

Monodisperse MFe_2O_4 (M = Fe, Co, Mn) Nanoparticles

Shouheng Sun,*,[†] Hao Zeng,[†] David B. Robinson,[†] Simone Raoux,[‡] Philip M. Rice,[‡] Shan X. Wang,[§] and Guanxiong Li[§]

Contribution from the IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305

Received August 22, 2003; E-mail: ssun@us.ibm.com

Abstract: High-temperature solution phase reaction of iron(III) acetylacetonate, $Fe(acac)_3$, with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe_3O_4) nanoparticles. Similarly, reaction of $Fe(acac)_3$ and $Co(acac)_2$ or $Mn(acac)_2$ with the same diol results in monodisperse $CoFe_2O_4$ or $MnFe_2O_4$ nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe_3O_4 can be oxidized to Fe_2O_3 , as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.

Introduction

Magnetic iron oxide nanoparticles and their dispersions in various media have long been of scientific and technological interest. The cubic spinel structured MFe₂O₄, or MO·Fe₂O₃, represents a well-known and important class of iron oxide materials where oxygen forms an fcc close packing, and M²⁺ and Fe³⁺ occupy either tetrahedral or octahedral interstitial sites.¹ By adjusting the chemical identity of M^{2+} , the magnetic configurations of MFe₂O₄ can be molecularly engineered to provide a wide range of magnetic properties. Due in part to this versatility, nanometer-scale MFe₂O₄ materials have been among the most frequently chosen systems for studies of nanomagnetism and have shown great potential for many important technological applications, ranging from information storage and electronic devices to medical diagnostics and drug delivery. Dispersions of magnetic MFe₂O₄ nanoparticles, especially magnetite (Fe₃O₄) nanoparticles, have been used widely not only as ferrofluids in sealing, oscillation damping, and position sensing² but also as promising candidates for biomolecule tagging, imaging, sensing, and separation.³ Depending on the chemical identity of M2+, the densely packed solid state form of nanocrystalline MFe₂O₄-based materials, on the other hand, can have either high magnetic permeability and electrical resistivity (for M representing one or the mixed components from Co, Li, Ni, Zn, etc.) or half-metallicity (for M = Fe), and may be a potential candidate for future high-performance electromagnetic⁴ and spintronic devices.⁵

To use MFe_2O_4 nanoparticles for future highly sensitive magnetic nanodevice and biomedical applications, a practical route to monodisperse MFe_2O_4 nanoparticles with diameters smaller than 20 nm and a tight size distribution (less than 10% standard deviation) is needed. A commonly used solution phase procedure for making such particles has been the coprecipitation of M^{2+} and Fe^{3+} ions by a base, usually NaOH or $NH_3 \cdot H_2O$ in an aqueous solution⁶ or in a reverse micelle template.⁷ Although this precipitation method is suitable for mass production of

[†] IBM T. J. Watson Research Center.

[‡] IBM Almaden Research Center.

[§] Stanford University.

 ⁽a) West, A. R. Basic Solid State Chemistry; John Wiley & Sons: New York, 1988; pp 356–359.
 (b) O'Handley, R. C. Modern Magnetic Materials–Principles and Applications; John Wiley & Sons: New York, 2000; pp 126–132.

⁽²⁾ Raj, K.; Moskowitz, R. J. Magn. Magn. Mater. 1990, 85, 233.

^{(3) (}a) Häfeli, U.; Schütt, W.; Teller, J.; Zborowski, M. Scientific and Clinical Applications of Magnetic Carriers; Plenum Press: New York, 1997. (b) Oswald, P.; Clement, O.; Chambon, C.; Schouman-Claeys, E.; Frija, G. Magn. Reson. Imaging 1997, 15, 1025. (c) Hergt, R.; Andra, W.; d'Ambly, C. G.; Hilger, I.; Kaiser, W. A.; Richter, U.; Schmidt, H.-G. IEEE Trans. Mag. 1998, 34, 3745. (d) Jordan, A.; Scholz, R.; Wust, P.; Fähling, H.; Felix, R. J. Magn. Magn. Mater. 1999, 201, 413. (e) Kim, D. K.; Zhang, Y.; Kehr, J.; Klason, T.; Bjelke, B.; Muhammed. M. J. Magn. Magn. Mater. 2001, 225, 256. (f) Pankhurst, Q. A.; Connolly, J.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167. (g) Tartaj, P.; Morales, M. P.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C. J. J. Phys. D: Appl. Phys. 2003, 36, R182. (h) Berry, C. C.; Curtis, A. S. G. J. Phys. D: Appl. Phys. 2003, 36, R198.

^{(4) (}a) Fannin, P. C.; Charles, S. W.; Vincent, D.; Giannitsis, A. T. J. Magn. Magn. Mater. 2002, 252, 80. (b) Matsushita, N.; Nakamura, T.; Abe, M. IEEE Trans. Magn. 2002, 38, 3111. (c) Matsuchita, Chong, C. P.; Mizutani, T.; Abe, M. J. Appl. Phys. 2002, 91, 7376. (d) Nakamura, T.; Miyamoto, T.; Yamada, Y. J. Magn. Magn. Mater. 2003, 256, 340.
(5) (a) Verwey, E. J. W. Nature 1939, 144, 327. (b) Zhang, Z.; Satpathy, S. Phys. Rev. B 1991, 44, 13319. (c) Anisimov, V. I.; Elfimov, I. S.; Hamada,

