The Design of Everyday Things.

(Donald A. Norman)

The Design of Everyday Things (previous edition was named POET the Psychology of everyday things), is about the human psychology, its limitations, the psychology of everyday things and keeping the human psychology in mind, how they interact and react to the everyday things. This book stresses on the need for better-designed products keeping in view human beings who are prone to error, and rely on external queues for memory. The design should provide hints and guidance for the average user and should provide the user to form a simple model of the product as intended by the designer. For a software developer this book provides the insight and considerations for creating the GUI and GUI flow, since in most cases the GUI is the part of software to which the user interacts with.

Principles and Rules should be taught

After reading this book I was convinced that there should be at least one course for GUI design principles for a CS curriculum. Since it is the end user for whom we are working to make a product, there should be a course, which teaches software professionals these principles and ethics about design. Even though the modern GUI development tools provide a framework for GUI designers and software developers to put an interface up, but I have found that every time a developer has to re invent the wheel while he designs the flow and constraints and controls in his GUI and backend. These simple principles should be taught to a professional. For example if a user does not have privileged to perform an operation he should not be presented with a “Button” to do that operation or at least be shown a message that he is not authorized to do such a thing. This is something basic, and every designer has to rethink about it. Such controls should be standardized.

Is it possible in real life?

I think that the way companies are structured administratively also plays a major role, how much software designers and developers can respect the end customers needs and make a product, which is psychologically perfect for them. For example the project in which I work, an army of system engineers bridges the customers and development community. The system engineers think of an interface, which they think is most suitable for the user. They write down their requirements and specification. Developer makes the proto type, convinces the system engineer that the way he did it was the right way. System Engineers get convinced. Developer completes his work. The product is shown to end-user. There are rounds of modification requests from user for developers and system engineers. The production deadlines approach closer. Top management is tense and wants the product to go in time. They tell the users that in the given time they can only solve the “Critical” issues, given the issues of budget etc., we will look into trivial issues in the next release. The user-unfriendly piece of software goes into production. The conclusion I draw is that the users have to pay for the enhancements and evolution. Otherwise they might have to live with the shortcomings of the imperfect design.

Would Competition make it better?

The product I work for is exclusively for a set of customers. There is hardly any external competition. Even if there were to be competition, the competitor would have to break through a lot of hierarchies of company beurocracy to be able to get access to the users and offer them an alternative. But there are areas where the competition is tough, and to get the competitive advantage a company needs to “sell” its product. Simplicity and ease of use could serve as the edge. I consider google to be my best site, because it is so easy to use, yet so powerful.

But like many aspects of life this has a curve to it. After a product reaches the optimal point, competition drives the need for more features to the product. The product gets cluttered and harder and harder to use. Also people fancy having complicated equipment, since that impresses people, even though they might not benefit from them.

I think industry has made great progress

The first computer my father bought was an Xt in 1988 in Pakistan. Folks in my family and friends thought a person needs to “learn” to use a computer. I read a few books and manuals about “Dos” commands. I also took a class in using lotus notes and word star and the commands for usage. Everybody including myself thought that it was a great accomplishment for my age to know all that. I had to learn all that!

After about 6 years, the first day of my undergraduate, I was introduced to windows, 486 and mackintosh machines in our undergraduate computer lab. I was fascinated! I hardly had to learn anything. The first week’s assignment was to use Microsoft word and Excel. I had to take a short computer tutorial on mouse usage and I was all ready for work. I hardly had to learn any thing. For every operation there was an icon. All I had to do was press it. Though I admit there is some skill involved in using the mouse but that takes a few days to become proficient at. I came home and told that computers were the easiest things to use, even kids can write documents. I had to buy a new computer to convince everyone at home. Even my mother can write emails to me these days!!

Manuals

Can manuals be enough to cover up for bad design? I think people refer manuals when they are stuck or do not have a clue to use the system. From my personal perspective the application should be manual for itself. Though this is an oversimplification, since many applications require users to be trained (like CAD applications). But even for domain specific applications the applications should be self explanatory, for a domain expert to understand it. The product should have guiding helpful text, like the tool tips and text in the bottom bar telling the user what to do and what are his options.

It is also very important how these simple help aids are designed. If they turn out to be brain twisters for users then a feature of a product might turn to be less used since most people may not be able to understand it.

If manuals are think and too techie they might not be read, since users may get frustrated and just give up with the product. Manuals need to user friendly and more graphic i.e. easy to take by users.

