

So far ...

- All information regarding the structure of production input and output have been placed in a relatively complete table
- That table is a portrait of an economy in a particular point of time - many analysis possible at this stage
- Now, more advanced analysis

Input-output coefficient

- Other names: direct input coefficient, technical coefficient
$\mathrm{a}_{\mathrm{ij}}=\frac{\mathrm{Z}_{\mathrm{ij}}}{\mathrm{X}_{\mathrm{j}}}$
$a_{32}=0,3$ means:
to produce $\$ 1$ output, sector 2 needs $\$ 0.3$ intermediate input from sector 3

Technology matrix

- For n sectors, there would be as many as $n \times n$ input-output coefficients a_{ij}.
- All of those coefficients can be presented in a matrix, conventionally called A, as shown

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

- (I-A) is called technology matrix
- One consequence of the inputoutput coefficient is the following:

$$
\square \mathrm{a}_{\mathrm{ij}}=\frac{\mathrm{Z}_{\mathrm{ij}}}{\mathrm{X}_{\mathrm{j}}} \Leftrightarrow \mathrm{Z}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} \mathrm{X}_{\mathrm{j}}
$$

With a few algebraic manipulations

- By stating

$$
z_{i j}=a_{i j} \cdot x_{j}
$$

then the previous system of equations can be rewritten in the following form

A few algebra further,

$\left\{\begin{array}{l}X_{1}-a_{11} X_{1}-a_{12} X_{2}-\ldots-a_{1 n} X_{n}=Y_{1} \\ X_{2}-a_{21} X_{1}-a_{22} X_{2}-\ldots-a_{2 n} X_{n}=Y_{2} \\ \vdots \\ X_{n}-a_{n 1} X_{1}-a_{n 2} X_{2}-\ldots-a_{m n} X_{n}=Y_{n}\end{array} \quad \square \quad\left\{\begin{array}{l}\left(1-a_{11}\right) X_{1}-a_{12} X_{2}-\ldots-a_{1 n} X_{n}=Y_{1} \\ -a_{21} X_{1}+\left(1-a_{22}\right) X_{2}-\ldots-a_{2 n} X_{n}=Y_{2} \\ \vdots \\ -a_{n 1} X_{1}-a_{n 2} X_{2}-\ldots+\left(1-a_{n n}\right) X_{n}=Y_{n} .\end{array}\right.\right.$

$$
\left[\begin{array}{cccc}
1-\mathrm{a}_{11} & -\mathrm{a}_{12} & \ldots & -\mathrm{a}_{1 \mathrm{n}} \\
-\mathrm{a}_{21} & 1-\mathrm{a}_{22} & \ldots & -\mathrm{a}_{2 \mathrm{n}} \\
\vdots & \vdots & \ddots & \vdots \\
-\mathrm{a}_{\mathrm{n} 1} & -\mathrm{a}_{\mathrm{n} 2} & \ldots & 1-\mathrm{a}_{\mathrm{nn}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\vdots \\
\mathrm{X}_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\vdots \\
\mathrm{Y}_{\mathrm{n}}
\end{array}\right]
$$

$$
(\mathrm{I}-\mathrm{A}) \mathrm{X}=\mathrm{Y}
$$

Therefore, if we ask

- What is the effect of an exogenous change (or shock) \mathbf{Y}, i.e., in the final demand, on the output \mathbf{X} ?

We know that $(I-A) X=Y$. Therefore,

$$
\mathbf{X}=\underbrace{(\mathbf{I}-\mathbf{A})^{-1}}_{\text {Leontief Inverse }} \mathbf{Y}
$$

Leontief Inverse \& Keynesian multiplier

Hypothetical example -

 Transaction table of an economy| | | Production Sectors | | Final Demand | | Total
 Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | C | I | X |
| Production
 Sector | 1 | 100 | 400 | 300 | 200 | 1000 |
| | 2 | 300 | 600 | 500 | 600 | 2000 |
| | L | 200 | 700 | | | |
| | N | 400 | 300 | | | |
| Total Input | | 1000 | 2000 | | | |

$\mathbf{A}=\mathbf{Z}(\hat{\mathbf{X}})^{-1}=\left[\begin{array}{ll}100 & 400 \\ 300 & 600\end{array}\right]\left[\begin{array}{cc}1 / 1000 & 0 \\ 0 & 1 / 2000\end{array}\right]$
$=\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]$

