Hardware Acceleration of the JPEG2000 Kakadu
Library

Michael Dyer, Amit Gupta, Natalia Galin and Saeid Nooshabadi
School of Electrical Engineering and Telecommunications
The University of New South Wales, Sydney, Australia

Abstract— The NIOS 1II soft core processor from Altera allows
for the easy interfacing of new peripheral blocks to existing soft-
ware. Using the Kakadu software implementation of JPEG2000,
we have added dedicated hardware block encoders to produce
an accelerated implementation. Simulation demonstrates that
our simple architecture can provide a speedup of 2.55 times,
compared to a pure software implementation. The use of both
hardware and software allows for an implementation of the entire
JPEG2000 standard. We also identify future options for further
hardware acceleration of the Kakadu library.

I. INTRODUCTION

EBCOT

amee . T [
I"'ﬁ. T P Cvawizaties } h’ e |* o] [F

bk (il

Coppressed
| B shrzmn

Ewie Lhisiosaen
Lipbrmesbon

Fig. 1. Block Diagram of JPEG2000 Compression Scheme

JPEG2000 [1] is a relatively recent image compression
scheme. The heart of the compression scheme is the algorithm
known as Embedded Block Coding with Optimal Truncation
[2]. EBCOT is responsible for modelling and entropy coding
independent blocks of quantized Discrete Wavelet Transform
(DWT) coefficients. This algorithm is made up of two funda-
mental blocks, namely the block coder (termed Tier-I) and
the rate distortion optimisation system (Tier-II). The block
coder in turn is built from the bit-plane coder and the MQ
variant of the arithmetic coder. The bit-plane coder scans
through a block of coefficients in a bit-plane oriented fashion,
producing a context for each bit. This context is used to drive
the probability model of the MQ coder. A block diagram of
the scheme can be found in Figure 1.

Due to its bit-based operation, software implementations
of the block coding algorithm are less than ideal. Previous
work by our group [3], [4] has developed efficient hardware
implementations of both the bit-plane coder and the MQ coder.
These blocks have been combined to produce a hardware block
coder.

The majority of research into JPEG2000 hardware has
concentrated on the efficient implementation of individual
processing units shown in Figure 1. Little has been done
on combining these improved systems to produce an effi-
cient system capable of implementing the entire JPEG2000
standard. Existing hardware implementations of the standard
such as [5], [6] use limited tile sizes and choice of transform

in order to reduce implementation complexity. Our approach
to this is to use existing software libraries and interface
them to efficient implementations of the processing units.
This codesign approach allows for the partitioning of the
compression scheme into operations that are more suited to
cither hardware or software. In particular, operations such
as the Discrete Wavelet Transform and EBCOT, which are
difficult to implement in software can be moved into dedicated
hardware. This also allows for the parallel implementation of
these tasks, providing even greater speed. Things more suited
to software, such as packet formation and file formatting,
can be left in softwarc and run on a simple processor. This
approach has the major advantage of being able to implement
the entire JPEG2000 standard, without limitations. Of course,
this does require more resources in terms of memory.

This work uses a port of the Kakadu software implementa-
tion of JPEG2000 (provided with [7]) on the Altera NIOS II
processor. This implementation is profiled to determine which
of the compression operations consumes the most processor
time. The major operation, namely block coding is imple-
mented in hardware using our previous work and interfaced
to Kakadu. This is achieved by integrating the hardware block
coder into the NIOS II processor as a custom peripheral. We
are able to demonstrate the tremendous improvement that a
dedicated hardware block coder can make to the implemen-
tation of JPEG2000. This then allows us to identify future
candidates for hardware optimization.

II. SOFTWARE PROFILING

The Kakadu library was ported to the NIOS II processor
and used to compile a simple compression application, using
full optimization. The 8 bit gray scale ISO test image Cafe’,
with an image size of 2560 x 2048 pixels was used to test the
software. The truncated results of the GPROF profiling tool
are shown in Figure 2.

Flat profile:
Each sample counts as 0.001 seconds.
% cumulative self
time seconds
28.80 48.13
17.23 28.79
15.62
3.89
3.54
3.48
3.12
2.90
2.89
2.69
2.47

self

s/call
0.04 0.08
0.00

total

calls

1286

9420 0

26.10 8134 0.00 0

6.51 4960 0.00 0
5.92

0

[¢]

0

seconds
48.13
76.92
103.02
109.52
115.44

name
encode ()
.00 encode_cleanup_pass()
.00 encode mag_ref pass()
.00 perform vertical_ lifting step()
__floatsidf ()
.00 transfer_bytes()
__pack_d()
.02 horizontal_analysis ()
.92 encode_row_of_blocks ()
__unpack_d ()
push (kdu_line bufé)

