miller@somewhere.org

color = blue

flavor = Mint Chip

music = Meatloaf
A Quick Introduction to Graphics File Formats in web

Image files come in many formats. Fortunately, the Web only supports three formats: JPEG (Joint Photographic Experts Group), GIF (Graphics Interface Format, pronounced jiff by the inventor of the format, and gif, as in gift, by everyone else), and PNG (Portable Network Graphic). Initially, the Web only supported GIF images for inline viewing and JPEG images for out-ofline viewing. Today, you can use all three formats in the middle

of your page. The Web uses these three types of graphics files because each format supports some type of compression.

JPEG

JPEG compresses your image by removing redundant data. It maintains the complete color spectrum of your image. If you have a photo of yourself in front of a tree or a beautiful sunset, JPEG is a good compression choice. In the tree photo, the slightly inaccurate re-creation of the leaf pattern is of little consequence. Because JPEG preserves all the colors, your tree and sunset are as lovely as the original when compressed

with JPEG.
GIF

GIF compresses your image by removing colors down to the 256-color palate. As a result, your GIF photo of a sunset probably has stripes (where one color ends and the next closest color begins), and your tree is also less vibrant. If you have an architectural drawing in which the straightness of the lines matters more than the background shade of sepia, then GIF is the proper format. Because this format handles line art skillfully, use GIFs to save text images.

PNG

PNG is the newest graphi cs file format supported on the Web. By using an exclusively designed algorithm, PNG provides the best overall quality. Only the newest browsers support PNG, however. If visitors view your page without the latest browser, they receive the broken-image graphic—unless you provide an alternate image.

Tips on Using Images Effectively

Good Web designers often debate when and how to use images. The two major issues with regards to images on your page are download time and visual clutter. No hard and fast rules about using images exist, but the following guidelines help:
1. Use the lowest color depth appropriate for your application.
In simple terms, don’t save your blackand-white image in 16.7 million colors. If your image uses only primary colors, save it with the least color-palette baggage to reduce download time tremendously.

2. Use the smallest image appropriate.
What are you trying to communicatewith the image? You need to have a certain level of detail in your image to make your point, but try to keep images small. Crop them tightly and leave the white space on the page using padding in the style sheet.

3. Use text instead of a text image, if at all possible.
If the your font is widely available (meaning it comes installed with Windows 95/98/NT with a reasonable facsimile available on the Mac), then use text; if not, use an image of text.
4. Keep images in the context of your page.
Make sure all your images contribute to the message of your page. Don’t add images just because you like them. Avoid visual clutter by prioritizing the message of your page.
Multimedia

A growing number of inline and external multimedia formats work on the Web. Some People like to add background music to their site .Some multimedia files play in your browser without any special plug-ins, while others require plug-ins. Multimedia files can include video, sound, animation, VRML (Virtual Reality Modeling Language), QuickTime VR, and a number of other formats. As the page designer, remember that visitors to your site may need special software to load your page properly. You should include links to any plug-ins required for your page. Some of the more common multimedia file formats follow:

Extension Description

.mov

movie

.wav

sound

.qtvr

QuickTime VR

.wrl

Worlds 3D VRML

.midi

sound

.dcr

Shockwave

.pdf

portable document format (Adobe)

1. The <bgsound >tag

The Internet Explorer allows execution of a background sound through the BGSOUND tag. The sound file specified by the tag is immediately loaded and executed when the page is accessed. You should be listening to the africa.mid file while you read this page in the case of using Internet Explorer 3.0. To interrupt the sound press the ESC key or change the page.
<html><head></head>

<bgsound src="africa.mid">

<body bgcolor="#FFFFFF">

This is a test sound</body></html>

2. The META tag may be used to trigger the execution of a music after the user has been on the page for a certain time. In this example, a music will be executed after five seconds of page display.
<html>

<head>

<META HTTP-EQUIV="REFRESH" CONTENT =" 5; URL=macarena.mid">

</head>

<body bgcolor="#FFFFFF">

this is a test</body></html>

3. The simplest way to link a audio/ video clip is
You can create a link to a video file. Clicking on the icon, a window of the accessory program in charge of executing the video will be opened.
Click her to play the clip
4. Adding Inline Multimedia with the OBJECT Element
With more formats and each requiring different information, adding multimedia is

trickier than adding an image. Add multimedia to your page using the OBJECT element.

Currently, most images are inserted into your page using the IMG element, but even images will eventually be inserted using the OBJECT element.

Object <OBJECT>

Start Tag: Required

Content: Alternate text

Other OBJECT elements

One or more PARAM elements, description of what should appear

End Tag: Required

Attributes: id, class, lang, dir, events

declare: Boolean flag indicating the object is declared but should not be instantiated; if you use this attribute, you’ll have to instantiate the object later with another OBJECT

element

classid: URL of object’s implementation; may be used either in conjunction with or instead of the data attribute, depending on the object

codebase: URL of base point for resolving relative references related to this object (specifically from the classid, data, and archive attributes)

codetype: content type of object specified in classid attribute in MIME format; saves time for a visitor downloading a content type that his or her browser can’t render

data: URL of the object’s data

type: MIME type of data specified in the data attribute; saves time for a visitor downloading a content type that his or her browser can’t render

standby: a message that the browser may show while loading the object

title: title of this element

style: define style here to override style sheet

height: height of object; use if overriding the actual image height

width: width of object; use if overriding the actual image width

align ,

hspace,
vspace, etc.
The OBJECT element can be very confusing. Fortunately, you will probably never

need to use all attributes at the same time.
 Example:
<object data="bishow.mov" type="video/quicktime" width=100 height=100 hspace=20 vspace=30>my movie</object>

<object data="test.au" type="audio/basic" width=100 height=100 hspace=20 vspace=30>my movie</object>

5. Adding Inline Multimedia with the EMBED Element
You can use <EMBED> with any type of audio, video, or interactive multimedia files as long as your audience has the correct player software installed.

Example

<embed src="song.mid" height="56" width="144" Loop="1" Autostart="TRUE">

You can change "song.mid" to the filename of your song. You could use “xyz.mp3" or "myvoice.wav". "Loop" is the number of times the song will play. "Autostart" makes the song start playing automatically. The "height" and "width" can be adjusted to any size.

