

Industry vs. commodity

- A firm may have a range of products. Categorization to which industry a firm belongs is conducted by its primary product.
- But there is secondary product.
- How to account for that? Need to distinguish
\square Industry account: compile and assign data to industry, where industry is cluster of establishments as classified by SIC codes according to primary products
\square Commodity account: compile data in terms of products, whether is a primary or secondary goods or service
- The concept of make and use matrices

The make matrix

- Make matrix shows the value of each commodity produced by each industry
- Consider 2-sector economy (industries A and B), producing 2 commodities.
- The make matrix is the following

	Commodities		Total output
	A	B	(industry)
	90	0	90
Industry A	10	100	110
Industry B	100	100	
Total production (commodity)			

- The main diagonal elements are the primary products of the industry (which defines the industry in the first place)

The use matrix (or, absorption matrix)

- Make matrix is not complete - we need use (or absorption) matrix
- We also need inputs to produce a particular commodity (also later we will need the primary inputs)
- It is also the commodity that would be distributed to the final user (so later we will need the final demand structure)

	Industries	
	A	B
Commodity A	10	10
Commodity B	10	7

Commodity and industry accounts together

Definition of matrices

$$
\begin{aligned}
& V=\left[v_{\mathrm{i} j}\right]=\quad \text { is the make matrix (dimension: } \mathrm{n} \times \mathrm{m} \text {) } \\
& \mathrm{v}_{\mathrm{ij}} \text { is the amount of commodity } \mathrm{j} \text { produced by industry } \mathrm{i} \text {. } \\
& \mathrm{U}=\left[\mathrm{u}_{\mathrm{i}}\right]=\quad \text { is the use matrix (dimension: } \mathrm{m} \times \mathrm{n} \text {) } \\
& v_{\mathrm{ij}} \text { is the amount of commodity } \mathrm{i} \text { used by industry } \mathrm{j} \text {. } \\
& E=\left[E_{j}\right]=\quad \text { is the vector of final demand (dimension: } \mathrm{m} \times 1 \text {) } \\
& \mathrm{Q}=\left[\mathrm{Q}_{\mathrm{i}}\right]=\quad \text { is the vector commodity gross output (dimension: } \mathrm{m} \times 1 \text {) } \\
& \mathrm{W}=\left[\mathrm{W}_{\mathrm{i}}\right]=\quad \text { is the vector of industry value added input (dimension: } 1 \times \mathrm{n} \text {) } \\
& \mathrm{X}=\left[\mathrm{X}_{\mathrm{j}}\right]=\quad \text { is the vector of industry total output (dimension: } \mathrm{n} \times 1 \text {) }
\end{aligned}
$$

In the above example:

$$
\begin{array}{lll}
\mathbf{U}=\left[\begin{array}{cc}
10 & 10 \\
20 & 7
\end{array}\right] & \mathbf{V}=\left[\begin{array}{cc}
90 & 0 \\
10 & 100
\end{array}\right] & \mathbf{E}=\left[\begin{array}{l}
80 \\
83
\end{array}\right] \\
\mathbf{Q}=\left[\begin{array}{l}
100 \\
100
\end{array}\right] & \mathbf{X}=\left[\begin{array}{l}
90 \\
100
\end{array}\right] & \mathbf{W}=\left[\begin{array}{ll}
70 & 93
\end{array}\right]
\end{array}
$$

Example

- Singapore 2000 Input-Output uses the Make and Use matrix structure
- Let's look at the publication