121.25
126.47
131.32
136.16
140.64
144.77

5.82 2560 0.00
5.22
4.85
4.83
4.49
4.13

4960
122

0.00
0.04

4960 0.00 0.00

0.00 167.08 0.00 1 0.00 133.29 main()

Fig. 2: GPROF profile of a pure software compressor

According to the profile, compression takes 167.08sec,
of which block coding accounts for 103.02sec. This ac-
counts for 61.65% of the total processing time. The func-

tion "encode ()" is called for each block, thus there
arc 1286 blocks coded by the compressor for this im-
age. The functions "encode cleanup pass ()" and

"encode mag ref pass ()" are called in turn by the
"encode ()" function. Readers familiar with Kakadu may no-
tice the absence of "encode sig prop pass ()", as this
was inlined by the compiler into the "encode ()" function.
It is obvious from this profile that our optimizations effort is
well placed.

x[2n]

o

}\ i
X[2n-1] ~(+) _

Fig. 3: Individual DWT lifting step

instructions, a combination of multiply, shift and accumulate.

The functions "perform vertical lifting step ()"A custom instruction should be able to decrease this to one

and "horizontal analysis ()" are also possible
candidates for optimization. These functions are used to
perform the DWT on the image. These account for 11.36 sec
of processor time.

III. EXISTING HARDWARE
A. Bit Plane Coder

The bit plane coder developed by our group [4] is based on
the 2 state memory system developed in [8]. This block coder,
unlike its predecessors, processes an entire stripe column per
clock cycle. This means that up to 10 context data pairs may
be produced in a single cycle. This coder is also generic -
it can process a block in cither normal or causal mode [1].
Additionally, due to its concurrent column processing, it can
produce on average 1.1 context data pairs per cycle, compared
with 0.7 context data pairs of the best alternative architecture.

In order to couple this system to the arithmetic coder, a
special context buffer was developed [9]. This buffer is used
to prevent excessive stalling of the bit plane coder while the
arithmetic coder processes bursts of context data pairs.

B. Arithmetic Coder

In order to enable the use of a bit plane coder that produces
more than one context data pair per clock cycle, new arithmetic
coder architectures were required that absorb this high symbol
rate. Because of the sequential nature of the MQ coder
algorithm, producing hardware MQ coders that can consume
one or more context data pairs per clock cycle presents a
significant challenge.

Our group has produced multiple architectures each capable
of consuming more than one context data pair per clock cycle
[10]. These coder architectures present a varicty of design
choices. In particular, the use of a brute force coding technique
with simplified byte emission, allows for the coding of 2
symbols per clock cycle, whilst maintaining a comparable
critical path to that of the block coder.

C. DWT

Two possible optimization methods have been identified.
Firstly, the lifting step itself (Figure 3) may be implemented
as a custom ALU instruction in the DWT. The step must
be performed four times for each pair of input samples.
The lifting step itself consumes approximately 5 assembly

or two instructions. Alternatively, the entirc DWT process
could be moved into a custom peripheral. Our group has
implemented a custom ALU "step" instruction for the NIOS
IT processor, and is currently completing a complete DWT
engine.

IV. PROPOSED ARCHITECTURE

The Altera NIOS II soft core processor [11] is an ideal
platform for interfacing new hardware to existing software.
The processor is synthesizable onto the Stratix range of
FPGAs, allowing for ’system-on-programmable-chip’ (SOPC)
designs. The NIOS processor has two separate bus masters,
one for instructions and onec for data. The processor uses
Avalon Bus Specification [11] for implementing the system
bus. This bus architecture uses a switching fabric, allowing
multiple masters to use the same bus simultancously, as long
as they are not accessing the same physical device. It also
has the added benefit of allowing peripherals to operate at a
different clock frequency to the bus master.

Figure 5 shows the proposed NIOS II SOPC configuration.
The development kit used to test this architecture was fitted
with 16MB of SDRAM, and 2MB of SRAM. Individual hard-
ware block coders (BCs) are connected to the bus directly and
via DMA controllers. The direct connection is used to transfer
control and status information, as well as compressed data. The
DMA access is used to transfer code block coefficients into
the local code block RAM of each BC (sec Figure 6).

In our proposed architecture, the SDRAM is used to hold
code and data (the ’cafe’ image used to test the system was
embedded as a C array and compiled into the program). The
2MB SRAM was used as special storage for codeblock objects.
Kakadu is a single threaded library, and only requests block
coding when a row of blocks is ready for processing. Thus
we can be assured that while Kakadu is waiting for the block
coders to complete processing, the NIOS processor will only
be accessing the SDRAM. Thus, the DMA controllers will
have free access to the SRAM, allowing for uninterrupted burst
transfers of block coefficients into the block coder peripheral.