The best manuals I have read is with the handspring visor (pda). The manual is short, too the point and graphically illustrates the user what to do. And the user doesn’t have to read all of it. Moreover the visor itself is quite explanatory to the user. The device itself guides the user and takes him through a tour of the functionalities of the pda when a person uses the device for the first time. One need not be a techie to use a hand held.

Distributed monster will have title notes for every page of the application. The corporate registration (demo on http://www.geocities.com/distrimon) is the process where a employee may register his company for the service. This requires the user to go through various steps of the registration process. Every form screen is presented with an explanation for the user what the screen is about and every field is labeled with the kind of information is expected of him. JavaScript will be added so the user is guided on the spot of he entered the wrong type of information on the spot. Similarly tool tips on the submit button would indicate to the user that the action of this button will lead him to the next screen.

The application should provide the user enough information to go through the application without a manual. The manuals should focus on difficult interfaces, or complex procedures, and in troubleshooting rather than to be used to explain badly designed applications.

Could technology limit good design?

I made a web based interface for my university library. I worked on simple search screens, which allowed search by titles, or search by authors etc. But I also had to work on a “Complex Search” screen as well. The complex search screen was to allow a layman user to be able to enter any search criterion. This was to be designed for a person who did not know sql, and wants to search using different criterions. For example search on all the books with title having “Java” in the subject category “security” and the author is not “Tom” and the publication date is after 1995. Such a screen was to be designed using the standard HTML GUI components (naming the text box, check box, drop down list, radio boxes). Also the layout was to be such that the user was not to go through a set of forms to create the query, but somehow the user should specify his search criterion from one screen. Using applets for creating the screen was one option. But the jdbc drivers for postgresql were not stable at that time. Also java script was not that powerful at that time either to help me out. The problem broke down to making a web based sql generator using the bare minimum gui components provided by html.

The solution implicitly expected a user to know the Demorgans Theorem if he were to make a query very complex.

Figure 1 shows how I laid out the “Complex Search” web form for the library database. There was a set of text boxes for a user to enter his search texts. For example if a person wanted to search Subject=”Java” OR Title=”Java”, he would first type in Java in the subject and Title text fields. Then he would formulate his query by selecting Subject in the first drop down list, OR from the second drop down list and Title from the 3rd drop down list. If the user made an error selecting from the options list he would be presented with the error message on the next screen and asked to “reformulate” his query. If it were a query like !(Author=Jim and Title=Java) we expected the user to reformulate such a query to !Author=Jim OR !Title=Java. I was able to convince the CS faculty that this was the only optimal solution given the technology options we have for a user to be able to form complex queries on the library database. But many of the people in the library were not very happy with this interface since it required a little bit of training to use. Plus a user had to be literate of Boolean logic. But on the other hand this screen was not meant for the every day search. But the library folks had no choice but to accept it, since that was the only web solution that they could get.

Apart from knowing Boolean logic there were some flaws in the interface, which made it difficult for a user. There was no way to make the drop down link to the text boxes. For example a user could have typed text in the subject field but selected the author field in the drop down box. There was no immediate interlocking of the two for the user to know that he was making the mistake. He would only find out once he submits the form and gets an “informative” error message. Also a user could select Author from the first drop down list and Title from the second drop down list, when he should have selected a Boolean operator like AND or OR from the second list and Title from the third drop down list. A user was prone to make mistakes of constructing the logical expression by the usage of the drop down lists. There was no immediate warning or programmed controls in the screen to warn him if he was making a mistake. He would only find out his mistake once he submitted the form.

If we had been using Applets to form such an interface there could be many options in making such an interface. Once solution could be to create the text fields dynamically as he selected the search operators.

How would better technology have helped

If I were to enhance the interface today, I could use javascript to guide the user. For example if the user were to type in the author field I would automatically have selected the Author in the first drop down list. If the user were to select another field like title, I would immediately pop up asking him to select for AND or OR. If the user selected AND I would have selected AND in the second drop down list through javascript code. And when the user had typed some text in the Title field I would automatically selected Title in the 3rh drop down box. This would have aided the user in understanding how this screen works without having to go back and forth. If a user were to select a field from the drop down box which had no text typed I could pop up a error message that the text field has to be populated before selecting that field in the drop down box. These enhancements would have made it easier for the user.