^{(5) (}a) Verwey, E. J. W. Nature 1939, 144, 327. (b) Zhang, Z.; Satpathy, S. Phys. Rev. B 1991, 44, 13319. (c) Anisimov, V. I.; Elfinnov, I. S.; Hamada, N.; Terakura, K. Phys. Rev. B 1996, 54, 4387. (d) Gong, G. Q.; Gupta, A.; Xiao, G.; Qian, W.; Dravid, D. P. Phys. Rev. B 1997, 56, 5096. (e) Coey, J. M. D.; Berkowitz, A. E.; Balcells, L. I.; Putris, F. F.; Parker, F. T. Appl. Phys. Lett. 1998, 72, 734. (f) Li, X. W.; Gupta, A.; Xiao, G.; Gong, G. Q.; J. Appl. Phys. 1998, 83, 7049. (g) Kiyomura, T.; Maruo, Y.; Gomi M. J. Appl. Phys. 1998, 83, 7049. (g) Kiyomura, T.; Maruo, Y.; Gomi M. J. Appl. Phys. 2000, 88, 4768. (h) Moore, R. G. C.; Evans, S. D.; Shen, T.; Hodson, C. E. C. Physica E 2001, 9, 253. (i) Versluijs, J. J.; Bari, M. A.; Coey, J. M. D. Phys. Rev. Lett. 2001, 87, 26601. (j) Soeya, S.; Hayakawa, J.; Takahashi, H.; Ito, K.; Yamamoto, C.; Kida, A.; Asano, H.; Matsui, M. Appl. Phys. Lett. 2002, 80, 823. (k) Sorenson, T. A.; Morton, S. A.; Dan Waddill, G.; Switzer, J. A. J. Am. Chem. Soc. 2002, 124, 7604.

magnetic MFe₂O₄ ferrofluids, it does require careful adjustment of the pH value of the solution for particle formation and stabilization, and it is difficult to control sizes and size distributions, particularly for particles smaller than 20 nm. An alternative approach to monodisperse iron oxide nanoparticles is via high-temperature organic phase decomposition of an iron precursor, for example, decomposition of FeCup₃ (Cup: Nnitrosophenylhydroxylamine, C₆H₅N(NO)O⁻)⁸ or decomposition of Fe(CO)₅ followed by oxidation to Fe₂O₃.⁹ The latter process has recently been extended to the synthesis of monodisperse cobalt ferrite (CoFe₂O₄) nanoparticles.¹⁰ Although significant progress in making monodisperse Fe₂O₃ and CoFe₂O₄ nanoparticles has been made in organic phase reactions, there is still no general process for producing MFe₂O₄, especially Fe₃O₄ nanoparticles with the desired size and acceptable size distribution.

Recently, we reported a convenient organic phase process for making monodisperse Fe₃O₄ nanoparticles through the reaction of Fe(acac)₃ and a long-chain alcohol.¹¹ Our further experiments indicated that this reaction could be readily extended to the synthesis of MFe_2O_4 nanoparticles (with M =Co, Ni, Mn, Mg, etc.) by simply adding a different metal acetylacetonate precursor to the mixture of Fe(acac)₃ and 1,2hexadecanediol. Here we present detailed syntheses and characterization of Fe₃O₄ and related MFe₂O₄ nanoparticles (with M = Co and Mn as two examples) with sizes tunable from 3 to 20 nm in diameter. The process involves high-temperature (up to 305 °C) reaction of metal acetylacetonate with 1,2-hexadecanediol, oleic acid, and oleylamine. The size of the oxide nanoparticles can be controlled by varying the reaction temperature or changing metal precursors. Alternatively, with the smaller nanoparticles as seeds, larger monodisperse nanoparticles up to 20 nm in diameter can be synthesized by seedmediated growth. The process does not require a low-yield fractionation procedure to achieve the desired size distribution and is readily scaled up for mass production. The nanoparticles can be dispersed into nonpolar or weakly polar hydrocarbon solvent, such as hexane or toluene. The hydrophobic nanoparticles can be transformed into hydrophilic ones by mixing with a bipolar surfactant, tetramethylammonium 11-aminoundecanoate, allowing preparation of aqueous nanoparticle dispersions. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.

- (7) See for example: (a) Pileni, M. P.; Moumen, N. J. Phys. Chem. B 1996, 100, 1867. (b) Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J. J. Phys. Chem. B 2000, 104, 1141.
- (8) Rockenberger, J.; Scher, E. C.; Alivisatos, P. A. J. Am. Chem. Soc. 1999, 121, 11595.
- (9) (a) Bentzon, M. D.; van Wonterghem, J.; Mørup, S.; Thölén, A.; Koch, C. J. *Philos. Mag. B* **1989**, *60*, 169. (b) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. *J. Am. Chem. Soc.* **2001**, *123*, 12798. (c) Guo, Q.; Teng, X.; Rahman, S.; Yang, H. *J. Am. Chem. Soc.* **2003**, *125*, 630. (d) Redl, F. X.; Cho, K.-S.; Murray, C. B.; O'Brien, S. *Nature* **2003**, *423*, 968.
- (10) Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y.-W.; Park, B. H. J. Phys. Chem. B 2002, 106, 6831.
- (11) Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204.

Experimental Section

The synthesis was carried out using standard airless procedures and commercially available reagents. Absolute ethanol, hexane, and dichloromethane (99%) were used as received. Phenyl ether (99%), benzyl ether (99%), 1,2-hexadecanediol (97%), oleic acid (90%), oleylamine (>70%), cobalt(II) acetylacetonate, Mn(II) acetylacetonate, and polyethylenimine (water-free, average M_w ca. 25 000) were purchased from Aldrich Chemical Co. Iron(III) acetylacetonate was from Strem Chemicals, Inc. Tetramethylammonium 11-aminoundecanoate was prepared by titrating a methanolic suspension of 11-aminoundecanoic acid with methanolic tetramethylammonium hydroxide (both from Aldrich), evaporating the solvent under reduced pressure, and recrystallizing in tetrahydrofuran.

