Hi, my name is Ruben and my native language is Spanish so please excuse me if you find “bugs” on my english =)

Middle Point

This software finds the solution of a function. The algorithm used is “Middle-Point”, this is really useful when the funcion has big slope changes (where the algorithm of Newton-Raphson fails).

This program has many modules, you must save it in different files. In this listing, that names are in black, you must store it in the PB-2000C with the same names (including CAPITALS) because it gonna be called with that names from PTO_MEDIO, the main program.

The PB-2000C accepts file names with a maximum of eight letters and an extensión of 3 letters. Every file can be defined as containing a C program or just data. This can be changed from the principal menu (you can call it with [etc] key). In the first case, you will see “C” at the right of the file`s name. In the second case you will see the “S” letter.

Everithing contained into “ ” is sensible to the spaces included so, be guard with it. If you have doubts about any place in the program, please look for the PB-2000C manual or instead in an ANSI C manual.

File: PTO_MEDIO. [C type]

/* Middle Point to the Casio PB-2000C, v0.2 01-IV-2004 (c) released under General Public Licence, Rubén Germán Paco Vargas */

#include <funcion.h>

#include <pVirtual.h>

double f(x)

double x;

{

double y;

/* you must define the function here: */

y = 10e-6 * exp(x/25e-3) + x - 10

; return y;

}

main()

{

int n;

double a0=-1, b0=1,a,b,medio,pres=1e-4,y;

clrscr();

while(1){

n=0;

prinft(“xi=%g,xf=%g,presicion=%g ?”,a0,b0,pres);

scanf(“lf,%lf,%lf”,&a0,&b0,&pres);

a=a0;

b=b0;

while(fabs(a-b) > pres){

n++;

(y = f(medio=(a+b)/2)) < 0 ? (a=medio):(b=medio);

printf(x%d= %g\n”

}

pVirtual();

}

}

Next module has the adicional functions not provided by C but they are used to mathematical analysis. If you want, you can use it to construct the function that you want to solve. This module is shared with the another programs avalaible on the site (www.geocities.com/mosojcito) so, if you already had stored it in the PB, you don`t need to store it again.

File: funcion.h [C type]

/* absolute function for float numbers */

float fabs(x)

float x;

{return (x>0 ? x : -x); }

/* sign function for float numbers */

float sgn(x)

float x;

{return x>0 ? 1 : x < 0 ? -1 : 0); }

/* round function */

float round(x,n)

float x;

int n;

{return((int) (x / pow (10,n) + 0.5 * sgn(x)) * pow(10,n)); }

/* distance function */

float x;

{return(fabs(x - round(x,0))); }

/* function to get the fractionary part of a float number */

float frac(x)

float x;

{return(x - (int)x) ; }

/* unitary function “u” */

float u(x)

float x;

{return(x < 0 ? 0 : 1); }

/* unitary ramp */

float r(x)

float x;

{return(x*u(x)) ; }

 /* factorial function to double float numbers */

double fact(i)

int i;

{

int n;

double x = 1;

for(n = 2; n <= i;) x *= n++;

return x;

}

Next module provides the ability to scroll up and down over solutions already displayed using the cursor keys. You can do this when the convergence has end and you will realize this when the cursor blinks on the screen. To end the program you just need to press [ENTER]

pVirtual.h [C type]

pVirtual()

{

char i, tecla;

do putchar((i = (tecla = getch()) == 30) | tecla == 31 ? (i ? 16 : 1) : 0);

while(tecla != 13);

}

Using the program:

In the beggining of PTO_MEDIO. file, change the function at the right of “y =“ to the function that you want to solve.

Compile the PTO_MEDIO program from the [MENU] mode.

You must go to the [c] run mode and type RUN and [EXE]

The PB will ask you for:

xi=-1, xf=1, presicion=0.0001 ?

Where: xi is the initial limit, xf the final limit and the last is the presicion of the solution. That numbers are just a suggestion, so give the new data when you want and press [EXE]. In the case of the function that comes with the program, give that values without changes and you will see after some scrolled numbers:

x13= 0.344482

x14= 0.344604

x15= 0.344543

Now you can scroll up and down to see the convergence process to the solution (0.344543). To change the initial data just press [EXE] and the PB will display again:

xi=-1, xf=1, presicion=0.0001 ?

And you can give now another data to the program.