You will probably need some sort of plugin for it to work.
Example 2

<embed src="film.mpg" height="56" width="144" Loop="1" Autostart="TRUE"
 volume=50 hidden=”true” loop=”-1” controller=”false”>
. "Controller" makes the controller to hide or show
 “hidden” makes the corresponding player in your browser to hide or to show.
Similarly you can embed a swf file
<embed width=600 HEIGHT=18 src="aboutus.swf" loop="true"

 </embed>

DHTML(Dynamic HTML)

Traditional HTML are static.The HTML tag in a web page are interpreted by the browser as the page load. he page is displayed and all the processing stops until the browser sends a new request to the web server .The only Action allowed the user is to click a hyperlink ,which tell the browser to load a new web page ,interpret and display it.
Dynamic html is nothing but a page even after the server is finished delivering the page to the browser. In DHTML, dynamic means that the page is subject to change at any time. More specifically, this change does not require any interaction with a server—everything happens on the client side (the browser), so it’s quick and doesn’t depend on a fast connection or an optimized server.

DHTML lets the web page react to the user without relying on the server depending on an embedded program. DHTML allow the creation of interactive Web Pages.

Assume for a moment that one of the elements on the page is a text field inside a form. The user is supposed to enter some text in the text field and then click the Submit button to send that information back to the Web server. If that information must be an Internet e-mail address, how do you ensure the user included the “@” symbol in the address? One way is to have a Common Gateway Interface (CGI) program on the server scan the submitted form data after the user has clicked the Submit button and the form information has been transferred to the server. If the user omitted or forgot the “@” symbol, the CGI program resends the page, but this time with an instruction to include the symbol in the address. Nothing is wrong with this exchange, but it means a significant delay for the user to find out that the address does not contain the crucial symbol. Moreover, the Web server has had to expend some of its resources to perform the validation and communicate back to the visitor. If the Web site is a busy one, the server may be trying to perform hundreds of these validations at any given moment, probably slowing the response time to the user even more.
Now imagine if the document containing that text field had some intelligence built into it that could make sure the text field entry contains the “@” symbol before ever sending one bit (literally!) of data to the server. That kind of intelligence would have to be embedded in the document in some fashion downloaded with the page’s content so it can stand ready to jump into action when called upon. The browser must know how to run that embedded program. Some user action must start the program, perhaps when the user clicks the Submit button. As the program runs, if it detects a lack of the “@” symbol, an alert message should appear to bring the problem to the user’s attention; the same program should also be able to decide if the actual submission can proceed, or if it should wait until a valid e-mail address is entered into the field.
Using DHTML You can
1. Redraw a page without reloading

2. Move images and text around the page without using a movie or animation

3. Create dynamic forms that automatically ask the next question based on theanswers to the previous questions

4. Create a dynamic table of contents

5. Show and hide levels of detail based on visitor actions without reloading the page

6. Change the color of text or an image as the cursor moves over it etc.

In DHTML, the instructions for all of these features become a part of your Web page. All of the instructions are executed without the page being reloaded from a server.

 You can make your page dynamic through a combination of several DHTML component that works in conjunction with HTML .This compounds are namely.
1. DOM:

Views HTML Document as a Collection of Object
2. Scripting Language:

Controls and Monito different element/Object on the web pages

3. Style Sheet:

Style sheet instruct the appearance and placement of text and other Object on the Web Page.

DOM:

Document Object Model (DOM) ia a way of viewing HTML Document as a collection of Objects.i.e breaking of document into different Object.

A simple HTML Document has thee section

1. Version information

2. Header

3. Body
But DOM Present the HTML Page and Browser as a large collection of Object.So you can access any portion of the page that you want by discarding into the object and retrieving the portion that you want. You can access DOM with scripting language like JavaScript or VBScript. The DOM makes all of this possible by creating a structured way to access elements in a document in an orderly fashion. It relates each element to its neighbors through the use of parent-child-sibling relationships. The DOM is not a new set of tags or attributes to learn, because the DOM’s job is to work within existing document formats, including HTML and XML.

The DOM standard is maintained by the World Wide Web Consortium, or W3C (www. w3c.org), which works hard to create universal recommendations that aren’t application- or vendor-specific . The DOM as described by the W3C is language- and browser- independent.

The DOM Object Hierarchy

 Window

Document
Image

Frame

link
Location
Form

Text

History
applet

File

Event

embed

password

Screens
tylesheet
hidden

Navigator
plugins
submit

Frame

reset

Script

radio

Body

checkbox

Layer

Button

anchor
Select
option
all

selection

filter

JavaScript
The term scripting is also used because a language will react to, control, or "script" a series of events.The purpose of most scripting languages is to extend the capabilities of applications. Like other scripting languages that extend the capabilities of the application with which they work, JavaScript extends the standard Web page beyond its normal use. JavaScript is a lightweight object-based scripting language created by Netscape Communications Corporation for developing Internet applications.Java Script is a purly an interpreted language CASE Sensitive Language..

When to use JavaScript
The preceding examples demonstrate a wide range of applications for JavaScript, but by no means do they come close to exhausting JavaScript’s possibilities. When faced with a Web application task, I look to client-side
JavaScript for help with the following requirements:

Data entry validation: If form fields need to be filled out for processing on the server, I let client-side scripts prequalify the data entered by the user.

Server-less CGIs: I use this term to describe processes that, were it not for JavaScript, would be programmed as CGIs on the server, yielding slow performance because of the interactivity required between the program and user. This includes tasks such as small data collection lookup, modification of images, and generation of HTML in other frames and windows based on user input.

Dynamic HTML interactivity: It’s one thing to use DHTML’s abilities to precisely position elements on the page — you don’t need scripting for that. But if you intend to make the content dance on the page, scripting makes that happen.

CGI prototyping: Sometimes you may want a CGI program to be at the root of your application because it reduces the potential incompatibilities among browser brands and versions. It may be easier to create a prototype of the CGI in client-side JavaScript. Use the opportunity to polish the user interface before implementing the application as a CGI.

Offloading a busy server: If you have a highly trafficked Web site, it may be beneficial to convert frequently used CGI processes to client-side JavaScript scripts. Once a page is downloaded, the server is freed to serve other visitors. Not only does this lighten server load, but users experience quicker response to the application embedded in the page.

Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a blinking chunk of text doesn’t help much; animated GIF images more often distract from than contribute to the user experience at your site. But if you can dream up ways to add some interactive zip to your page, it may engage the user and encourage a recommendation to friends or repeat visits.