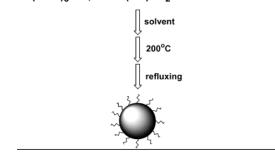
Synthesis of 4 nm Fe₃O₄ Nanoparticle Seeds. Fe(acac)₃ (2 mmol), 1,2-hexadecanediol (10 mmol), oleic acid (6 mmol), oleylamine (6 mmol), and phenyl ether (20 mL) were mixed and magnetically stirred under a flow of nitrogen. The mixture was heated to 200 °C for 30 min and then, under a blanket of nitrogen, heated to reflux (265 °C) for another 30 min. The black-brown mixture was cooled to room temperature by removing the heat source. Under ambient conditions, ethanol (40 mL) was added to the mixture, and a black material was precipitated and separated via centrifugation. The black product was dissolved in hexane in the presence of oleic acid (~0.05 mL) and oleylamine (~0.05 mL). Centrifugation (6000 rpm, 10 min) was applied to remove any undispersed residue. The product, 4 nm Fe₃O₄ nanoparticles, was then precipitated with ethanol, centrifuged (6000 rpm, 10 min) to remove the solvent, and redispersed into hexane.

Under identical conditions, reaction of $Co(acac)_2$ (1 mmol) with Fe-(acac)₃ led to 3 nm CoFe₂O₄ nanoparticles that could be readily dispersed into hexane, giving a dark red-brown hexane dispersion.

Synthesis of 6 nm Fe₃O₄ Nanoparticle Seeds. Fe(acac)₃ (2 mmol), 1,2-hexadecanediol (10 mmol), oleic acid (6 mmol), oleylamine (6 mmol), and benzyl ether (20 mL) were mixed and magnetically stirred under a flow of nitrogen. The mixture was heated to 200 °C for 2 h and then, under a blanket of nitrogen, heated to reflux (\sim 300 °C) for 1 h. The black-colored mixture was cooled to room temperature by removing the heat source. Following the workup procedures described in the synthesis of 4 nm particles, a black-brown hexane dispersion of 6 nm Fe₃O₄ nanoparticles was produced.

Similarly, by adding $Co(acac)_2$ or $Mn(acac)_2$, 10 nm $CoFe_2O_4$ or 7 nm $MnFe_2O_4$ nanoparticle seeds can be made.

Synthesis of 8 nm Fe₃O₄ Nanoparticles via 6 nm Fe₃O₄ Seeds. Fe(acac)₃ (2 mmol), 1,2-hexadecanediol (10 mmol), benzyl ether (20 mL), oleic acid (2 mmol), and oleylamine (2 mmol) were mixed and magnetically stirred under a flow of N₂. A 84 mg sample of 6 nm Fe₃O₄ nanoparticles dispersed in hexane (4 mL) was added. The mixture was first heated to 100 °C for 30 min to remove hexane, then to 200 °C for 1 h. Under a blanket of nitrogen, the mixture was further heated to reflux (~300 °C) for 30 min. The black-colored mixture was cooled to room temperature by removing the heat source. Following the workup procedures described in the synthesis of 4 nm particles, a black-brown hexane dispersion of 8 nm Fe₃O₄ nanoparticles was produced.


Similarly, 80 mg of 8 nm Fe_3O_4 seeds reacted with $Fe(acac)_3$ (2 mmol) and the diol (10 mmol) led to 10 nm Fe_3O_4 nanoparticles. Using this seed-mediated growth, bigger nanoparticles of Fe_3O_4 up to 20 nm, $CoFe_2O_4$ up to 20 nm, or $MnFe_2O_4$ up to 18 nm have been made.

Synthesis of Hydrophilic Fe₃O₄ Nanoparticles. Under ambient conditions, a hexane dispersion of hydrophobic Fe₃O₄ nanoparticles (about 20 mg in 0.2 mL) was added to a suspension of tetramethy-lammonium 11-aminoundecanoate (about 20 mg in 2 mL) in dichloromethane. The mixture was shaken for about 20 min, during which time the particles precipitated and separated using a magnet. The solvent and nonmagnetic suspension were decanted, and the precipitate was washed once with dichloromethane and separated again using a magnet

⁽⁶⁾ See for example: (a) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Chem. Mater. 1996, 8, 2209. (b) Hong, C.-Y.; Jang, I. J.; Horng, H. E.; Hsu, C. J.; Yao, Y. D.; Yang, H. C. J. Appl. Phys. 1997, 81, 4275. (c) Fried, T.; Shemer, G.; Markovich, G. Adv. Mater. 2001, 13, 1158. (d) Tang, Z. X.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. J. Colloid Interface Sci. 1991, 146, 38. (e) Zhang, Z. J.; Wang, Z. L.; Chakoumakos, B. C.; Yin, J. S. J. Am. Chem. Soc. 1998, 120, 1800. (f) Neveu, S.; Bec, A.; Robineau, M.; Talbol, D. J. Colloid Interface Sci. 2002, 255, 293.
(7) See for example: (a) Pileni, M. P.; Moumen, N. J. Phys. Chem. B 1996, 1996.

