The Mole

1) Activity - Paper Clip Inquiry on pg 286.
2) Common conversion factors

- 12 eggs = 1 dozen
- 2 shoes $=1$ pair
- 500 sheets of paper $=1$ ream
- 144 pencils $=1$ gross

3) Mole - measurement of the amount of substance.

- $1 \mathrm{~mol}=6.02 * 10^{23}$ representative particles (Avogadro's number) The number stays with the unit they do not switch.
- Amedeo Avogadro - Italian
- Representative particle (atom, molecule, formula unit, ion)

4) Converting moles to particles. Avogadro's number is the conversion factor. Examples.

- How do convert units.
- Write what your given (just like Geometry) in the top left block.
- Match units diagonally.
- Up and down is a conversion factor.
- Do the same for every conversion factor.

5) Mass to moles. Use the mass number, now called the atomic/molecular weight/gram formula mass, to get the conversion factor to a mole.
6) Calculating the molecular weight of a formula unit/molecule. Examples.

- Mass of a mole = molar mass.

7) Have students measure out $\mathbf{1} \mathbf{~ m o l}$ of salt and water. Comment on the differences. Predictions. Examples
8) Avogadro's Hypothesis - equal volumes of gases at the same temperature and pressure contains equal numbers of particles.
9) Standard Temperature and Pressure (STP) $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and 101.3 kPa (1 atm).
10) Therefore, 1 mole of a gas is exactly equal, at STP, to 22.4 L . This is true for every gas!!! (molar volume)

- Let the students brainstorm how you would show what 22.4 L looks like in real life.

11) All roads lead to Rome. Well all roads lead to the mole. The mole road map. Pg 303.
12) Practice on the white boards.

Rd pg 287-303
HW: 1-7, 14-20

\% Composition, EF/MF

1) How much sugar really is in bubble gum? Students determine the amount of sugar in bubble gum. Give hints to provoke thought.
2) Percent Composition (percent by mass) tells us the \% of a compound that an element. Practical examples in their lives.

- Percentage is part divided by whole. Therefore, grams of the element divided by grams of the compound.
- Calculate with hydrates as well.
- Can be done just by the formula or by actual numbers of the compound.
- \% by mass can be used as a conversion factor.

3) Empirical Formula - lowest whole-number ratio of the atoms of the elements in a compound.
4) Molecular Formula - can be the empirical formula or a whole number multiple of it.
5) Empirical Formula of MgO Lab. Show the Empirical Formula through proof.
6) Examples by percentages. Do separately and/or together.

Rd pg 305-311
HW: 8-13

