Hi, my name is Ruben and my native language is Spanish so please excuseme of you find “bugs” on my english =)

2D function plotter (x,y)

This program has many modules, you must save it in different files. In this listing, that names are in black, you must store it in the PB-2000C with the same names (including CAPITALS) because it gonna be called with that names from GRAF2D, the main program.

The PB-2000C accepts file names with a maximum of eight letters and an extensión of 3 letters. Every file can be defined as containing a C program or just data. This can be changed from the principal menu (you can call it with [etc] key). In the first case, you will see “C” at the right of the file`s name. In the second case you will see the “S” letter.

Everithing contained into “ ” is sensible to the spaces included so, be guard with it. If you have doubts about any place in the program, please look for the PB-2000C manual or instead in an ANSI C manual.

File: GRAF2D. [C type]

/* 2D Plotter to the Casio PB-2000C, v1.0 28-IV-97 (c) released under General Public Licence, Rubén Germán Paco Vargas */

#include <funcion.h>

#include <graf2D.fn>

#include <trazador.h>

#include <pVirtual.h>

main()

{

FILE *fp;

int i,j,d;

float x, y, x_max, y_max, paso_x, paso_y, eje_x, eje_y;

float x0, y0, y1, incremento, largo, alto;

clrscr();

angle(0); /* grados:0, radianes:1, gradientes:2 */

fp = fopen(“graf2D.txt”,”r”);

fscanf(fp, “%f,%f,%f,%f,%f,%f,%d”, &x_min, &x_max, &paso_x, &y_min, &y_max, &paso_y, &d);

fclose(fp);

largo = x_max - x_min;

alto = y_max - y_min;

ptos_alto = alto/63;

ptos_largo = largo/191;

incremento = largo/d;

/* plot axis */

clrscr();

traza(x_min, 0, x_max, 0);

traza(0, y_min, 0, y_max);

for(eje_x = paso_x*(int)(x_min/paso_x); eje_x <= x_max; eje_x += paso_x)

traza(eje_x, -alto/63, eje_x, alto/63);

for(eje_y = paso_y*(int)(y_min/paso_y); eje_y <= y_max; eje_y += paso_y)

traza(-largo/190,eje_y, largo/190, eje_y);

/* plot function */

traza(x0 = x_min, y0 = f(x_min), x_min, f(x_min));

for(x = x_min + incremento; x <= x_max; x += incremento){

traza(x0, y0, x, y1 = f(x));

x0 = x;

y0 = y1;

}

pVirtual();

}

Next module has the adicional functions not provided by C but they are used to mathematical analysis. If you want, you can use it to construct the function that you want to plot. This module is shared with another programs so, if you already had stored it in the PB, you don`t need to store it again.

File: funcion.h [C type]

/* absolute function for float numbers */

float fabs(x)

float x;

{return (x>0 ? x : -x); }

/* sign function for float numbers */

float sgn(x)

float x;

{return x>0 ? 1 : x < 0 ? -1 : 0); }

/* round function */

float round(x,n)

float x;

int n;

{return((int) (x / pow (10,n) + 0.5 * sgn(x)) * pow(10,n)); }

/* distance function */

float x;

{return(fabs(x - round(x,0))); }

/* function to get the fractionary part of a float number */

float frac(x)

float x;

{return(x - (int)x) ; }

/* unitary function “u” */

float u(x)

float x;

{return(x < 0 ? 0 : 1); }

/* unitary ramp */

float r(x)

float x;

{return(x*u(x)) ; }

 /* factorial function to double float numbers */

double fact(i)

int i;

{

int n;

double x = 1;

for(n = 2; n <= i;) x *= n++;

return x;

}

Next module provides the ability to scroll up and down over the function already ploted using the cursor keys. You can do this when the plotting has end. You will realize this when you see the cursor blinking on the screen. To end the program you just need to press [ENTER]

pVirtual.h [C type]

pVirtual()

{

char i, tecla;

do putchar((i = (tecla = getch()) == 30) | tecla == 31 ? (i ? 16 : 1) : 0);

while(tecla != 13);

}

Next module makes the hard plotting job, mades all the cuttings needed to avoid flood the PB screen. This module uses the “virtual screen” hability of the PB doubling this way the real definition of the display. This module needs to cut the lines going out of the PB`s window range because the C included in this machine cannot has the hability to cut that lines by self. Made this cutting job slows the plotting but there is no option.

Be guard typing the program, because in “C” is not the same x0 than X0.

