

Updating IO tables

- IO coefficients need to be updated from time to time in order to reflect changes in the economy
\square What changes: prices, technology, preferences, etc
- The best way to update the coefficients is by conducting the survey again
- But survey is usually expensive and time consuming
\square Questions are too detail, coverage too wide (nationally)
- Need a more efficient way to update the table
- There is non-survey method, However, more relevant to update regional tables, and is too simple an adjustment

Partial-survey methods

- Partial-survey method is a compromise.
- Survey is still needed, but not as detailed as it would have been with the full-survey method.
- Still needs firms to elaborate the input, but not in detailed. Firms need to provide information about the total only: total intermediate inputs, total intermediate output (or total final demand), and total input or output

Basic principle of RAS method

Year 0

The problem is...

- With

$$
\mathbf{A}(\mathbf{0})=\left[\begin{array}{lll}
a_{11}(0) & a_{12}(0) & a_{13}(0) \\
a_{21}(0) & a_{22}(0) & a_{23}(0) \\
a_{31}(0) & a_{32}(0) & a_{33}(0)
\end{array}\right]
$$

$$
\mathbf{A}(0)=\left[\begin{array}{ll}
0,1 & 0,2 \\
0,3 & 0,3
\end{array}\right]
$$

- And the help of
$\mathbf{X}(1)=\left[\begin{array}{l}X_{1}(1) \\ X_{2}(1) \\ X_{3}(1)\end{array}\right] \quad \mathbf{U}(1)=\left[\begin{array}{l}U_{1}(1) \\ U_{2}(1) \\ U_{3}(1)\end{array}\right]$
$\mathbf{V}(1)=\left[\begin{array}{lll}V_{1}(1) & V_{2}(1) & V_{3}(1)\end{array}\right]$
$X(1)=\left[\begin{array}{l}1500 \\ 2600\end{array}\right]$
$\mathrm{U}(1)=\left[\begin{array}{c}700 \\ 1400\end{array}\right]$
$\mathbf{v}(1)=\left[\begin{array}{ll}600 & 1500\end{array}\right]$
- We want to estimate

$$
\mathbf{A}(\mathbf{1})=\left[\begin{array}{lll}
a_{11}(1) & a_{12}(1) & a_{13}(1) \\
a_{21}(1) & a_{22}(1) & a_{23}(1) \\
a_{31}(1) & a_{32}(1) & a_{33}(1)
\end{array}\right]
$$

Adjustment process (1)

- Multiply $\quad \mathbf{A}(\mathbf{0}) \hat{\mathbf{X}}(\mathbf{1})=\left[\begin{array}{cc}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{cc}1500 & 0 \\ 0 & 2600\end{array}\right]=\left[\begin{array}{cc}150 & 520 \\ 450 & 780\end{array}\right]$
- Get row summation, compare with $\mathrm{U}(1)$

$$
\mathbf{U}^{\mathbf{1}}=[\mathbf{A}(\mathbf{0}) \hat{\mathbf{X}}(\mathbf{1})] \mathbf{i}=\left[\begin{array}{ll}
150 & 520 \\
450 & 780
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
670 \\
1230
\end{array}\right]
$$

- As they are not the same, adjustment is needed. The adjustment is

$$
\mathbf{R}^{1}=[\hat{\mathbf{U}}(\mathbf{1})]\left(\hat{\mathbf{U}}^{1}\right)^{-1}=\left[\begin{array}{cc}
700 & 0 \\
0 & 1400
\end{array}\right]\left[\begin{array}{cc}
670 & 0 \\
0 & 1230
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1,04478 & 0 \\
0 & 1,13821
\end{array}\right] .
$$

Adjustment process (2)

- Thus, the new A matrix which guarantees correct $\mathrm{U}(1)$ is

$$
\mathbf{A}^{\mathbf{1}}=\mathbf{R}^{1} \mathbf{A}(\mathbf{0})=\left[\begin{array}{cc}
1,04478 & 0 \\
0 & 1,13821
\end{array}\right]\left[\begin{array}{ll}
0,1 & 0,2 \\
0,3 & 0,3
\end{array}\right]=\left[\begin{array}{ll}
0,10448 & 0,20896 \\
0,34146 & 0,34146
\end{array}\right] .
$$

- Next, must check the $\mathrm{V}(1)$ or the column
- Multiply

$$
\mathbf{A}^{1} \hat{\mathbf{X}}(\mathbf{1})=\left[\begin{array}{ll}
0,10448 & 0,20896 \\
0,34146 & 0,34146
\end{array}\right]\left[\begin{array}{cc}
1500 & 0 \\
0 & 2600
\end{array}\right]=\left[\begin{array}{cc}
156,71642 & 543,28358 \\
512,19512 & 887,80488
\end{array}\right]
$$