Creating “Web pages that think”: If you let your imagination soar, you may develop new, intriguing ways to make your pages appear to be smart.

Writing a Java Script

<html>

<head><title>my page</title>

<script language=”javascript”>

……..

……….

……….

</script>

</head>

<body>

<script language=”javascript” src=”xyz.js”>

</script>

….

….

….

<script language=”javascript”>

document.write(“this is a test”);

</script>

</body></html>
Here language attribute specifies scripting language used is javascript.Java script uses semicolons (;) to the end of the statement.. You can even import an external java script file as shown in above example.
Variable Naming
You can define a variable using ‘var ‘ Keyword and the name of the variable.
var x=20;

The name a variable follow the following rules.

1. The variable name cannot be a reserverd keywords.

2. The first character in the name must be an alphabetic letter or an underscore.

3. Character subsequent to the first character in the variable name can be alphabetic letter, number or underscores.

eg var _location

var result.

Data Types.
Data is any type of information with which we are working Java Script has four fundamental data types. String ,Boolean ,number, object
String: Java script does not have explicit data types..String is any grouping of character that is surrounded by either double quotation(“)marks or single Quotation mark. Eg var x=”test”;
Number: Java Script treats all number the same.They are just number whether they are integer of floating numbers. Eg var y=20;
Boolean: Boolean value has only two possible values- True or False. Var x=true;
Object: Java Script is based on object oriented programming.One topics of oop is Encapsulation .Encapsulation is simply the process of wrapping function and variable into different package which are called as object.The variable are called as the properties of the objects and the functions are called methods..In java Script there are many buit in objects, which have method and properties. Eg var d= new Date();

Array

 Array are a type of object. A must be declared before it is used. It may be declared using either of the following three statement
var arrayname=new Array(); /create a dynamic array
var arryname=new Array(arrayLength) /creat a arry of size arrayLength
var arrayname1=new Array(“suman”,23,false); //This statement would create three elements array with values “suman”, 23,false

You can find out the length of an array using length property. i.e arrayname.length

JavaScript’s Object-Based Programming Feature
Javascript is not a fully object-oriented programming language. It does not support the basic object-oriented programming capabilities of classification, inheritance, encapsulation, and information hiding. JavaScript is referred to as object-based language. It supports the development of object types and the instantiation of these types to create object instances.

JavaScript supports a simple object model that is supported by a number of predefined objects. The JavaScript Object Model centers around the specification of object types that are used to create specific object instances. Object types under this model are defined in terms of properties and methods:

· Properties are used to access the data values contained in an object. Properties, by default, can be updated as well as read, although some properties of the predefined JavaScript objects are read-only.

· Methods are functions that are used to perform operations on an object. Methods may use the object’s properties to perform these operations.

Using Properties:

An object’s properties are accessed by combining the object’s name and its property name as follows:

objectName.propertyName

For example, the background color of the current Web document is identified by the bgColor property of the predefined document object. If you wanted to change the background color to white, you could use the following JavaScript statement:

document.bgColor = “white”

Using Methods:

An object’s methods are accessed in the same manner as its properties:

objectName.methodName(parameterList)

The parameters, if any, are separated by commas. The parentheses must be used even if no parameters are specified. An example of a method invocation is

r = Math.random()

The random() method of the predefined Math object is invoked. This method returns a random floating point number between 0 and 1. The number is then assigned to the r variable.

Creating Instances of Objects

Instances of objects of a particular object type are created using the new operator.

variable = new objectType(parameters)

The objectType(parameters) portion of the above statement is referred to as the constructor. Some object types have more than one constructor. Constructors differ in the number of parameters that they allow.

For example, Date is a predefined JavaScript object type. To create an instance of Date with the current date and time and assign it to the currentDate variable, you would use the following statement:

currentDate
= new Date ();

In the above statement, the Date() constructor does not take any parameters. The Date object type also allows object instances to be created for a specified date. For example the following statement creates an instance of Date for January 1, 1999:

currentDate
= new Date(99,1,1)

The constructor used in the above statement, Date(99,1,1) takes three parameters. The Date object type provides other constructors in addition to the ones described above.

Browser Objects:

When a web page is loaded by a JavaScript-capable browser, the browser creates a number of JavaScript objects that provide access to the web page and the HTML elements it contains. These objects are used to update and interact with the loaded Web page. Table below identifies these objects and summarizes their use.

	Object
	Use

	window object
	To access a browser window or a frame within a window. The window object is assumed to exist and does not require the “window” , prefix when referring to its properties and methods

	document object
	To access the document that is currently loaded into a window. A document object refers to an HTML document that provides content, that is, one that has HEAD and BODY tags.

	location object
	To represent a URL. It can be used to create a URL object, access parts of a URL, or modify an existing URL.

	history object
	To maintain a history of the URLs accessed within a window.

	frame object

frames array
	To access an HTML frame. The frames array is used to access all frames within a window.

	link object

links array
	To access a text-based or image-based source anchor of a hypertext link. The links array is used to access all link objects within a document. IE combines the link object with the anchor object.

	anchor object

anchors array
	To access the target of a hypertext link. The anchors array is used to access all anchor objects within a document

	image object

images array
	To access an image that is embedded in an HTML document. The images array is used to access all image objects within a document.

	area object
	To access an area with a client-side image mapping.

	applet object

applets array
	To access a Java applet. The applets array is used to access all applets within a document.

	form object

forms array
	To access an HTML form. The forms array is used to access all forms within a document.

	elements object
	To access all form elements contained within a form.

	navigator object
	To access information about the browser that is executing a script.

	screen object
	To access information about the size and color depth of a user’s screen.

	embed object

embeds array
	To access an embedded object. The embeds array is used to access all embedded objects within a document.

	plugin object

plugins array
	To access information about a particular browser plug-in. The plugins array is an array of all plug-ins supported by a browser. Internet Explorer provides tacit support for plugins, returning an empty array.

The Browser Object Hierarchy

Your browser creates the objects presented in the table above, as the results of web pages that you design. For example, if you create a web page with three forms, then the forms array will contains three form objects corresponding to the forms that you have defined. Similarly, if you define a document with seven links, then the links array will contain seven link objects that correspond to your links.

The browser objects are organized into a hierarchy that corresponds to the structure of loaded web documents and the current state of the browser. This hierarchy is referred to as an instance hierarchy. The window and navigator objects are the highest-level objects in this hierarchy.