Leontief inverse

$$
\begin{aligned}
& (\mathbf{I}-\mathbf{A})=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0,1 & 0,2 \\
0,3 & 0,3
\end{array}\right]=\left[\begin{array}{cc}
0,9 & -0,2 \\
-0,3 & 0,7
\end{array}\right] \\
& (\mathbf{I}-\mathbf{A})^{\mathbf{- 1}}=\left[\begin{array}{ll}
1,228 & 0,351 \\
0,526 & 1,579
\end{array}\right]
\end{aligned}
$$

Changes in final demand

- In year t, the final demand matrix is as follows:

$$
\mathbf{Y}_{\mathrm{t}}=\left[\begin{array}{l}
C_{1}+I_{1} \\
C_{2}+I_{2}
\end{array}\right]=\left[\begin{array}{c}
500 \\
1100
\end{array}\right]
$$

- In year t+1, the final demand becomes the following:

$$
\mathbf{Y}_{\mathbf{t}+\mathbf{1}}=\left[\begin{array}{c}
700 \\
1400
\end{array}\right]
$$

- Therefore, the output of sectors 1 and 2 in $t+1$ becomes

$$
\begin{aligned}
\mathbf{X}_{\mathbf{t}+\mathbf{1}} & =(\mathbf{I}-\mathbf{A})^{-\mathbf{1}} \mathbf{Y}_{\mathbf{t}+\mathbf{1}} \\
& =\left[\begin{array}{ll}
1,228 & 0,351 \\
0,526 & 1,579
\end{array}\right]\left[\begin{array}{c}
700 \\
1400
\end{array}\right]=\left[\begin{array}{l}
1350,877 \\
2578,947
\end{array}\right] .
\end{aligned}
$$

In incremental form

$$
\begin{aligned}
\Delta \mathbf{X}_{\mathbf{t}+\mathbf{1}} & =(\mathbf{I}-\mathbf{A})^{-\mathbf{1}} \Delta \mathbf{Y}_{\mathbf{t}+\mathbf{1}} \\
& =\left[\begin{array}{ll}
1,228 & 0,351 \\
0,526 & 1,579
\end{array}\right]\left[\begin{array}{l}
200 \\
300
\end{array}\right]=\left[\begin{array}{c}
350,877 \\
578,947
\end{array}\right] .
\end{aligned}
$$

Direct and Indirect Effects

- If there is additional final demand, it must be produced - and automatically is a part of additional output.
In the above example, there is additional final demand (i.e., 200) for sector 1 . Automatically, output of sector 1 must increase by 200. This is the DIRECT EFFECT
- But, that is not all!

Producing that additional output requires inputs from sector 2. For sector 2 , this is additional demand for output. In its production process, sector 2 also requires inputs from sector $1 \rightarrow$ thus, output of sector 1 must increase again. Chains of reactions like this occur because there are intersectoral linkages. This is the INDIRECT EFFECT

Round-by-round effect - the first 6 rounds

Round $\#$	Additional output needed to produce additional output in the previous round	Additional output created in respective round
1	The economic shock	$\Delta \mathbf{Y}_{\mathbf{1}}=\left[\begin{array}{l}200 \\ 300\end{array}\right]$
2	$\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{c}200 \\ 300\end{array}\right]=\left[\begin{array}{c}80 \\ 150\end{array}\right]$	$\Delta \mathbf{Y}_{\mathbf{2}}=\left[\begin{array}{c}80 \\ 150\end{array}\right]$
3	$\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{c}80 \\ 150\end{array}\right]=\left[\begin{array}{c}38 \\ 72\end{array}\right]$	$\Delta \mathbf{Y}_{\mathbf{3}}=\left[\begin{array}{l}38 \\ 72\end{array}\right]$
4	$\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{c}38 \\ 72\end{array}\right]=\left[\begin{array}{c}18,2 \\ 33\end{array}\right]$	$\Delta \mathbf{Y}_{\mathbf{4}}=\left[\begin{array}{c}18,2 \\ 33\end{array}\right]$
5	$\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{c}18,2 \\ 33\end{array}\right]=\left[\begin{array}{c}8,42 \\ 15,36\end{array}\right]$	$\Delta \mathbf{Y}_{5}=\left[\begin{array}{c}8,42 \\ 15,36\end{array}\right]$
6	$\left[\begin{array}{ll}0,1 & 0,2 \\ 0,3 & 0,3\end{array}\right]\left[\begin{array}{c}8,42 \\ 15,36\end{array}\right]=\left[\begin{array}{c}3,914 \\ 7,134\end{array}\right]$	$\Delta \mathbf{Y}_{\mathbf{6}}=\left[\begin{array}{c}3,914 \\ 7,134\end{array}\right]$

Keep doing that infinitely

- How to proof that if the rounds are carried out infinitely to the level where additional outputs required are zero, then the total additional output needed can be expressed as
$\mathbf{X}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{Y}$