Scheme 1

to remove excess surfactants before drying under N_2 . The product was then dispersed in deionized water (18 M Ω) or 1 mM phosphate buffer at neutral pH.

Nanoparticle Characterization. Fe, Co, Mn, and S elemental analyses of the as-synthesized nanoparticle powders were performed on inductively coupled plasma-optic emission spectrometry (ICP-OES) at Galbraith Laboratories (Knoxville, TN). To prepare samples for elemental analysis, the particles were precipitated from their hexane dispersion by ethanol, centrifuged, washed with ethanol, and dried. Samples for transmission electron microscopy (TEM) analysis were prepared by drying a dispersion of the particles on amorphous carboncoated copper grids. Particles were imaged using a Philips CM 12 TEM (120 kV). The structure of the particles was characterized using HRTEM and selected area electron diffraction (SAED) on a JEOL TEM (400 kV). X-ray powder diffraction patterns of the particle assemblies were collected on a Siemens D-500 diffractometer under Co Ka radiation ($\lambda = 1.788965$ Å). Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was performed at the Advanced Light Source at beamline 7.3.1.1, which was equipped with a spherical grating monochromator and had an energy resolution of $E/\Delta E = 1800$. Magnetic studies were carried out using a MPMS2 Quantum Design SQUID magnetometer with fields up to 7 T and temperatures from 5 to 350 K. Infrared spectra of dried particles pressed into KBr pellets were obtained on a Nicolet Nexus 670 FTIR spectrometer. A homemade spin valve sensor¹² was used to detect a single layer of 16 nm Fe₃O₄ nanoparticles.

Results and Discussion

Fe₃O₄ Synthesis. As illustrated in Scheme 1, reaction of Fe-(acac)₃ with surfactants at high temperature leads to monodisperse Fe₃O₄ nanoparticles, which can be easily isolated from reaction byproducts and the high boiling point ether solvent. If phenyl ether was used as solvent, 4 nm Fe₃O₄ nanoparticles were separated, while the use of benzyl ether led to $6 \text{ nm Fe}_{3}O_{4}$. As the boiling point of benzyl ether (298 °C) is higher than that of phenyl ether (259 °C), the larger sized Fe₃O₄ particle obtained from benzyl ether solution seems to indicate that high reaction temperature will yield larger particles. However, regardless of the size of the particles, the key to the success of making monodisperse nanoparticles is to heat the mixture to 200 °C first and remain at that temperature for some time before it is heated to reflux at 265 °C in phenyl ether or at \sim 300 °C in benzyl ether. Directly heating the mixture to reflux from room temperature would result in Fe₃O₄ nanoparticles with wide size distribution from 4 to 15 nm, indicating that the nucleation of Fe₃O₄ and the growth of the nuclei under these reaction conditions is not a fast process.

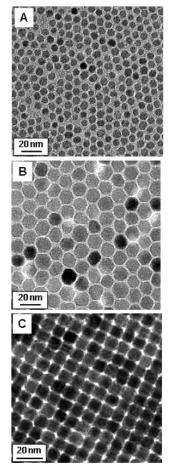
The low cost of Fe(acac)₃ and the high yields it produces makes it an ideal precursor for Fe₃O₄ nanoparticle synthesis. The more expensive Fe(acac)₂ or Fe(II) acetate can also be used but yields no better result than Fe(acac)₃. Fe(II) (D-gluconate) is another good precursor for Fe₃O₄ synthesis. In benzyl ether, the reaction of Fe(II) (D-gluconate) with a 3-fold excess of each of oleic acid and oleylamine and a 5-fold excess of 1,2hexadecanediol led to nearly monodisperse 8 nm Fe₃O₄ nanoparticles.

Several different alcohols and polyalcohols have been tested for their reactions with Fe(acac)₃. It was found that 1,2hydrocarbon diols, including 1,2-hexadecanediol and 1,2dodecanediol, react well with Fe(acac)₃ to yield Fe₃O₄ nanoparticles. Long-chain monoalcohols, such as stearyl alcohol and oleyl alcohol, can also be used, but particle quality is worse and product yield is poorer than those with diols in the synthesis of Fe₃O₄ nanoparticle seeds. However, in the seed-mediated growth process, these monoalcohols can be used to form larger Fe₃O₄ nanoparticles.¹¹

Oleic acid and oleylamine are necessary for the formation of particles. Sole use of oleic acid during the reaction resulted in a viscous red-brown product that was difficult to purify and characterize. On the other hand, the use of oleylamine alone produced iron oxide nanoparticles in a much lower yield than the reaction in the presence of both oleic acid and oleylamine. When the 4 nm particles were oxidized by bubbling oxygen through the dispersion at room temperature, they precipitated from hexane as a red-brown powder (the characterization of a similar product is discussed below). Adding more oleic acid did not cause re-dispersion of this powder into hexane. However, adding oleylamine did, leading to an orange-brown hexane dispersion. This is consistent with the previous observation that γ -Fe₂O₃ nanoparticles can be stabilized by alkylamine surfactants,¹³ suggesting that -NH₂ coordinates with Fe(III) on the surface of the particles.

The larger Fe₃O₄ nanoparticles can also be made by seedmediated growth. This method has been recently applied to larger metallic nanoparticle and nanocomposite synthesis¹⁴ and is believed to be an alternative way of making monodisperse nanoparticles along with LaMer's method through fast supersaturated-burst nucleation¹⁵ and Finke's method via slow, continuous nucleation and fast, autocatalytic surface growth.¹⁶ In our synthesis, the small Fe₃O₄ nanoparticles, the seeds, are mixed with more materials as shown in Scheme 1 and heated, and particle diameters can be increased by ~2 nm or more in each seed-mediated reaction, allowing diameter to be tuned up to about 20 nm.