Hierarchical Object Identifiers

Because your browser organizes the various objects of a web page according to the instance hierarchy, a hierarchical naming scheme is used to identify these objects. For example, suppose an HTML document defines three forms, and the second form has seven elements. Also suppose the fifth element of the second form is a radio button. You can access the name of this radio button using the following identifier:

document.forms[1].element[4].name

The above identifier refers to the name of the fifth element of the second form of the current document.

In most cases, you can refer to a property or method of a browser-created object by starting with document and using the property names of the objects that contain the object (such as links, anchors, images, and forms) to identify the object within the instance hierarchy. When you have named the object in this fashion you can then use the object’s property or method name to access the data and functions defined for that object.

The window object:

The window object is basic to all browser scripts. Like the navigator object, the window object is a top-level object that is automatically defined by your browser. A separate window object is defined for each window that is opened.

The window object is so important to writing browser scripts that the current window object is assumed by default in many cases and may be omitted. For example, when you use the statement:

document.write(“A sample text to write in current window”);

in a script, JavaScript assumes that you are referring to the current window object and executes the following statement:

window.document.write(“A sample text to write in current window”);

In addition, the window object has several synonyms that let you refer the current window object being displayed by your browser, as well as to other related window objects. These synonyms are implemented as properties of the window object, which will be discussed later.

Tables below summarize the properties and methods of the window object that both Navigator and Internet Explorer support.

Properties of the window object

	Property
	Description

	Closed
	Identifies whether the window is closed.

	defaultStatus
	Specifies the default status message that appears on the status bar on the bottom of the browser window.

	document
	An object that refers to the current document being displayed in a window.

	frames
	An array that consists of all frame objects contained in a window object.

	history
	Refers to the window’s history object, which contains a list of URLs last loaded into the window.

	length
	Identifies the number of frames contained in a window.

	location
	An object that identifies the URL associated with a window object

	name
	Identifies the name of the window.

	opener
	Identifies the window object that caused a window to be created and opened.

	parent
	A synonym that identifies the window containing a particular window

	self
	A synonym that identifies the current window being referenced.

	status
	Specifies a temporary message that appears on the status bar on the bottom of the browser window.

	top
	A synonym that refers to the topmost browser window in a series of nested window.

	window
	A synonym that identifies the current window being referenced.

Methods of the window object

	Method
	Description

	alert(string)
	Displays an alert dialog box with supplied string.

	blur()
	Removes focus from a window.

	clearInterval(interval)
	Clears a previously set interval timer.

	clearTimeout(timer)
	Clears a previously set timeout.

	close()
	Closes the specified window.

	confirm(string)
	Displays a confirm dialog box.

	focus()
	Gives focus to a window.

	open(url,name,[options])
	Opens a new window and creates a new window object

	prompt(text,defaultInput)
	Displays a prompt dialog box

	scroll(x,y)
	Scrolls a window to the specified location.

	setInterval(expression, milliseconds)

setInterval(function, milliseconds, [arguments])
	Repeatedly evaluates an expression or invokes a function after the elapse of a specified time interval. The arguments are a possibly comma-separated list of arguments to the function to be invoked. Returns an interval reference that can be cleared by clearInteval().

	setTimeout(expression, milliseconds)

setTimeout(function, milliseconds, [arguments])
	Evaluates an expression or invokes a function after a specified timeout period has elapsed. The arguments are a possibly comma-separated list of arguments to the function to be invoked. Returns an interval reference that can be cleared by clearTimeout().

Options of the open() method

	Option
	Values
	Description

	toolbar
	Yes/No
	The window has a tool bar.

	location
	Yes/No
	The window displays the location field.

	directories
	Yes/No
	The window provides directory buttons.

	status
	Yes/No
	The window has a status bar

	menubar
	Yes/No
	The window has a menubar

	scrollbars
	Yes/No
	The window provides scrollbars

	resizable
	Yes/No
	The window is resizable.

	width
	Integer
	The width of the window in pixels

	height
	Integer
	The height of the window in pixels

The screen Object:

The screen object is an object that is a property of the window object. It provides information about the dimensions and color depth of the user’s screen. The screen properties supported by both Netscape Navigator and Internet Explorer are:

· height is the current height of the user’s screen (in pixels).

· width is the current width of the user’s screen (in pixels).

· colorDepth is the number of bits per color currently supported by the user’s screen/ video card. For example, 8-bits of color depth corresponds to 255 colors.

The navigator Object:

The navigator object provides information about the type and version of the browser that is used to run a script. You can use this object to determine the capabilities of a user’s browser and run code that is supported by that browser. Table below lists properties of navigator object that are common to both Netscape Navigator and Internet Explorer

Properties of the navigator object:

	Property
	Description

	appCodeName
	The code name of the browser.

	appName
	The name of the browser

	appVersion
	The version of the browser

	mimeTypes
	An array of all MIME types currently supported by the browser.

	platform
	The operating system platform on which the browser executes.

	plugins
	An array of all plug-ins currently installed on the browser.

	userAgent
	The user-agent header sent in the HTTP protocol from the browser to the server.

The document Object:

The document object is a very important JavaScript object. It allows you to update a document that is being loaded and to access the HTML elements contained in a loaded document. It provides many properties that help you to access these elements as shown in table below.

Properties of the document object:

	Property
	Description

	alinkColor
	Identifies the value of the alink attribute of the <BODY> tag.

	Anchor
	An object that refers to an array contained in a document.

	Anchors
	An array of all the anchors contained in a document.

	Applet
	An object that refers to an applet that is contained in a document.

	Applets
	An array of all the applets contained in a document.

	Area
	An object that refers to an image map area contained in a document.

	bgColor
	Identifies the value of the bgcolor attribute of the <BODY> tag.

	Cookie
	Identifies the value of a cookie.

	Domain
	Identifies the domain name of the server from which the document is

loaded.

	Embeds
	An array of all the plug-ins contained in a document.

	fgColor
	Identifies the Value of the text attribute of the <BODY> tag.

	Form
	An object that refers to a form contained in a document

	forms[]
	An array of all the forms contained in a document.

	Image
	An object that refers to an image contained in a document.

	Images[]
	An array of all the images contained in a document.

	lastModified
	The date that a document was last modified.

	Link
	An object that refers to a link contained in a document.