Here is the proof:

The total output X needed to satisfy the final demand, as shown by the above round-by-round effect is

$$
\begin{aligned}
\Delta \mathbf{X} & =\mathbf{A}^{0} \Delta \mathbf{Y}+\mathbf{A}^{1} \Delta \mathbf{Y}+\mathbf{A}^{2} \Delta \mathbf{Y}+\ldots+\mathbf{A}^{\mathrm{n}} \Delta \mathbf{Y} \\
& =\left(\mathbf{I}+\mathbf{A}^{1}+\mathbf{A}^{2}+\ldots+\mathbf{A}^{\mathbf{n}}\right) \Delta \mathbf{Y} .
\end{aligned}
$$

Multiply the right hand side with (I-A). We obtain

$$
\begin{aligned}
& \left(\mathbf{I}+\mathbf{A}^{1}+\mathrm{A}^{2}+\ldots+\mathbf{A}^{n}\right)(\mathbf{I}-\mathbf{A}) \Delta \mathbf{Y} \\
& =\left(\mathbf{I}+\mathrm{A}^{1}+\mathrm{A}^{2}+\ldots+\mathrm{A}^{\mathrm{n}}-\mathbf{A}^{1}-\mathrm{A}^{2}-\ldots-\mathbf{A}^{\mathrm{n}}-\mathbf{A}^{\mathrm{n}+1}\right) \Delta \mathbf{Y} \\
& =\left(\mathbf{I}-\mathbf{A}^{\mathrm{n}+1}\right) \Delta \mathbf{Y}=\Delta \mathbf{Y}
\end{aligned}
$$

The last expression assumes that as $n \rightarrow \infty, \mathrm{~A}^{\mathrm{n}+1}$ will approach zero.
Since $\left(\mathbf{I}+\mathbf{A}^{1}+\mathbf{A}^{2}+\ldots+\mathbf{A}^{\mathbf{n}}\right)(\mathbf{I}-\mathbf{A}) \Delta \mathbf{Y}=\Delta \mathbf{Y}$

Then it must be true that $\left(\mathbf{I}+\mathrm{A}^{1}+\mathrm{A}^{2}+\ldots+\mathrm{A}^{\mathrm{n}}\right)=(\mathbf{I}-\mathbf{A})^{-1}$.
That means: We can approach the infinite round-by-round analysis with the Leontief inverse

Because of the direct effect

- Values of the main diagonal of Leontief inverse must be greater than 1

Graphical representation of system solution

$$
\begin{aligned}
& \text { In 2-sector model, the system of } \\
& \text { equation is: }
\end{aligned}\left\{\begin{array}{l}
\left(1-\mathrm{a}_{11}\right) \mathrm{X}_{1}-\mathrm{a}_{12} \mathrm{X}_{2}=\mathrm{Y}_{1} \\
-\mathrm{a}_{21} \mathrm{X}_{1}+\left(1-\mathrm{a}_{22}\right) \mathrm{X}_{2}=\mathrm{Y}_{2}
\end{array}\right.
$$

Graphically, we need the solution in Quadrant I. Solution for both inputs must be positive.

Both equations can be written as:

$$
X_{2}=f\left(X_{1}\right)
$$

In order to have solution in Quadrant I, the gradient of each line must satisfy certain conditions

The conditions for solution

Two line equations:

$$
\begin{array}{cll}
-a_{21} X_{1}+\left(1-a_{22}\right) X_{2}=Y_{2} & \rightarrow & X_{2}=\frac{1}{\left(1-a_{22}\right)} Y_{2}+\frac{a_{21}}{\left(1-a_{22}\right)} X_{1} \\
\left(1-a_{11}\right) X_{1}-a_{12} X_{2}=Y_{1} & \rightarrow & X_{2}=\frac{1}{a_{21}} Y_{1}+\frac{\left(1-a_{11}\right)}{a_{12}} X_{1}
\end{array}
$$

Must satisfy that:

$$
\begin{aligned}
& \frac{1-a_{11}}{a_{12}}>\frac{a_{21}}{1-a_{22}} \\
& \underbrace{\left(1-a_{11}\right)\left(1-a_{22}\right)}_{\begin{array}{c}
\text { Two components } \\
\text { Must be positive }
\end{array}}-a_{12} a_{21}>0 \\
& \begin{array}{c}
\text { This is determinant of matrix } \mathbf{A}, \\
\text { so that }|\mathbf{I}-\mathbf{A}|>0
\end{array}
\end{aligned}
$$

Hawkin-Simons Condition