TEM analysis shows that Fe_3O_4 nanoparticles prepared according to Scheme 1 or the seed-mediated growth method are monodisperse. Figure 1 shows typical TEM images from representative 6, 10, and 12 nm Fe_3O_4 nanoparticles deposited from their hexane (or octane) dispersions and dried under ambient conditions. It can be seen that the particles have a


(16) Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382.

⁽¹²⁾ Li, G.; Joshi, V.; White, R. L.; Wang, S. X.; Kemp, J. T.; Webb, C.; Davis, R. W.; Sun, S. J. Appl. Phys. 2003, 93, 7557.

^{(13) (}a) Rajamathi, M.; Ghosh, M.; Seshadri, R. Chem. Comm. 2002, 1152. (b) Boal, A. K.; Das, K.; Gray, M.; Rotello, V. M. Chem. Mater. 2002, 14, 2628.

^{(14) (}a) Brown, K. R.; Natan, M. J. Langmuir **1998**, *14*, 726. (b) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. **2001**, *13*, 2313. (c) Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E. J. Am. Chem. Soc. **2001**, *123*, 9198.

⁽¹⁵⁾ LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.

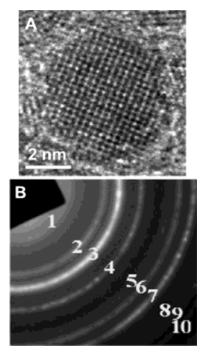
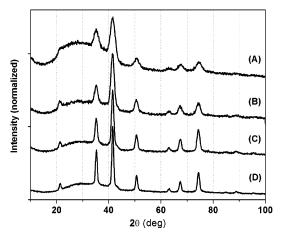


Figure 1. TEM bright field images of (A) 6 nm and (B) 12 nm Fe_3O_4 nanoparticles deposited from their hexane dispersion on an amorphous carbon-coated copper grid and dried at room temperature, and (C) a 3D superlattice of 10 nm Fe_3O_4 nanoparticles deposited from their octane dispersion on an amorphous carbon surface and dried at room temperature.

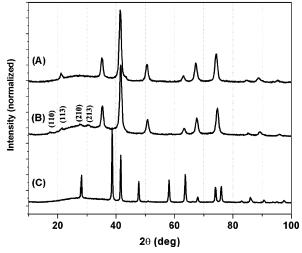

narrow size distribution and can form a self-ordered Fe_3O_4 superlattice (Figure 1C) if solvent is made to evaporate slowly.

Fe₃O₄ Structural Characterization. Structural information from a single Fe₃O₄ nanoparticle was obtained using highresolution TEM (HRTEM). Figure 2A is the HRTEM image of an isolated 6 nm Fe₃O₄ nanoparticle. The lattice fringes in the image correspond to a group of atomic planes within the particle, indicating that the particle is a single crystal. The distance between two adjacent planes is measured to be 2.98 Å, corresponding to (220) planes in the spinel-structured Fe₃O₄.¹⁷

Structural information from an assembly of Fe₃O₄ nanoparticles was obtained from both electron and X-ray diffraction. Figure 2B is a selected area electron diffraction (SAED) pattern acquired from a 6 nm nanoparticle assembly. Table 1 displays the measured lattice spacing based on the rings in the diffraction pattern and compares them to the known lattice spacing for bulk Fe₃O₄ along with their respective *hkl* indexes from the PDF database. Figure 3 is a group of representative size-dependent XRD patterns of Fe₃O₄ nanoparticles. The position and relative intensity of all diffraction rings/peaks match well with standard Fe₃O₄ powder diffraction data.¹⁷ The average particle diameter

Figure 2. Structural characterization of Fe_3O_4 nanoparticles: (A) High-Resolution TEM image of a single 6 nm Fe_3O_4 nanoparticle; and (B) selected area electron diffraction (SAED) pattern acquired from a 6 nm Fe_3O_4 nanoparticle assembly.

Figure 3. X-ray diffraction patterns of (A) 4 nm, (B) 8 nm, (C) 12 nm, and (D) 16 nm Fe₃O₄ nanoparticle assemblies. All samples were deposited on glass substrates from their hexane dispersions. Diffraction patterns were collected on a Siemens D-500 diffractometer under Co K α radiation ($\lambda = 1.788965$ Å).


Table 1. Measured Lattice Spacing, d (Å), Based on the Rings in Figure 2B and Standard Atomic Spacing for Fe₃O₄ along with Their Respective *hkl* Indexes from the PDF Database

	ring									
	1	2	3	4	5	6	7	8	9	10
d	4.86	2.98	2.54	2.12	1.73	1.63	1.5	1.34	1.29	1.22
Fe ₃ O ₄	4.86	2.97	2.53	2.1	1.71	1.62	1.48	1.33	1.28	1.21
hkl	111	220	311	400	422	511	440	620	533	444

estimated from Scherrer's formula¹⁸ is consistent with that determined by statistical analysis of the TEM images, indicating that each individual particle is a single crystal.

⁽¹⁷⁾ Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH: New York, 1996; pp 167–168.


⁽¹⁸⁾ Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials; John Wiley & Sons: New York, 1962; pp 491–538.

Figure 4. X-ray diffraction patterns of (A) a 16 nm Fe₃O₄ nanoparticle assembly, (B) a γ -Fe₂O₃ nanoparticle assembly obtained from the oxidation of (A) under oxygen at 250 °C for 6 h, (C) an α -Fe₂O₃ nanoparticle assembly obtained from the further annealing of (B) under Ar at 500 °C for 1 h.