The block coder developed in [4] has certain data require-
ments the demand special consideration. As mentioned, block
coding is a bit-based operation. The block coder processes
a code block in a bit plane fashion. First, the MSBs of each
coefficient are coded, followed by the next most significant bit

Stripe column .
Context window

/
I
11
i

Bit plane

Code block
Fig. 4. Code block partitioning

and so on. Within each bit plane, the codeblock is divided into
stripes, and these stripes further divided into stripe columns
of 4 bits (seec Figure 4). Each stripe is processed in a raster
scan fashion. The bit plane is also divided in to three passes,
namely the Significance Propagation, Magnitude Refinement
and Clean Up passes. The bit plane coder produces a context
for each bit, based on its own state and the state of its 8
immediate neighbors. This context, along with the bit value
is passed to the MQ Coder for entropy coding. Each bit
may belong to only one pass. For efficient operation, our bit
plane coder requires that a stripe column be provided during
each clock cycle. The code block coefficients must then be
reorganized into stripe columns in order to be processed by
the bit plane coder.

Each code block coefficient is 16 bits wide, however to
better utilize the bus, the code block ram uses a 32 bit data
bus. The "reorg" unit of the block coder performs the re-
quired reorganization of code block coefficients into bit plane
columns. The coefficients are stored in row-major fashion in
memory. Thus a single 32 bit read will yield two coefficients
from neighboring stripe columns. From these two coefficients
two bits are produced, corresponding to the current bit plane.
These two bits are written into two stripe column registers, in
the correct position. When the column registers are full, they
are written into the FIFO, ready for processing by the bit plane
coder. In this way, we can produce two stripe columns every
four clock cycles. However, as the bit plane coder requires a
column every cycle, the "reorg" unit must be run at least twice
the clock rate of the bit plane coder.

Figure ?? shows the custom instruction logic for implement-
ing the DWT step. The instruction format provides for two 32
bit operands (A and B) and one 32 bit result (R). This is not
the complete implementation as shown in Figure 3. We have
developed this simpler step based on the original instructions
actually performed by Kakadu. The custom instruction per-
forms the first add and multiply of Figure 3 and then truncates
fixed point result.

V. RESULTS

The proposed system was synthesized utilizing a single
dedicated block coder. Tables I and II show the synthesis
results for the block coder and NIOS processor respectively.
As the reorganization system must run at least 2 times faster
than the bit plane coder, for the following analysis we assume
that the reorganization unit is clocked at over 90 MHz, and
that the bit plane coder is clocked at 45 MHz.

NIOS 1l

| —
gl

>
% —DMA— BC
16MB H%
soRAM“TIE | T T
w {
a
2MB =
SRAM |* 7| ~DMA—> BC
A
Fig. 5: Proposed NIOS II SOPC Configuration
g P ¢
- Relégiilst‘:ter) FIFO
! I
< Bit
Curl Plane > MQ
Coder
FSM ‘—l Coder
t
4 W
cgig Blgz(li —>{ reorg —* FIFO
RAM

Fig. 6: Block Coder Peripheral

The bit plane coder will take, on average, CY C'gc = 46080
cycles to process a code block. In addition to this, each code
block contains 64 x 64 = 4096 16 bit samples. These samples
must be transferred across the avalon bus. As stated in Section
IV, we can safely assume that the bus will be free for this
transfer. This means the number of cycles taken to transfer
the samples, using a 32 bit bus is CYCpya = 255 = 2048
cycles. If Fipe and Fpjra are the block coder and the avalon
bus clock frequencies, the time taken to process a code block
is then

CYCBC CYCD]\,{A
Tgc =
Fpce Fpma
_ 608 10° 2018
T 45 x 108 50 x 106

=1.06 x 10 3 sec

We can apply these results to the software profile in Section
II, where we saw that the Cafe test image requires 1286 code
blocks to be processed. The total time required to code the
code blocks from Cafe is then Tpc,cafe = 1286 X 1.06 X
1073 sec = 1.37 sec. The total time now taken to process the
image is Tcape = 167.08 — 103.02 4+ 1.37 = 65.43 sec. The
estimated speed up of the compression scheme for this image

A[31:0]

A[31:16]

B[31:0] . . R

A[15:0]

is then S = L8298 — 2 55 times.

Comparing the assembly language generated by the com-
piler for the DWT analysis stage of Kakadu, we note that the
number of instructions inside the lifting loop has decreased
from 5 to 2. This corresponds to a 40% reduction in the

number of instructions inside the lifting analysis loop.

TABLE I:. Block Coder Synthesis Results

logic elements | 3998
reorg clk 99.91MHz
bit plane clk 51.22MHz
memory bits 90528

TABLE II: NIOS Processor Synthesis Results
logic elements | 4919

clk 50MHz
memory bits 71808

VI. FURTHER WORK

This section discusses some of the speed up techniques that
can improve the systems performance. The techniques include
multithreading of Kakadu, implementation of the DWT engine
as a hardware unit, and multiple block coders.

