CONTAGIOUS CAPRINE PLEUROPNEUMONIA

- an acute highly contagious disease of goats caused by a Mycoplasma F38 biotype, characterized by fever, coughing, severe respiratory distress, and high mortality.
- The principal lesion at necropsy is fibrinous pleuropneumonia.

Aetiology and epidemiology
- Two organisms have been reported as the causative agents for contagious caprine pleuropneumonia (CCPP).
 - *Mycoplasma capricolum capripneumoniae*, commonly known as Mycoplasma biotype F38, is the most contagious and virulent of the two.
 - *Mycoplasma mycoides capri* (type PG-3) also appears to cause the disease in goats, although much less commonly and with somewhat different signs.
 - Other mycoplasma organisms can cause pneumonia in goats, but are not considered to cause CCPP.
 - M. mycoides mycoides large colony type.

Geographic Distribution
- CCPP found in:
 - Africa
 - Middle East
 - Eastern Europe
 - Former USSR
 - Far East
- Never been found in North America

Morbidity/Mortality
- Morbidity often 100%
- Mortality ranges from 60-100%
- Influencing factors
 - Close confinement
 - Type of Mycoplasma
 - Strain F38
 - M. mycoides capri
Animal Transmission

- Incubation period: 6-10 days or 3-4 weeks
- Direct contact
 - Inhalation of infected respiratory droplets
- F38 strain more contagious
- Carrier animals
 - Shed more organisms
 - Stress, sudden changes in climate

Clinical Signs

- *Mycoplasma* F38 strain
 - Respiratory symptoms
 - Coughing, labored respiration
 - High fever, lethargy, anorexia
 - Nasal discharge - frothy
 - Stringy saliva
 - In acute disease, which occur in fully susceptible goats, death occurs within 7 to 10 days after the onset of clinical signs.

Clinical Signs

- *M. mycoides capri*
 - Septicemia
 - Generalized infection
 - Reproductive, GI, respiratory symptoms
 - Less contagious than F38-induced disease,
 - The mortality and morbidity rates are also lower.

Post Mortem Lesions:

Mycoplasma F38

- Limited to lungs (one or both)
 - Granular appearance,
 - Fibrinous pneumonia
 - Straw-colored fluid in thorax
 - Pea-sized yellow nodules on lungs
 - Congestion around the nodules
 - Adhesions to chest wall
 - Thickened pulmonary pleura
Post Mortem Lesions

M. mycoides capri

- Encephalitis, meningitis
- Lymphadenitis, splenitis
- Genitourinary tract inflammation
- Intestinal lesions
- Lung lesions
 - Resemble contagious bovine pleuropneumonia
 - Often unilateral
 - Fibrinous pneumonia

Diagnosis

Clinical and Differential

- Suspect CCPP with
 - Severe respiratory disease
 - High morbidity and mortality
 - Characteristic postmortem lesions
- Differential
 - Other causes of pneumonia
 - Pasteurellosis
 - Peste des petits ruminants (PPR)

Sampling

- Before collecting or sending any samples, the proper authorities should be contacted
- Samples should only be sent under secure conditions and to authorized laboratories to prevent the spread of the disease

Diagnosis: Laboratory

- Isolation/identification of organism
 - Immunofluorescence
 - Culture Isolation
 - PCR
- Serology
 - Used for herd diagnosis
 - Complement fixation
 - Passive hemagglutination
 - ELISA
BOVINE TUBERCULOSIS

- Although bovine tuberculosis was once found worldwide, control programs have eliminated or nearly eliminated this disease from domesticated animals in many countries.
- Nations currently classified as tuberculosis-free include Australia, Iceland, Denmark, Sweden, Norway, Finland, Austria, Switzerland, Luxembourg, Latvia, Slovakia, Lithuania, Estonia, the Czech Republic, Canada, Singapore, Jamaica, Barbados and Israel.
- Eradication programs are in progress in other European countries, Japan, New Zealand, the United States, Mexico, and some countries of Central and South America.
- Although bovine tuberculosis has been eradicated from the majority of U.S. states, a few infected herds continue to be reported, and a few states may periodically lose their disease-free status.
- In particular, a focus of infection in wild white-tailed deer has complicated eradication efforts in Michigan. Similar problems exist with infected badgers in the U.K. and Ireland, and infected brush-tailed opossums in New Zealand.
- Bovine tuberculosis is still widespread in Africa, parts of Asia and some Middle Eastern countries.