Oxidation Fe₃O₄ to Fe₂O₃. It is well known that Fe₃O₄ can be oxidized to γ -Fe₂O₃, which can be further transformed into α -Fe₂O₃ at higher temperature.¹⁹ Observation of these transformations can further help to confirm the formation of Fe₃O₄ nanoparticles from the synthesis based on Scheme 1. Figure 4A is the XRD pattern from the as-synthesized, black 16 nm Fe₃O₄ nanoparticle assembly. After oxidation under O₂ at 250 °C for 6 h, the black assembly is transformed to a red-brown one. Figure 4B shows that all XRD peak positions and relative intensities of this red-brown material match well with those of commercial y-Fe₂O₃ powder materials (Aldrich catalog No. 48,-066-5), indicating that the oxidation of Fe₃O₄ under O₂ leads to γ -Fe₂O₃. Compared to Figure 4A, the large-angle peaks in Figure 4B shift slightly to higher angles, whereas at lower angles there exist additional weak diffraction peaks of (110), (113), (210), and (213) that are characteristic of γ -Fe₂O₃.¹⁷ Figure 4C shows the XRD of the dark red-brown materials obtained after 500 °C annealing of γ -Fe₂O₃ in Figure 4B under Ar for 1 h. The diffraction pattern matches with that from known α -Fe₂O₃ materials,¹⁷ indicating the transformation of γ -Fe₂O₃ to α -Fe₂O₃ at high temperature. However the as-synthesized Fe₃O₄ nanoparticles do not go through such a change if annealed under inert atmosphere. Even at 650 °C, the Fe₃O₄ structure is still retained, as evidenced by both XRD and HRTEM. This confirms the valence state of the iron cations in the as-synthesized sample closely matches that of Fe₃O₄ rather than similarly structured γ-Fe₂O₃.²⁰

The transformations of Fe₃O₄ to Fe₂O₃ can be further characterized by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in total electron yield mode. Figure 5 shows the NEXAFS spectra at the Fe L absorption edges of the as-synthesized 8 nm Fe₃O₄ nanoparticles and γ -Fe₂O₃ and α -Fe₂O₃ nanoparticles derived from the oxidation of the Fe₃O₄ particles. For comparison, reference spectra of Fe₃O₄, γ -Fe₂O₃,

Figure 5. NEXAFS spectra at the Fe L edge of Fe₃O₄, γ -Fe₂O₃, and α -Fe₂O₃ nanoparticle assemblies, with the dotted lines representing reference spectra of thin film oxide samples of Fe₃O₄, γ -Fe₂O₃, and α -Fe₂O₃.

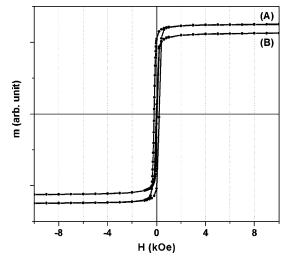


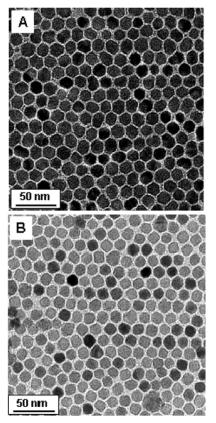
Figure 6. Hysteresis loops of the 16 nm $\rm Fe_3O_4$ nanoparticle assembly measured at (A) 10 K and (B) 300 K.

and α -Fe₂O₃ films grown on MgO (001)²¹ are also inserted into the figure as dotted lines. The increased splitting of the L₃ peak in the region of 705–710 eV and the varying ratio of the two peaks at the L₂ edge (719–725 eV) are indicative of the transformation of the as-synthesized Fe₃O₄ nanoparticles into γ -Fe₂O₃ and to α -Fe₂O₃ under different annealing conditions.

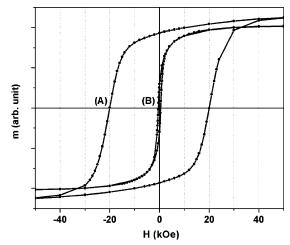
Magnetic Properties of the Fe₃O₄ Nanoparticle Assemblies. Magnetic measurements on all Fe₃O₄ nanoparticles indicate that the particles are superparamagnetic at room temperature, meaning that the thermal energy can overcome the anisotropy energy barrier of a single particle, and the net magnetization of the particle assemblies in the absence of an external field is zero. Figure 6 shows the hysteresis loops of 16 nm Fe₃O₄ nanoparticles measured at both 10 K and room temperature. It can be seen that the particles are ferromagnetic at 10 K with a coercivity of 450 Oe (Figure 6A). At room temperature there is no hysteresis (Figure 6B). Under a large external field, the magnetization of the particles aligns with the field direction and reaches its saturation value (saturation magnetization, σ_s). For Fe₃O₄ nanoparticles, we noticed that the

⁽¹⁹⁾ Bate, G. In *Magnetic Oxides Part 2*; Craik, D. J., Ed.; John Wiley & Sons: New York, 1975; pp 705–707.

⁽²⁰⁾ Although the evidence presented so far suggests that Fe₃O₄ is obtained during the synthesis, one should keep in mind that the real composition of the nanoparticles may not be 100% Fe₃O₄, but contain a small amount of γ-Fe₂O₃, especially on the surface of the particles.