A. Multithreading Kakadu

Work on multithreading the Kakadu JPEG2000 library is
progressing. With the addition of threads, the Kakadu will be
able to support multiple block coders and DWT engines oper-
ating concurrently. The single threaded Kakadu library must
wait for a partial DWT to complete before beginning block
coding, and then must wait for block coding to complete be-
fore resuming the DWT. With multiple threads and dedicated
hardware, these two tasks can be performed simultaneously.
In this way, the only tasks the NIOS processor need perform
would be sequencing and control and file creation.

B. Parallel Block Coders

This work has depended on average values for the determi-
nation of the possible speed up time. Further work is investi-
gating the true statistics of block coding time, such that a more
accurate model of system performance may be obtained. As
more block coders are added, bus throughput becomes more
and more significant, and will eventual prove to bottleneck the
block coding speed and hence limit the number of block coders
that can be supported by a single processor. The bottleneck
occurs when the time taken to load all code block RAM in
each of the available block coders exceeds the block coding
time of the first loaded block coder. For NV block coders,
this occurs when CY Cge < NCYCpra. Using the results
of our proposed architecture, we predict that the maximum
number of block coders is N < [45089| — 22, Using this
number of block coders, block coding time would be reduced
to T'Bc,cafe = 2—12 x 1286 % 1.06 x 10~ 3 sec = 0.06 sec. This is
an extremely simple estimation of the number of block coders
that can be supported and takes no account of the statistical
variation of block coding time. The investigation of the true
statistics of block coding time will provide a more accurate

analysis. Additionally, the amount of speed up obtained by
parallel block coders will be relatively insignificant to that
achieved from moving from a pure software implementation
to an implementation using a single hardware block coder.
The improvement however, will prove beneficial when other
parts of the compression scheme are moved into hardware,
and when Kakadu supports multithreading.

C. DWT

It may be possible to more tightly couple the DWT to
the block coder peripherals, removing some of the NIOS II
processor overhead. Tighter coupling may make better use of
parallel block coders, as it will remove much of the redundant
memory overhead used in copying DWT coefficients. It will
also allow for the parallel operation of these two units.

VII. CONCLUSION

We have performed a profile of the Kakadu library when
run on the soft core embedded processor NIOS II. From this
profile we have identified those operations requiring hardware
acceleration. We have demonstrated that the use of dedicated
hardware block coders can be used to substantially increase
the speed of the Kakadu JPEG2000 software library, by a
factor of 2.55 times. We have outlined future work that will
further improve the speed of the Kakadu library running on
an embedded processor.

REFERENCES

[1] “ISO/IEC international standard 15444-1 JPEG2000 image coding sys-
tem.”

[2] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and
F. Ono, “Embedded block coding in JPEG2000,” in Proc. International
Conference on Image Processing (ICIP 02), vol. 2, September 2000, pp.
33-36.

[3] M. Dyer, D. Taubman, and S. Nooshabadi, “Improved throughput
arithmetic coder for JPEG2000,” in Proc. Internation Conference on
Image Processing (ICIP '04), 2004.

[4] A. K. Gupta, S. Nooshabadi, and D. Taubman, “Concurrent symbol
processing capable VLSI architecture for bit plane coder of JPEG2000,”
IEICE Transactions on Information and Systems, Special Section on
Recent Advances in Circuits and Systems, vol. E88-D, pp. 1878-1884,
2005.

[5] K. Andra, C. Chakrabarti, and T. Acharya, “A high-performance
JPEG2000 architecture,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, pp. 209 — 218, 2003.

[6] H.-C. Fang, C.-T. Huang, Y.-W. Chang, T.-C. Wang, P.-C. Tseng, C.-J.
Lian, and L.-G. Chen, “81MS/s JPEG2000 single-chip encoder with rate-
distortion optimization,” in Proc. IEEE International Solid-State Circuits
Conference, 2004.

[7] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression
Fundamentals, Standards and Practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[8] Y.-T. Hsiao, H.-D. Lin, K.-B. Lee, and C.-W. Jen, “High-speed memory-
saving architecture for the embedded block coding in JPEG2000,” in
IEEE' International Symposium on Circuits and Systems, vol. 5, May
2002, pp. V-133 — V-136.

[9]1 A. K. Gupta, S. Nooshabadi, and D. Taubman, “Efficient VLSI archi-

tecture for buffer used in EBCOT of JPEG2000 encoder,” in Proc. [EEE

International Conference of Circuits and Systems (ISCASS05), 2005.

M. Dyer, D. Taubman, S. Nooshabadi, and A. Gupta, “Concurrency

techniques for arithmetic coding in JPEG2000,” 2005, unpublished,

submitted to IEEE Transactions on Circuits and Systems L

Altera Corporation, “Nios I processor,”

http://www.altera.com/products/ip/processors/nios2/ni 2-index. html.

[10]

[11]