	Links
	An array of all the links contained in a document.

linkColor

	linkColor
	Identifies the value of the link attribute of the <BODY> tag.

	Plugin
	An object that refers to a plug-in contained in a document.

	Plugins[]
	An array of objects that describe the plug-ins supported by a browser.

	Referrer
	The url of the document that provided the link to a document.

	Title
	The document’s title.

	URL
	The URL of a document.

	vlinkColor
	Identifies the value of the vlink attribute of the <BODY> tag.

Methods of the document object:

	Method
	Description

	close()
	Closes a stream.

	Open([mimeType][,’replace])
	Opens a stream used to create a document object with the optional MIME type. The “replace” parameter is used with the text/html MIME type to replace the current document in the history list.

	Write(expr1[,expr2,…,exprN])
	Writes the values of the expressions to a document.

	Writeln(expr1[,expr2,…,exprN])
	Writes the values of the expressions to a document followed by a new-line character.

The form Object:

JavaScript provides the form object to enable your scripts to interact with and exercise control over HTML forms. The form object is accessed as a property of the document object. Your browser creates a unique form object for every form that is contained in a document. These objects can be accessed via the document.forms[] array.

The form object is important because it provides you with access to the forms contained in your documents and allows you to respond to form-related events. Table below lists the properties of the form objects. These properties provide access to a form’s attributes and allow you to work with a form’s fields and GUI controls

Properties of the form Object:

	Properties
	Description

	action
	Provides access to the HTML action attribute of the <FORM> tag.

	button
	An object representing a button GUI control.

	checkbox
	An object representing a checkbox field

	elements
	An array containing all the fields and GUI controls included in a form.

	encoding
	Provides access to the HTML enctype attribute of the <FORM> tag

	fileupload
	An object representing a file-upload form field

	hidden
	An object representing a hidden form field

	length
	Provides access to the length of the elements array

	method
	Provides access to the3 HTML method attribute of the <FORM> tag.

	name
	Identifies the name of the form

	password
	An object representing a password field

	radio
	An object representing a radio button field

	reset
	An object representing a reset button

	select
	An object representing a selection list

	submit
	An object representing a submit button

	target
	Provides access to the HTML target attribute of the <FORM> tag

	text
	An object representing a text field

	textarea
	An object representing a text area field

A form may contain a wide variety of fields and GUI controls. These form components are referred to as elements of the form and are objects in their own right.

Properties of form elements:

All form elements have following three properties :

· name
Provides access to the name attribute of the form element

· type
Identifies the type of the form element

· value
Identifies the value of the form element.

Besides the above listed properties, there are other few properties which only few elements possess.

checkbox and radio buttons have following extra property:

· checked
Identifies whether the checkbox or radio is checked or not

Similarly, select list element has following extra properties:

· options
An array that identifies the options supported by the select list

· selectedIndex
Identifies the first selected option within the selected list

Methods of form elements:

All form elements have following two methods:

· blur()

Removes the focus from the form element

· focus()
Gives focus to the form element.

Besides the above listed methods, there are other few methods possessed by only some of the elements.

button, checkbox, radio, reset, submit have following extra method:

· click()

Simulates the form element being clicked

fileupload, password, text, textarea have following extra method:

· select()
Highlights the text in the form element.

The location object:

JavaScript uses the location object to access the URL of the current document that is loaded in a window.

URL: A Uniform Resource Locator, or URL, is the standard type of internet address used on the web. It is used to locate resources and services associated with a variety of protocols. The syntax of a URL varies with the particular protocol used to access a resource or server. For example, most URLs do not contain spaces, but URLs that sue the javascript: protocol may include spaces.

The most common format of a URL is as follows:

protocol//hostname[:port] path search hash

The protocol element of the URL syntax above identifies the protocol to be used to access a resource or service. Examples of protocols include http:. ftp:. mailto:, and file:.

The hostname element of the URL identifies the fully qualified domain name of the host where the resource is located. Examples are home.netscape.com, www.w3.org, www.microsoft.com, and java.sun.com.

The port element of the URL identifies the TCP port number to use with the protocol. The port is optional. If it is omitted, the colon preceding the port is also omitted, and the protocol’s “well-known” port is assumed. Well-known ports are the ports that servers “listen to” when implementing a protocol. For example, the well-known port of HTTP is 80.

The path element of the URL is the director / file path to the resource. It is written inn the UNIX forward-slash format. An example path is /javascript/index.htm. The path is usually relative to a directory used by the server.

The search element of the URL identifies a query string passed in a URL. Query strings are data that is passed to CGI program via the QUERY_STRING environment variable. The query string begins with a question mark(?) followed by the query data. Spaces are encoded using plus (+) signs. For example, the query string ?name=nec+bhaktapur passes name=nec Bhaktapur to a CGI program.

The hash element of the URL identifies a named file offset. It consists of a hash character (#) followed by the name of the anchor associated with the file offset.

The location object contains properties that describe the various parts of the URL.

Properties of the location object

	Property
	Object

	hash
	The anchor part of the URL(if any)

	host
	The hostnameport part of the URL

	hostname
	The hostname part of the URL

	href
	The entire URL

	pathname
	The pathname part of the URL

	port
	The port part of the URL

	protocol
	The protocol part of the URL, which includes the colon following the protocol name

	search
	The query string of the URL

The location object has two methods – reload() and replace(). The reload() method causes the current document a window to be reloaded according to the poly used by the browser’s reload button. This policy allows a document to be reloaded from the server in one of the following three ways:

Every time The document is reloaded from the server every time.

Once per session The document is reloaded from the server once per session if the document’s date on the server indicates that it is newer than the document stored in cache. If the document is not in the cache, it is loaded from the server.

Never The document is reloaded from cache, if possible, otherwise from server.

If true is passed as an argument to the reload() method, then the document is unconditionally loaded from the server.

The replace() method takes a URL as a parameter and loads the document at the specified URL over the current document in the current document history list. This prevents the user from return to the previous document by clicking the browser’s back button.

The history object:

The history object is used to keep track of the URLs that have been displayed within a window during the current browser session.. It displays this information in the History list that is accessed via browser’s Go menu.

The history object is a property of the window object. The history object has no events, but it has the four following properties.

current

The URL of the current document displayed in the window.

length

The length of the History list

next

The next URL in the History list

previous
The previous URL in the History list

The history object has three methods – back(), forward(), and go() – which can be used to travel to the documents contained in the History list.