⁽²¹⁾ Farrow, R. F.; Rice, P. M.; Toney, M. F.; Marks, R. F.; Hedstrom, J. A.; Stephenson, R.; Carey, M. J.; Kellock, A. J. J. Appl. Phys. 2003, 93, 5626.

 $\sigma_{\rm s}$ was dependent on the size of the particles. For example, $\sigma_{\rm s}$ for 16 nm Fe₃O₄ nanoparticles is 83 emu/g, close to the value of 84.5 emu/g measured from the commercial magnetite fine powder. For particles smaller than 10 nm, however, $\sigma_{\rm s}$ is smaller, most likely due to the surface spin canting of the small magnetic nanoparticles.²² However, if annealed under Ar at high temperature (600 °C), even 4 nm Fe₃O₄ nanoparticles show a $\sigma_{\rm s}$ close to 82 emu/g due to the average size increase caused by particle aggregation. After the 16 nm Fe₃O₄ nanoparticles were oxidized under oxygen at 250 °C for 6 h, their $\sigma_{\rm s}$ is reduced to 70 emu/g, close to 74 emu/g from commercial γ -Fe₂O₃ powder, suggesting the transformation of Fe₃O₄ to Fe₂O₃.

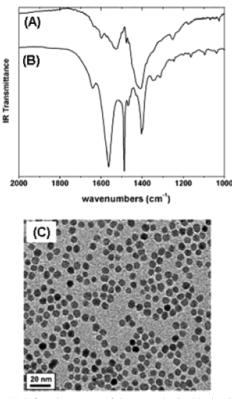

Possible Mechanism for the Formation of Fe₃O₄. The mechanism leading to Fe₃O₄ in the reactions presented is not yet clear. However, evidence suggests that reduction of the Fe(III) salt to an Fe(II) intermediate occurs, followed by the decomposition of the intermediate at high temperature. The formation of an Fe(II) intermediate was indicated by the fact that product separated after a short refluxing time (5 min) instead of 30 min showed no magnetic response and contained FeO, as evidenced by XRD. Furthermore, in the presence of a slight excess of 1-hexadecanethiol, a black powder corresponding to FeS (as characterized by ICP-OES analysis and XRD) could be separated. If Fe(II) (D-gluconate) or Fe(II) acetyl-acetonate was used, the same product was obtained. No metallic Fe was detected in the final product.

 MFe_2O_4 (M = Co, Mn) Nanoparticles. The process described in Scheme 1 can be readily extended to the synthesis of other types of MFe₂O₄ nanoparticles. For example, when Co- $(acac)_2$ was partially substituted for Fe $(acac)_3$ in a 1:2 ratio in the same reaction conditions as in the synthesis of Fe₃O₄, CoFe₂O₄ nanoparticles were formed. When Mn(acac)₂ was used, MnFe₂O₄ nanoparticles were made. ICP-OES elemental analysis indicated that the ratio of Co/Fe and Mn/Fe in both cobalt ferrite and manganese ferrite was retained from the ratio of initial metal precursors, and the final Co/Fe and Mn/Fe compositions could be readily controlled. Figure 7 shows the TEM images of 14 nm CoFe₂O₄ nanoparticles and 14 nm MnFe₂O₄ nanoparticles made from seed-mediated growth. XRD for both samples are very similar to that of Fe₃O₄, indicating the cubic spinel structure of the particles. At temperatures up to 300 K, 16 nm CoFe₂O₄ nanoparticles are ferromagnetic. Figure 8 shows the hysteresis loops of 16 nm CoFe₂O₄ nanoparticles measured at both 10 and 300 K. The coercivity of the assembly is about 400 Oe at 300 K, but reaches 20 kOe at 10 K, much larger than that of the 16 nm Fe₃O₄ nanoparticles (450 Oe at 10 K), indicating that the incorporation of the Co cation in the Fe-O matrix greatly increases the magnetic anisotropy of the materials. Such anisotropy enhancement of CoFe₂O₄ vs Fe₃O₄ has also been observed in films deposited from aqueous solution.²³ To the contrary, the incorporation of Mn cation in the Fe-O matrix reduces the magnetic anisotropy of the materials,^{1a} as the 14 nm MnFe₂O₄ nanoparticles shows a coercivity of only 140 Oe at 10 K.

Possible Applications of MFe₂O₄ Nanoparticles. The MFe₂O₄ nanoparticles presented above may have numerous

Figure 7. TEM bright field images of (A) 14 nm $CoFe_2O_4$ nanoparticles and (B) 14 nm $MnFe_2O_4$ nanoparticles made from seed-mediated growth and deposited from their hexane dispersion on amorphous carbon-coated copper grid at room temperature.

Figure 8. Hysteresis loops of the 16 nm $CoFe_2O_4$ nanoparticle assembly measured at (A) 10 K and (B) 300 K.


applications in magnetic nanodevices and biomedicine, but additional requirements may arise from particular applications. For example, in biomagnetic applications, the superparamagnetic nanoparticles often need to be water-soluble.^{3,24} Here we demonstrate briefly that superparamagnetic Fe_3O_4 nanoparticles can be made water-soluble and yield a good magnetic signal that is suitable for spin valve sensor detection.

To make water-soluble iron oxide nanoparticles, we mix hydrophobic nanoparticles with a bipolar molecule, tetramethylammonium 11-aminoundecanoate. Shaking the hexane disper-

⁽²²⁾ Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F. *Chem. Mater.* 1999, *11*, 3058.

⁽²³⁾ Kim, T. Y.; Lee, M. S.; Kim, Y. I.; Lee, C.-S.; Park, J. C.; Kim, D. J. Phys. D: Appl. Phys. 2003, 36, 1451.