Knowledge in Head vs. Knowledge in the World

A product should provide the maximum visual clues to the user as what to do. For example a person does not need to remember all the keys on the keyboard, since keyboards have the letters written on them. The letters on each key is the knowledge in the world. If a person had to remember all the keys in his head, keyboard would have been a very difficult thing to learn and use. Similar software example is when a person wants to save a document he clicks the disk icon, a clue by the product. If the user had to save it by some combination of the keys like Ctrl S, this knowledge had to be in the users head, and requires a user to read a manual. A windows tip (a yellow strip explaining the use of a button) is good information for a user for to understand the functionality. Distributed Monster has a simple interface with few options at every step. For example when a user logs in to the system he is provided by a menu of options. Each menu is self explanatory along with tool tips on every option link. This is enough of a visual clue for the distributed monster user to decide what option to take.

In the example of my library project, a user had to know have the knowledge in his head, i.e. the way to select the correct drop down boxes in the right sequence. Since the user had to refer to a user guide and remember or learn to use it, it made it difficult for new users to understand the interface.

Visual Clues / Affordances

The shape, material, smell layout all give clues to a user what to do. These clues are learnt by user, or form a natural temptation to the user. For example jails with glass windows are naturally prone to be broken by the prisoners. Similarly a protruding object of shape is prone to be pressed. Example of this in software is that buttons tend to protrude out, giving the user a clue that it may be pressed. While if the button is grayed out or in a depression the user may get the clue (specially if nothing happens when he presses it), that the button is inactive. Distributed monster relies on the standard GUI components provided by html. The buttons, drop down menus and links are standard for a web user and hence provide the visual clues for actions. If a button were to be put inactive, the button will be grayed out, standard used in html gui. The appearance of the button (as depressed and lighter in color) is an indication for the user that a particular function is disabled. Also emails, which are already read, are not highlighted in the Inbox for hotmail. This gives the user the clue that he has already read the email. Similarly the links for all the new resumes in a employees account will be highlighted as colored.

Designer Model vs. User Model

It is important that the product gives the user the image of the correct model. If the user has the correct model of the product, he may use the product correctly. One of the classic examples the book gives about the confusion of models is the thermostat at home. Many users think that thermostat as a valve model i.e. if you want to get your home warm quickly set the thermostat to the highest (as if the air conditioner would throw more hot air into the room). But this model is an incorrect one. The air conditioner throws a constant amount of hot air and stops throwing it till the temperature reaches the value set on the thermostat. If a user who had studied thermostats at school, would have easily figured the correct model for his air conditioning system and correctly used the thermostat. An example in windows is the disk defragmantation (moves all the scattered files into one consecutive block). If a user is running the windows defragmantation process and he also starts a software installation process, the defragmantation has to start all over again. If the user understands the defragmantation process, he would understand why the installation of new software interferes with the defragmantation process. The installation of the new installation puts files at different locations available on the disk. While the defragmantation process is trying to bring all the files into one block.

Social Pressure

The book talks about people feeling shy in telling and complaining about problems in a product, since they think they are the only ones having the problem. They think they might be lacking the intellect to properly use the product.

I recently developed an interface for searching different equipment locations by different criterion i.e. by street name, city, state, etc. If a user types text in multiple fields the search is “ANDED” for the multiple fields. Since the user does not know that this is happening it created some confusion. If a user pressed the back button and typed text in another field and forgot to clear the text in the other fields and submitted the form, the user might not see any result at all. This was because the search criterion also included the fields, which the user forgot to clear. It happened to me a once or twice, but I thought it just happened to me. I think the testers also must have thought the same if they had encountered it. But this became a major issue and the users thought that the application as a whole was unstable since it would not provide consistent results, even though the user made a mistake in typing the search criterion.

This was also partly because the users were not able to see the intended model. It was not evident from the GUI that the search fields are “Anded” in the backend to form and execute a query. If they understood the model they would have figured out what was going wrong, even though this application was developed by the users requirements and desire.

The solution to this problem was to automatically clear all the search fields if the user pressed the back button, so the user would be forced to populate the intended search fields.

To Err is Human

A designer must not forget human beings are prone to error. They cannot be programmed to work correctly nor will they exactly follow the product documentation. Therefore a designer cannot leave something to a user “Oh I know the user would do this correctly”, because the user will always make a mistake. For example of there is a visible button on the radio set which resets all the channels, often a user may accidentally touch that button, even though the user knows what that button does. A good design would warn the user and prompt the user for reconfirmation or place that kind of button where it is not so easily pressed by accident. Users should always confirm irrecoverable operations. An example of this is when we delete a file, windows prompts us to make sure. There should also be a recovery mechanism for certain operations. Example is the Deleted Item in Outlook where users may recover deleted emails, since more often than not a user needs to look up at a deleted email. These are good features keeping in mind the human error factor. If a user starts to rely on this recovery mechanism the recovery mechanisms should also be reliable. If the recovery mechanism fails to work consistently, i.e. a particular deleted email from your boss is not recoverable; it could be fatal for the user. The designer should minimize the price of making an error by the user.