The image Object:

The image object provides access to the images to that are loaded with a document. It is a property of the document object. The images array contains an entry for each tag that is specified within a document. The images array is also a property of the document object.

The properties of the image object that are supported by both Netscape Navigator and Internet Explorer are shown in table below. These properties reflect the attributes of the tag. Internet Explorer supports many more properties.

Properties of the image object

	Property
	Object

	border
	The value of the tag’s BORDER attribute.

	complete
	Identifies whether an image has been completely loaded.

	height
	The value of the tags’ HEIGHT attribute.

	hspace
	The value of the tags’ HSPACE attribute.

	lowsrc
	The value of the tags’ LOWSRC attribute.

	name
	The value of the tags’ NAME attribute.

	prototype
	Used to add user-specified properties to an image object.

	src
	The value of the tags’ SRC attribute.

	vspace
	The value of the tags’ VSPACE attribute.

	width
	The value of the tags’ WIDTH attribute.

The image object type allows new image objects to be explicitly created with keyword and a constructor. The Image() constructor is used to create and preload images that aren’t initially displayed as part of a web page. These image objects are stored in the browser’s cache and are used to replace images that have already been displayed.

An example of creating a cached image via the image() constructor follows:

var cachedImage
= new Image()

cachecImage.src
= “myImage.gif”

The first statement creates a new image object and assigns it to the cachedImage variable. The second statement sets the image object’s src property to the image file myImage.gif. This causes myImage.gif to be loaded into the browser cache. The loaded image can then be referenced using the cachedImage variable.

The image constructor takes optional width and height parameters. For example, myImage = new Image(40,50) creates an image that is 40 pixels wide and 50 pixels high.

Note: Images that are created using the Image() constructor are not accessible via the images array.

Dynamic Image Display

JavaScript’s dynamic image display capabilities are easy to use. Just follow these three steps:

1. Use the Image() constructor to create image objects for storing the images that you’ll display dynamically.

2. Load the image files associated with the newly created images by setting the image’s src attribute to the image file’s name.

3. Display the images by setting the src attribute of an image in the document’s images array to the src attribute of a cached image.

For example, suppose you have a document that contains two tags. When the document is loaded by your browser, the image files that are specified in the tags’ src attributes are displayed. You can load and display tow new images using the following JS code:

//Step 1: Create image objects

var newImage1

= new Image()

var newImage2

= new Image()

//Step 2: Load the image files

newImage1.src

= “new1.gif”

newImage2.src

= “new2.gif”

//Step 3: Display the images

document.images[0].src
= newImage1.src

document.images[1].src
= newImage2.src

Built-in Objects:

1) String Objects
Property

 length

String Content Methods

The following methods can be used on string objects to access, control, or modify their content:

charAt(idx); indexOf(chr); lastIndexOf(chr);

substring(fromidx, toidx); toLowerCase(); toUpperCase()

String Appearance Methods

The string appearance methods are used to control how a string appears when displayed on a Web page. If you are creating a page with standard HTML tags you would achieve the same effects by using various tags. The string appearance methods allow you to obtain the same effects in JavaScript without using the corresponding HTML elements.

big(); blink(); bold(); fixed(); fontcolor(colr); fontsize(sz)

italics(); small(); strike(); sub(); sup()

2) Math Object

The Math object is used for various forms of mathematical calculations. It is a top-level, predefined JavaScript object. You can automatically access it without using a constructor or calling a method.

Properties:

E ; LN10 ; LN2 ; PI ; SQRT1_2 ; SQRT2

Methods:

abs(num); acos(num); asin(num); atan(num); ceil(num); cos(ang);
exp(num); floor(num); log(num); max(num1,num2); max(num1,num2);

pow(num1,num2); random(); round(num); sin(ang); sqrt(num);

tan(ang)

3) Date Object

Dealing with dates is one of the most tedious tasks in any language. This is because many humans like to represent dates and times in decidedly non-decimal systems. Months come in units of 12, hours in units of 24, and minutes and seconds in units of 60. All these variations are quite illogical from the computer's standpoint. It likes to deal with nice, round numbers, preferably powers of 2, or at least multiples of 10.

The Date object simplifies and automates a lot of the conversion woes associated with going back and forth between a human readable representation, such as Nov 23, 1990, and the internal representation. JavaScript's Date object follows the UNIX standard of storing date and time information internally as the number of milliseconds since January 1, 1970. This date is often called "The Epoch," since it is shortly after UNIX was first unleashed on an unsuspecting world.

The Date object has no properties, but many methods. In order to use the Date object you must first understand how to construct instances of it. There are three basic methods of creating a Date instance, as follows:

new Date()

new Date(datestring)

new Date(yr, mon, day)

Methods:

getDate(); getDay(); getFullYear(); getHours(); getMinutes(); getMonth(); getSeconds(); getTime(); getYear(); setDate(); setFullYear(); setHours(); setMinutes(); setMonth(); setSeconds();

setTime(); setYear()
Handling Events

What are events?
Events are the mechanism by which browsers respond to user actions. JavaScripts’ event-handling features give you the ability to alter the standard way in which a browser reacts to these actions. This enables you to develop web pages that are more interactive, more responsive, and easier to user.

Events describe actions that occur as the result of user interaction with a web page or other browser-related activities. For example, when a user clicks a hyperlink or a button, or enters data in a form, an event is generated informing the browser that an action has occurred and that further processing is required. The browser waits for events to occur, and when they do, it performs whatever processing is assigned to those events. The processing that is performed in response to the occurrence of an event is known as event handling. The code that performs this processing is called an event handler. Figure below illustrates the idea of an event and the process of event handling.

[image: image2]
Figure: Events and event handling

For a simple example of event processing, consider what normally happens when a user clicks a hyperlink that is displayed on a web page. The default HTML actions arising from such an event is that the browser loads and displays the page associated with that URL. With JavaScript, however, you can change that default action by writing a different event handler. Here are just a few things you can do with events using JavaScript evevnt handlers:

· Display a dialog box when a user moves the mouse over a link.

· Validate the data a user has just entered into a form.

· Load and display an animation sequence when a user clicks a button.

· Interact with Java applets and browser plug-ins.

JavaScript’s event handling features are what enables JavaScript to create web pages that come alive and interact with web users.