⁽²⁴⁾ Fu, L.; Dravid V. P.; Johnson, D. L. Appl. Surf. Sci. 2001, 181, 173.

Figure 9. (A) Infrared spectrum of the as-synthesized hydrophobic 6 nm Fe_3O_4 nanoparticles, (B) infrared spectrum of tetramethylammonium 11-aminoundecanoate-coated 6 nm Fe_3O_4 nanoparticles, and (C) TEM bright field image of the 6 nm Fe_3O_4 nanoparticles in (B) deposited from water dispersion on amorphous carbon-coated copper grid.

sion of 6 nm Fe₃O₄ nanoparticles with a suspension of tetramethylammonium 11-aminoundecanoate in dicholoromethane rendered Fe₃O₄ nanoparticles hydrophilic and water-soluble. Figure 9 shows the IR spectra of both the hydrophobic nanoparticles (Figure 9A) and the hydrophilic ones (Figure 9B). The absorptions around 1565 and 1478 cm⁻¹ in Figure 9B from the hydrophilic nanoparticles match with the one from free tetramethylammonium 11-aminoundecanoate (1566, 1487 cm⁻¹), indicating the existence of the free -COO- group in the hydrophilic nanoparticles.²⁵ Figure 9C is the TEM image of 6 nm Fe₃O₄ nanoparticles from aqueous dispersion. It indicates that nanoparticles in water are well dispersed without any noticeable agglomeration.

Magnetic nanoparticles dispersed in water are superparamagnetic and under a tickling field can yield good magnetic signals that are readily sensed by a spin valve sensor. Such a sensor has been patterned as rectangular strips with a submicron width and a magnetoresistance (MR) ratio of 10% and has shown great potential as a sensitive and efficient detector for biomolecules labeled by magnetic nanoparticles.^{12,26} We have performed several experiments on a monolayer of 16 nm Fe₃O₄ nanoparticles deposited on the 0.3 μ m wide spin valve sensors via poly-(ethylenimine)-mediated self-assembly.²⁷ These submicron spin valve sensors produced signals on the order of 10 μ V due to the presence of a layer of Fe₃O₄ nanoparticles. This suggests that these magnetic nanoparticles, if functionalized with single-strand DNA and immobilized on a similarly functionalized spin valve surface via DNA hybridization, could be used as labels for highly sensitive and quantitative DNA detection.

Conclusions

We have reported a convenient organic phase process of making monodisperse MFe_2O_4 nanoparticles through the reaction of metal acetylacetonate and 1,2-hexadecanediol. The diameter of the particles is tunable from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The process does not require a low-yield fractionation procedure to achieve the desired size distribution and is readily scaled up for mass production. The hydrophobic nanoparticles can be transformed into hydrophilic ones by mixing with bipolar surfactants, allowing preparation of aqueous nanoparticle dispersions. These iron oxide nanoparticles and their aqueous dispersions have great potential in magnetic nanodevice and biomagnetic applications.

Acknowledgment. The work is supported in part by DARPA through ONR under grant nos. N00014-01-1-0885. H.Z. and D.B.R. thank the support from DARPA through Stanford University.

Supporting Information Available: Figure S1: Thermal gravimetric analysis (TGA) results for hydrophilic Fe_3O_4 and hydrophobic Fe_3O_4 nanoparticles. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0380852

- (25) If the -COO- attaches to the surface of Fe₃O₄ particles, the IR spectrum will show absorptions in different region and intensity, as the IR spectrum of a model compound ferric stearate exhibits four broad, asymmetric peaks at 1466, 1534, 1589, 1613 cm⁻¹. It should also be noted that whether or not the -NH₂ in the 11-aminoundecanoate unit is bound to the particle surface has not been determined. From the IR data, we cannot exclude the presence of the oleate and oleylamine species in the hydrophilic particles. Thermal gravimetric analysis (TGA) (see Supporting Information) of this material shows a sharp mass loss at relatively low temperature (200 °C), but above 300 °C the curve seems similar to that of hydrophobic particles, losing mass between 380 and 440 °C. This seems to suggest that the bipolar surfactant does not displace a significant amount of the original ligands and is loosely bound, forming a bilayer or intercalated layer.
- and is loosely bound, forming a bilayer or intercalated layer.
 (26) (a) Baselt, D. R.; Lee, G. U.; Natesan, M.; Metzger, S. W.; Sheehan, P. E.; Colton, R. J. *Biosens. Bioelectron.* **1998**, *13*, 731. (b) Edelstein, R. L.; Tamanaha, C. R.; Sheehan, P. E.; Miller, M. M.; Baselt, D. R.; Whitman, L. J.; Colton, R. J. *Biosens. Bioelectron.* **2000**, *14*, 805. (c) Miller, M. M.; Sheehan, P. E.; Edelstein, R. L.; Tamanaha, C. R.; Zhong, L.; Bounnak, S.; Whitman, L. J.; Colton, R. J. *J. Magn. Magn. Mater.* **2001**, *225*, 138.
- (27) (a) Sun, S.; Anders, S.; Hamann, H. F.; Thiele, J.-U.; Baglin, J. E. E.; Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. J. Am. Chem. Soc. 2002, 124, 2884. (b) Sun, S.; Anders, S.; Thomson, T.; Baglin, J. E. E.; Toney, M. F.; Hamann, H. F.; Murray, C. B.; Terris, B. D. J. Phys. Chem. B 2003, 107, 5419.