- Check column sum

$$
\mathbf{V}^{\mathbf{1}}=\mathbf{i}^{\prime}\left[\begin{array}{l}
\mathbf{A}^{1} \hat{\mathbf{X}}(\mathbf{1})
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
156,71642 & 543,28358 \\
512,19512 & 887,80488
\end{array}\right]=\left[\begin{array}{ll}
668,91154 & 1431,08848
\end{array}\right] .
$$

Adjustment process (3)

- As the column sum is different from $\mathrm{V}(1)$, adjustment is needed. The adjustment is

$$
\mathbf{S}^{1}=[\hat{\mathbf{V}}(\mathbf{1})]\left(\hat{\mathbf{V}}^{1}\right)^{-\mathbf{1}}=\left[\begin{array}{cc}
600 & 0 \\
0 & 1500
\end{array}\right]\left[\begin{array}{cc}
668,91154 & 0 \\
0 & 1431,80488
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0,89698 & 0 \\
0 & 1,04815
\end{array}\right]
$$

- Thus, the new A matrix which guarantees correct $\mathrm{V}(1)$ is

$$
\begin{aligned}
\mathbf{A}^{2} & =\mathbf{A}^{1} \mathbf{S}^{1} \\
& =\left[\begin{array}{ll}
0,10448 & 0,20896 \\
0,34146 & 0,34146
\end{array}\right]\left[\begin{array}{cc}
0,89698 & 0 \\
0 & 1,04815
\end{array}\right]=\left[\begin{array}{ll}
0,09371 & 0,21902 \\
0,30629 & 0,35791
\end{array}\right] .
\end{aligned}
$$

- But as we fix the column, the row sum is disturbed. Need to fix back the column. This process should go indifinitely until convergence is reached

Adjustment process (4)

- Series of column and row adjustments may be made
- Recall that

$$
\begin{aligned}
& \mathbf{A}^{2}=\mathbf{A}^{1} \mathbf{S}^{1} \\
& \mathbf{A}^{2}=\mathbf{R}^{1} \mathbf{A}(\mathbf{0}) \mathbf{S}^{1} \\
& \mathbf{A}^{3}=\mathbf{R}^{2} \mathbf{R}^{1} \mathbf{A}(\mathbf{0}) \mathbf{S}^{1} \\
& \mathbf{A}^{4}=\left(\mathbf{R}^{2} \mathbf{R}^{1}\right) \mathbf{A}(\mathbf{0})\left(\mathbf{S}^{1} \mathbf{S}^{2}\right) \\
& \mathbf{A}^{5}=\left(\mathbf{R}^{3} \mathbf{R}^{2} \mathbf{R}^{1}\right) \mathbf{A}(\mathbf{0})\left(\mathbf{S}^{1} \mathbf{S}^{2}\right)
\end{aligned}
$$

and if we continue
$\mathbf{A}^{2 n}=\left(\mathbf{R}^{n} \ldots \mathbf{R}^{3} \mathbf{R}^{2} \mathbf{R}^{1}\right) \mathbf{A}(0)\left(\mathbf{S}^{1} \mathbf{S}^{2} \mathbf{S}^{3} \ldots \mathbf{S}^{\mathrm{n}}\right)$

- Hence is the name of RAS method

Rounds of adjustment

Value of elements of A^{k}, in each round of adjustment

\mathbf{k}	a_{11}	a_{12}	a_{21}	a_{22}
0	0,1	0,2	0,3	0,3
1	0,10448	0,20896	0,34146	0,34146
2	0,09317	0,21902	0,30629	0,35791
3	0,09239	0,21593	0,30849	0,36048
4	0,09219	0,21612	0,30781	0,36080
5	0,09216	0,21606	0,30785	0,36085
6	0,09216	0,21606	0,30784	0,36086
7	0,09216	0,21606	0,30784	0,36086

Final matrix is

$$
\mathbf{A}(\mathbf{1})=\left[\begin{array}{ll}
0.09216 & 0.21606 \\
0.30784 & 0.36086
\end{array}\right] \quad \mathbf{A}(\mathbf{0})=\left[\begin{array}{ll}
0,1 & 0,2 \\
0,3 & 0,3
\end{array}\right]
$$

©2007 Suahasil Nazara -- All rights reserved

Other adjustment methods

- There are other adjustment methods which usually is used in preparing regional input-output tables
- Will elaborate this in the regional input-output section