How JavaScript handles events?
JavaScript’s approach to event handling is a two-step process:

1. Defining the events that can be handled by scripts.

2. Providing a standard method of connecting these events to user-supplied JavaScript code.

JavaScript defines events for most of the major objects found in web pages including links, images, image maps, for elements, and windows. The JavaScript language defines special attributes for the tags corresponding to these HTML elements that permit the script to identify event-handling JavaScript code instead of the default HTML event handlers. The values of these attributes are text strings that identify the event-handling code.

Table below summarizes the events defined by JavaScript that are common to Netscape Navigator and Internet Explorer. The first two columns identify the name and tags associated with the HTML element. The third column identifies the events that JavaScript defines for the HTML event.

	HTML Element
	HTML Tags
	JavaScript Event

	All elements
	Various
	mouseMove

	Link
	<A>…
	click

dblClick

mouseDown

mouseUp

mouseOver

mouseOut

keyDown

keyUp

keyPress

	Image
	
	abort

error

load

keyDown

keyUp

keyPress

	Area
	<AREA>
	mouseOver

mouseOut

dblClick

	Document body
	<BODY>…</BODY>
	click

dblClick

mouseUp

keyDown

keyUp

keyPress

	Window, frames
	<BODY>…</BODY>
<FRAMESET>..</ FRAMESET>

<FRAME>…. </FRAME>
	blur

error

focus

load

unload

move

resize

	Form
	<FORM>…</FORM>
	submit

reset

	Text field
	<INPUT TYPE=TEXT>
	blur

focus

change

select

	Password field
	<INPUT TYPE=PASSWORD>
	blur

focus

	Text area
	<TEXTAREA>…</TEXTAREA>
	blur

focus

change

select

keyDown

keyUp

keyPress

	Button
	<INPUT TYPE=BUTTON>
	click

blur

focus

mouseDown

mouseUp

	Submit
	<INPUT TYPE=SUBMIT>
	click

blur

focus

	Reset
	<INPUT TYPE=RESET>
	click

blur

focus

	Checkbox
	<INPUT TYPE=CHECKBOX>
	click

blur

focus

	Radio
	<INPUT TYPE=RADIO>
	

	File upload
	<INPUT TYPE=FILE>
	blur

change

focus

	Selection
	<SELECT>…</SELECT>
	blur

change

focus

JavaScript recognizes special event-handling attributes for each of the HTML elements identified above in the table. These attributes are used to specify the JavaScript code to be executed in response to a particular event. For example, suppose you wanted to handle the event associated with a user moving the mouse over a particular link. You would connect the link to the event-handling code as follows:

Text

Scripting event handlers

JavaScript applications in the Navigator are largely event-driven. Events are actions that occur usually as a result of something the user does. For example, clicking a button is an event, as is changing a text field or moving the mouse over a hyperlink. You can define event handlers, such as onChange and onClick, to make your script react to events. Each event is recognized by certain objects (HTML tags), summarized in the following table:

	Event
	Applies to
	Occurs when
	Event handler

	abort
	images
	User aborts the loading of an image (for example by clicking a link or clicking the Stop button)
	onAbort

	blur
	windows, frames, and all form elements
	User removes input focus from window, frame, or form element
	onBlur

	click
	buttons, radio buttons, checkboxes, submit buttons, reset buttons, links
	User clicks form element or link
	onClick

	doubleClick
	buttons, radio buttons, checkboxes, submit buttons, reset buttons, links
	User double clicks form element or link
	onDblClick

	change
	text fields, textareas, select lists
	User changes value of element
	onChange

	error
	images, windows
	The loading of a document or image causes an error
	onError

	focus
	windows, frames, and all form elements
	User gives input focus to window, frame, or form element
	onFocus

	keyDown
	
	User Press the key
	onKeyDown

	keyUp
	
	User release the key
	onKeyUp

	keyPress
	
	User Press and release the key
	onKeyPress

	load
	Image,document body ,frameset
	User loads the page in the Navigator
	onLoad

	Mousedown
	areas, links
	User press mouse button on an area (client-side image map) or link
	onMouseDown

	Mouseup
	areas, links
	User release mouse button on an area (client-side image map) or link
	onMouseUp

	mouseMove
	areas, links
	User moves mouse pointer over an area (client-side image map) or link
	onMouseMove

	mouseout
	areas, links
	User moves mouse pointer out of an area (client-side image map) or link
	onMouseout

	mouseover
	links
	User moves mouse pointer over a link
	onMouse- Over

	Move
	Window,frame
	The user moves windows or frame
	onMove

	reset
	forms
	User resets a form (clicks a Reset button)
	onReset

	select
	text fields, textareas
	User selects form element's input field
	onSelect

	submit
	submit button
	User submits a form
	onSubmit

	unload
	document body
	User exits the page
	onUnload

If an event applies to an HTML tag, then you can define an event handler for it. The name of an event handler is the name of the event, preceded by "on." For example, the event handler for the focus event is onFocus.

Example event handler

<HTML>

<HEAD>

<TITLE>Example event handler</TITLE>

<BODY>

<H1> Example event handler </H1>

<P>

Move your mouse over this link and a popup window is displayed.

</P>

</BODY>

</HTML>

In the example above, the JavaScript event-handling code is the following:

alert(‘Link to nec’).

This code consists of a call to the alert() method of the window object with the string ‘Link to NEC’ passed as a parameter. The alert() method displays a popup window with the specified text. Note that if you click the link, the popup window is not displayed. The click event is handled by a different event handler. This event handler is specified by onClick attribute.

The attribute for the mouseOver event is onMouseOver. The JavaScript code that is executed as the result of the event is provided as the attribute value of the onMouseOver attribute. In general, the name of the event-handling attribute is the name of the event prefixed by on. The attributes are case-insensitive.

To handle any of the JavaScript events, all you have to do is include the event-handling attribute for that event in an appropriate HTML tag and then specify the form of a call to an event-handling function. In general, you can insert any JavaScript code (number of statements separated by semicolon “;” including pre-defined function calls or user-defined function calls)for the value of an event-handling attribute. However, if you surround the attribute value with double quotes (“), you muse use single quotes (‘) within your event-handling code or vice-versa.
User Defined Objects.
In addition to the wide Range of Built-in objects, JavaScript permits the creation of user defined objects. An user define object is a custom data type that can combine data with functions to act upon it. The data items in an object are its properties, and the functions are its methods.After creation of such objects ,any number of instance of this object can be created.
Creating a user defined object

To define and use this object in a JavaScript program, you need to create a function to create new objects. This function is referred to as the object definition for an object, or the constructor. Here is an object definition for the Card object:
function Card(name,address,work,home) {

 this.name = name;

 this.address = address;

 this.work_phone = work;

 this.home_phone = home;

}
The object definition is a simple function that accepts parameters to initialize a new object and assigns those to the corresponding properties. this keyword; is required for object definitions and refers to the current object-the one that is being created by the function.