Mycobacterium

- *M. bovis* can survive for several months in the environment, particularly in cold, dark and moist conditions.
- At 12-24°C (54-75°F), the survival time varies from 18 to 332 days, depending on the exposure to sunlight.
- This organism is infrequently isolated from soil or pastures grazed by infected cattle.
Mycobacterium

- **Resistant**
 - To drying (6-8 months in sputum)
 - To acids (3% HCl, 6% H$_2$SO$_4$)
 - To alkalis (4% NaOH)
 - Can remain viable for extended periods in cold weather

- **Sensitive**
 - To moist heat (60 °C – 30 min; 70 °C – 3 min)
 - Disinfectants (Alcohol, formalin, gluteraldehyde)
 - Drugs (rifampin, paraaminosalicylic acid, streptomycin, isoniazid, pyrazinamide)
 - Can be killed by a weak solution of common household bleach (1 part bleach to 9 parts water)
 - UV light

Transmission

- Tuberculosis can be transmitted either by the respiratory route or ingestion.
- In cattle, aerosol spread is more common.
- Other routes Cutaneous, Genital, and Congenital infections have been seen but are rare.
- Infectious bacteria can be shed in the respiratory secretions, feces, milk, and in some individuals in the urine, vaginal secretions, or semen.
- Not all infected animals transmit the disease.

PATHOGENESIS

- By ingestion of contaminated feed & water > Localize at point of entry > produce typical tubercle in associated organs & lymph nodes (pharyngeal & mesenteric L.N)
- By inhalation > enter alveoli > mucosa of bronchial tree > neutrophilic infiltration > undergo necrosis & macrophages accumulates > form multilayer zone around bacteria & dead cells >
- Some epitheloid cells fuse > form langhan's giant cells
- Some bacilli destroyed & phagocytosed > zone of lymphocyte & fibrous C.T. form around epithelial cells > caseous necrosis > Ca-salt deposits in foci of necrotic tissue > some foci of infection coalesce > form tubercles > healing of primary lesion may take place >
- Some bacilli may come out > invade lymph channels > lymph nodes (bronchial & mediastinal) > bacilli enter lymphatics in pleural surface > tuberculous pleuritis

- **Mycobacterium bovis** (bovine)
- **Mycobacterium avium** (bird)
- **Mycobacterium tuberculosis** (human)
STAGES OF PATHOGENESIS

1. Primary stage (localize at point of entry > produce lesion)
2. Post primary dissemination - extend to body cavities, blood vessels, lymph nodes
3. Stage of generalization-extensive lesion due to low host resistance

Key Steps in TB Pathogenesis

- Bacteria get into the cell
- Bacteria survive in phagocytes
 - Avoidance of activated macrophage response
- Bacteria thrive in phagocytes
 - How to make the macrophage your home
- Bacteria apparently wait it out
- Tissue destruction

CLINICAL FINDINGS

- Referable to site of localization
- Tuberculosis is usually a chronic debilitating disease in cattle, but it can occasionally be acute and rapidly progressive.

RESPIRATORY SYSTEM

- In the late stages, common symptoms include progressive emaciation,
- a low-grade fluctuating fever,
- weakness and in-appetence.
- have a moist cough that is worse in the morning, during cold weather or exercise, and may have dyspnea or tachypnea.
- In the terminal stages, animals may become extremely emaciated and develop acute respiratory distress.
- In some animals, the retropharyngeal or other lymph nodes enlarge and may rupture and drain.
- Greatly enlarged lymph nodes can also obstruct blood vessels, airways, or the digestive tract.

LESIONS

- Tubercles b/w 1-2 mm diameter on different organs.
- Commonly affected organs are lungs, liver, pleura, peritoneum, kidney, spleen regional L.Ns & glands.
- Some cases; bones, joints, C.N.S. .
- Occasionally; male and female Genital organs.
- Tubercle deep in soft tissues or bulging from mucus serous surface.
- Tubercle – firm, hard, white, grey or yellowish nodule.
- Calcification common in bovine.
- Tuberculous lesion consist of caseous core, surrounded by necrotic tissue, encapsulated with fibrous tissues.
- Nodules on pleura & peritonium.
- Lesions may enlarge involving whole lungs, liver, or small & numerous (milliary TB)
- T.B lesion may persist for entire life

HISTOPATHOLOGY

- Characteristic Microscopic lesion is tubercle.
- Caseous necrosis in centre encircled by epitheloid cells, lymphocytes.
- Calcification in caseous centre of necrosis
- Langhan’s giant cells - pale acidophilic cytoplasm and no. of round neutrei arranged in crescent at corner + lipid droplets + bacilli.

Diagnosis

- Comparative Cervical Tuberculin Test (CCTT)
- Tuberculin results

<table>
<thead>
<tr>
<th>Increase in Skin Thickness</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.0 mm</td>
<td>Negative</td>
</tr>
<tr>
<td>3-3.9 mm</td>
<td>Suspected</td>
</tr>
<tr>
<td>4 or >4mm</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Diagnosis
- gross examination
- histological (microscopic) examination
- ZN staining and isolation of organism on Stonebrink’s medium

Histopathology
- Most common lesion associated with bovine TB is the granuloma

ZN Staining

Culture
- *Stonebrink’s medium*
- Culturing usually takes 8 to 16 weeks
Polymerase Chain Reaction (PCR)

- Used to detect the presence of DNA that is specific to the organism
- PCR amplifies the specific portion of DNA
- The product can be easily visualized by gel electrophoresis
- PCR is very sensitive
 - Can detect organism even when present at very low levels