File: trazador.h [C type]

float x_min, y_min, ptos_largo, ptos_alto;

traza (X0, Y0, X1, Y1)

float X0, Y0, X1, Y1;

{

int x,y;

float x0, y0, x1, y1, intersec();

x0 = (X0 - x_min) / ptos_largo;

y0 = 63 - (Y0 - y_min) / ptos_alto;

x1 = (X1 - x_min) / ptos_largo;

y1 = 63 - (Y1 - y_min) / ptos_alto;

if(x0<0 & x1<0 | x0>191 & x1>191 | y0<0 & y1<0 | y0>63 & y1>63) return;

if(y1 - y0){

if(x0<0 | x0>191 | y0<0 | y0>63){

x0 = intersec(x0, y0, x1, y1, y = y0 > y1 ? 63 : 0);

y0 = y;

}

if(x1<0 | x1>191 | y1<0 | y1>63){

x1 = intersec(x0, y0, x1, y1, y = y0 < y1 ? 63 : 0);

y1 = y;

}

}

if(x0 - x1){

if(x0<0 | x0>191){

y0 = intersec(y0, x0, y1, x1, x = x0 > x1 ? 191 : 0);

x0 = x;

}

if(x1<0 | x1 > 191){

y1 = intersec(y0, x0, y1, x1, x = x0 < x1 ? 191 : 0);

x1 = x;

}

}

if(x0>-1 & x0<192 & y0>-1 & y0<64 & x1>-1 & x1<192 & y1>-1 & y1<64){

gotoxy(31, y1/8);

line(x0, y0, x1, y1);

}

}

float intersec(a, b, c, d, i)

int i;

float a,b,c,d;

{

return((c-a) / (d-b) * (i-b) +a);

}

Next file has the plotting parameters. From the left, them are: x min, x max, number x lines, y min, y max, number of y lines, plotting definition. You must write this numbers from the file editor incorporated in the PB. This gives you the hability to change just the plotting range`s numbers that you need without compiling again and again and again. The program reads this file every time you type the RUN order in the [c] mode. You must avoid to write white spaces in this file because the program cannot read it. Don`t forget press [ENTER] to store the changes in this file before to go to the [c] running mode.

Here are the detailed explanation of the parameters:

x min defines the left position to begin the plot

x max defines the right position where to end the plotting job

number of x lines defines the separation spaces between range lines in the x axis. This lines are just a visual help so don`t put too many.

y min defines the lower visible point on the vertical plotting

y max defines the upper visible point where finish the vertical plotting

number of y lines defines the separation spaces between range lines in the y axis. This lines are just a visual help too.

plotting definition is the number of samplings taked to plot the whole function. The program simply plots a line between every sample to show the function, so with more definition, more finnest graphic but, more time to do it too. Let`s gonna see a sample, if you plot the cos(x) function from 0 to 360 degrees you just need 15 points. For more complex functions you gonna need more definition. ¡Try changing the parameters and look it! =)

This file must be defined as containning secuencial data. You can change this from the [MENU] and pressing thre times the [etc] key, then you will see the “C/S” option to change the file`s attrib from “C” to “S” (look at the PB`s manual if you need more information)

¡Remember, don`t put spaces between this numbers!

File: graf2D.txt [S type]

-180,180,90,-1,1,0.5,15

Next module contains the function to plot. In this sample, the PB will plot the sinus function. Is at the left of “y =“ where you must change the function to plot. You can use all the functions defined by the PB`s, and the functions defined in the “funcion.h” file too. You can mix them, divide, sum, square, etc. i.e. any mathematial funcion you want.

Just remember compile the “GRAF2D” program every time you change the function to plot.

File: graf2D.fn [C type]

float f(x)

float x;

{

float y;

y = sin(x)

; return y;

}

REMEMBER: To plot the function you must first store all the files propperly in the PB and then:

1. In the graf2D.fn file, change the function at the right of “y =“ to the function that you want to plot.

2. Compile the GRAF2D program from the [MENU] mode.

3. Change the plot parameters from the graf2D.txt file and store them (presing [ENTER])

4. You must go to the [c] rum mode and type RUN and [ENTER] to begin the plot.

Notes:

- You don`t need to compile any time you change the plotting ranges. You must compile just when you change the function to plot.

- Be patient, despite the C language in the PB-2000C is powerfull, the machine processor isn`t. If you plot the sinus function with the gived parameters, the PB gonna take one minute and ten seconds to plot it. If you change the parameters in the graf2D.txt file to:

-180,180,400,-1,1,4,15 the PB gonna take just 53 seconds to plot it because the less definition (15)

I have a dream... To find the technical PB`s manual to overclock this precious and antique machine. I have find that a former model (PB-1000) can be overcloked doubling its clock frequency (raising its speed) but I never find an electrical or technical manual of the PB-2000C If you have one, please write me =)