Next, let's create a method to work with the Card object. Let's call this function PrintCard().

function PrintCard() {

 document.write("Name: ", this.name, "\n");

 document.write("Address: ", this.address, "\n");

 document.write("Work Phone: ", this.work_phone, "\n");

 document.write("Home Phone: ", this.home_phone, "\n");

}

This function simply reads the properties from the current object (this), prints each one with a caption, and skips to a new line.

Creating Instances of Objects

In order to use an object definition, you create a new object. This is done with the new keyword. The following statement creates a new Card object called tom:

tom = new Card("Tom Jones", "123 Elm Street", "555-1234", "555-9876");

Putting It All Together

An HTML document that uses the Card object.
<HTML>

<HEAD>

<TITLE>JavaScript Business Cards</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function PrintCard() {

 document.write("Name: ", this.name, "
");

 document.write("Address: ", this.address, "
");

 document.write("Work Phone: ", this.work_phone, "
");

 document.write("Home Phone: ", this.home_phone, "<HR>");

}

function Card(name,address,work,home) {

 this.name = name;

 this.address = address;

 this.work_phone = work;

 this.home_phone = home;

 this.PrintCard = PrintCard; //*******
}

</SCRIPT>

</HEAD>

<BODY>

<H1>JavaScript Business Card Test</H1>

Script begins here.<HR>

<SCRIPT LANGUAGE="JavaScript">

// Create the objects

suman = new Card("Suman Thapa", "Kha 92,kathmandu", "5551234",555876");

hari = new Card("Hari Kumal", "Gha 233,Pokhara", "5552222", "5554444");

krish = new Card("Krishna Tillman", "233 Walnut Circle", "555-1299", "555-1344");

// And print them

suman.PrintCard();

hari.PrintCard();

krish.PrintCard();

</SCRIPT>

End of script.

</BODY>

</HTML>
******* The entry this.PrintCard = PrintCard; in the Card() constructor function is a reference to the printcard() function defined earlier. Notice that the assignment statement doesn’t refer to the function with its parentheses — just to the function name. When JavaScript sees this assignment statement, it looks back through existing definitions (those functions defined ahead of the current location in the script) for a match. If it finds a function (as it does here), it knows to assign the function to the identifier on the left side of the assignment statement. In doing this task with a function, JavaScript automatically sets up the identifier as a method name for this object. As you do in every JavaScript method you’ve encountered, you must invoke a method by using a reference to the object, a period, and the method name followed by a set of parentheses.
Using Timeouts

Two more methods of the window object enable you to set timeouts.

The setTimeout() method has two parameters. The first is a JavaScript statement, or group of statements, enclosed in quotes. The second parameter is the time to wait in milliseconds (thousandths of seconds). For example, this statement displays an alert dialog after 10 seconds:

ident=window.setTimeout("alert('Time's up!')",10000);

A variable (ident in this example) stores an identifier for the timeout. This enables you to set multiple timeouts, each with its own identifier. Before a timeout has elapsed, you can stop it with the clearTimeout() method, specifying the identifier of the timeout to stop:

window.clearTimeout(ident);

These timeouts execute only once; they do not repeat unless you set another timeout each time.

Example:

<HTML>

<HEAD><TITLE>Timeout Example</TITLE>

<SCRIPT>

var counter = 0;

// call Update function in 2 seconds after first load

ID=window.setTimeout ("Update ();", 1000);

Function Update () {

 Counter ++;

 window.status="The counter is now at” + counter;

 document.form1.input1.value="The counter is now at” + counter;

// set another timeout for the next count

 ID=window.setTimeout ("Update ();",1000);

}

</SCRIPT>

</HEAD>

<BODY>

<H1>Timeout Example</H1>

<HR>

The text value below and the status line are being updated every one second.

Press the RESET button to restart the count, or the STOP button to stop it.

<HR>

<FORM NAME="form1">

<INPUT TYPE="text" NAME="input1" SIZE="40">

<INPUT TYPE="button" VALUE="RESET" onClick="counter = 0;">

<INPUT TYPE="button" VALUE="STOP" onClick="window.clearTimeout(ID);">

<HR>

</BODY>

</HTML>
This program displays a message in the status line and in a text field every one second, including a counter that increments each time. You can use the RESET button to start the count over and the STOP button to stop the counting.

Example creating digital clock :

<HTML>

<HEAD>

<TITLE>JavaScript Clock</TITLE>

<script Language="JavaScript">

function showtime () {

 var now = new Date();

 var hours = now.getHours();

 var minutes = now.getMinutes();

 var seconds = now.getSeconds()

var timevalue=""

if(hours>12)

timevalue=hours-12;

else

timevalue+=hours

if(minutes<10)

timevalue+=":0"+minutes

else

timevalue+=":"+minutes

if(seconds<10)

timevalue+=":0"+seconds

else

timevalue+=":"+seconds

if(hours>=12)

timevalue+=" P.M. "

else

timevalue+=" A.M. "

document.myform.myclock.value=timevalue;

window.status=timevalue;

 setTimeout("showtime()",1000);

}

</script>

</HEAD>

<BODY onLoad="showtime()">

<form name="myform">

<input type="text" name="myclock" size=12>

</form>

</BODY>

</HTML>
Example : Scrolling Text in the Status Bar

<HTML>

<HEAD>

<TITLE>Scrolling Text</TITLE>

<script language="JavaScript">

window.status=" This is a simple text scroll"

function scroll(){

text=window.status;

ftext=text.substring(0,1);

text=text.substring(1);

text+=ftext;

window.status=text;

setTimeout("scroll()",200)

}

</script>

<Body onload="scroll()">

<h3>Example of Scrolling text on the status bar

</body></head>

USER

Browser

JavaScript

Event�Handler

Updates to

browser display

Mouse & Keyboard

action

Browser display

Mouse & Keyboard

events