Confirmations help?

I think deleting, updating and sending requests to other systems, are the most dangerous buttons. They should be accompanied by confirmations. But the question is that would the confirmations help? If a user has already decided on an action, and he knows there will be a prompt for confirmation he might just pass the confirmation without even rethinking. Since the user may make the mistake in spite if the confirmation, there have to be measures where the user may recover or retreat from a transaction. An example is placing an order at amazon. The user at the time knows what he is doing. But an hour later he feels he dose not need the book. The user is able to cancel his order and the company can credit his card.

A Real Bad Design I Worked On

I was working on a project where equipment engineers could query the status of a network switch. I was to write a Corba gateway for a applet based GUI. I had to communicate to an application X, which in turn communicated to the actual equipment using the equipment identifiers and port identifiers. It took a while for this application to return the statuses of all the ports. So a user would select the equipment from the GUI, the GUI would in turn send the equipment id to my gateway and the gateway would route this request to the application X. The gateway would also generate a TAG and send it part of the request and return the GUI that the query has been placed with the system and one should try the same query again after a few hours.

The gateway would also store the equipment id, TAG, the HR id for the person who made the request. So when the user came back after a few hours and made the query for the same equipment id, the gateway would figure out the TAG using the HR id and the equipment id and query application x for the status. If the application x had completed the query it would return that status that query was completed or say query still in progress. If the completed was completed the gateway would set the status as completed against that tag and then the network engineer could browse the equipment hierarchy and view the updated port status.

If the user went again to send the same query, it would reinitiate the query, right after the above process. The gateway was maintaining an implicit state for each of the queries and from the GUI’s perspective the same screen was being used to initiate a new query, query the status of the query, getting the confirmation that the “earlier” query was complete. This implied the user had to remember what he had been doing, in order to understand the messages, since they were delivered through the same interface. The gateway was not only acting as a wrapper application but also a state maintaining system. Since the users did not understand what was the application model it caused a lot of confusion. This was fixed by carefully adding the tag id and equipment id references in the return messages, so the user could tally the messages with his previous actions.

Dummy Prototypes

I feel that making dummy prototypes us a very useful way of interacting with the users. By making the interface, which fully simulates the real application, is a useful way of getting feedback from the users. Since the GUI prototypes costs way less than the full fledge application and is very easy to modify, especially html markup screens. It also helps as an aid for the designers and developers to visualize the application and problems that may occur. By taking the users through this dummy prototype the users may quickly identify the problems from their perspective. This could avoid the costs of fixing the problems way down the road, when the problem may be very difficult to fix. This could also serve as a discussion media between the customers and the development team, since they can concretely talk about the needs, rather than a vague image of the application. By using the prototype, the users can also be held responsible for their requirements, since they knew what they were going to get all along. If the GUI is shown at a later stage they may say they didn’t want this and that. A dummy GUI can keep both the development and customers team right on track in terms of requirements and would reduce the amount of documentation for requirements, which could also be an additional vague area for a developer. If the users can get the use cases and GUI right, it would be a relative straight path for the application developers to “fill” in the code. But in many scenarios this is not possible. An example is the gateway application I worked on where the GUI already existed and the application X existed and the gateway had to provide the solution between the two.

Conclusion

Will it be ever possible to live in a perfect world, where every thing is well designed and easy to use with maximum functionality? I don’t think it would ever reach perfection, though we can reach closer. The development tools along with wizards and templates help developers making better interfaces, but there is a lot of room for standardization. There is always a drive by competition to make things fancier and hence difficult to use. On the other hand making a product perfect may add to the cost of the product. But by teaching software developers and designers design principles as part of their technical training could automatically bring a great change in the every day software.

Author

Title

Subject

Publication

Date

… etc

Author

Subject

Title

Date

Publication

NOT

Author

Subject

Title

Date

Publication

AND

OR

NOT

>

<

Author

Subject

Title

Date

Publication

AND

OR

NOT

>

<

Author

Subject

Title

Date

Publication

AND

OR

NOT

>

<

….

Figure 1

 Search

Applet GUI

Gateway

Application X

EMS

Network Element

Figure 2

