
Automated Test Generation for Computer Telephony Systems

Brian C. Miller
Teradyne Software and System Test
44 Simon Street, Nashua, NH 03060

miller.brian@teradyne.com

Introduction

Significant progress has been made in automating the front-
end application design process and back-end test execution for
today’s Computer Telephony applications. Sophisticated
application builder tools coupled with configurable Interactive
Voice Response (IVR) platforms allow end users, integrators,
VARs or dealers to build sophisticated IVR applications.
Robust automated test execution systems can automatically
emulate protocols and voice to greatly increase the
thoroughness and repeatability of functional test, load testing,
regression testing and in-service monitoring1. Despite the
automation in design and execution, the process for designing
and implementing tests is still mostly manual and largely
unchanged from what was done a decade ago. What’s
missing is an automated test generation process that
integrates the upfront call flow descriptions of the App
Builders with the back-end automated test execution
environments. This paper will examine the issues with the
current process and discuss the requirements for an automated
approach.

Current Design and Test Process

Design Process

Figure 1 illustrates a typical development process for a
Computer Telephony system. Today, most Computer
Telephony systems are defined in some form of Call Flow
diagram. This is done with either a graphical drawing tool, or
the graphical editor of an application builder toolset. Once the
definition is complete, the application builder can be used to
graphically design the system and then automatically generate
code. The system can then be exhaustively tested from both a
functional and a stress perspective using a variety of available
automated test execution environments2.
Test Process
While this design process is highly automated, the test process is
still mostly a manual process. Tests are developed by a
laborious process of first analyzing a call flow diagram of the
system design to determine what tests are required. The tests
are then manually implemented, reviewed and debugged in low
level scripting languages, requiring skilled programmers with
both programming and telephony test experience. This process

Figure 1: Test Process Automation Lags Design Process Automation

System Definition

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Capture/edit
behavior with Call
Flow Diagram

•Capture/edit
behavior with Call
Flow Diagram

Software Design

New Features/
Bug Fixes

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation

•Automatic Code
Generation

•Automatic Code
Generation

Software
Implementation

Test and Trial

•Automated Test
Execution

•Automated Test
ExecutionCall Flow

Diagram

Test
Spec

Automated Process

Manual Process

 Req’t
Spec

is repeated every time the application is updated or changed.
At the end of the process there is no explicit measure of the test
thoroughness. This can result in long field test cycles or worse,
problems found by customers.

Test is becoming the bottleneck

Features are released incrementally during the design process
(Figure 2). The tests for each feature require a separate design
and coding process. The time available for this process is being
squeezed from two directions:

• Application builder tools make it possible for new
features to be added or changed quickly, making it
difficult for the manual driven test process to keep up
and creating a bottleneck.

• Market pressure is reducing the time for creating tests
and increasing the need for new features. These
features are implemented rapidly using automated
application builder tools.

Also, because of the time required to develop feature tests, little
testing of feature interaction is done until late in the process.
Problems found at this phase can be the result of a inaccurate
requirement, poor design or an implementation error (Figure 1).
Changes in the requirements require changes to the existing
tests, further squeezing the process.

behavioral modeling tools that can either find paths through
the model, or validate specific use cases4. The languages for
these tools are complex and require skilled programmers to
implement.

There are several different approaches being used for
automating the test implementation. All are based on having
a set of re-useable test functions that are linked together to
implement the actions of a single call path.
At the simplest level, the functions are re-used by cutting and

Product Development Life Cycle

Define Design Implement Test and
Trial

QA Field Test

Test Cycle

Features

Design Code Execute

Feature 1

Feature 2

Feature 3

Feature n

Result:
1. Difficult to keep pace with new features/changes, making test the bottleneck
2. Little time for testing feature interaction until late in process, extending the
 time required for QA and field trials

Rapid change
made possible
by design auto-
mation

Shrinking Mkt
Windows from
Increased
Competition

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation
Test
Spec

• Icon driven programming of
parameterized functions

• Paramaterized functions
• Icon selected cut and paste
• Cut and paste reuseable

functions

• Behavioral Description
Languages with path
generation tools to
define scenarios

• Description of
Use Cases to be tested

High level description
of behavior with complex
behavioral description
language

Definition of a single call
flow paths using basic
call flow icons

Figure 3: A gap exists between the current automation tools
used for test design and test implementation

Available Test Automation
Today there is a gap between automation tools used for test
design and those used for test implementation. There are test
design tools that model an application's behavior and then
automatically find test paths through the model3. Test
implementation tools automate the creation of test scripts for a
single call flow path, once it is defined. There is a gap in that
the tools defining the test paths don't easily implement the code
for those tests. In most cases, the link is a Test Specification
defining the test paths that need to be implemented (Figure 3).
The test design tools are sophisticated general-purpose

pasting them into a new program using either an editor or
clicking on an icon that automatically pastes the code. The
script code is then hand edited to tweak it for new
applications.

A more sophisticated approach involves having
parameterized functions that can be customized by
modifying parameter values. This reduces the need for
modifying low level code and allows for a more general-
purpose library of functions.

Implementing an Integrated Approach for Test Design and
Implementation

The gap between test design and test implementation tools
can be filled by developing a set of re-useable call flow
objects that can be used by the test design tools to model the
behavior of the application and automatically find the test
paths. By concatenating test execution code embedded in
each re-useable object, the path generators in these test
design tools can automatically implement the tests for each
path found.

Figure 2: Rapid change and shrinking market windows are
squeezing the Test Development Process

To implement this kind of integrated approach, careful
consideration should be given in defining the following:

• A set of re-useable objects

• A means of connecting the re-useable objects
to represent the call flow

• A methodology or algorithm for generating
optimal test paths

• An output format suitable for debug and
documentation

The remainder of this paper will discuss the requirements for
each of the above implementation steps.

Defining Reusable Objects

What objects are required?

The first step in implementing an automated test generation
solution is defining a set of re-useable objects that can be
used to describe the behavior of a Computer Telephony
application from a user interface perspective. The goal is to
have a set of objects that a non-programmer can use to
describe the application behavior. A starting point is found
in the building blocks used by the design team's application
builder tool. Unfortunately, depending on the tool, there
could be 100's of building blocks. Many of these are
operations internal to the design that an end user would not
see (i.e., connect to database, string operations, file
operations, etc.). Figure 4 illustrates a list of objects that

would be needed to model at typical CT application at the
interface level.

In defining the library of re-useable objects, you should
consider whether the objects are defined from an application
perspective or a test perspective. The application
perspective is the same view a designer uses with an
application builder tool. The test perspective is a mirror
image of the application view, looking into the application
from the tester. Test engineers use this perspective to think
about what the tester is doing instead of how the application
is reacting. As an example, a "Place Call" object in an
application perspective (which causes the application to dial
a number) is the equivalent of a "Receive Call" object in the
test perspective, which causes the tester to receive an
incoming call. The advantage of the applications
perspective is that enables a direct mapping to the design
call flow diagram and facilitates easier interaction with
design engineers. The disadvantage is that it is an inside out
view of the tests that are run, adding complexity to the test
problem.

In addition to defining a set of call flow objects that can
represent the application behavior, it may be necessary to
develop additional specialized test objects. As an example,
you may want to verify that the application responds
properly when an end user dials ahead of the prompts. This
could require some form of "listen and respond" object that
sends digits a specified time after the prompt begins. It may
also be necessary to develop objects that can capture and log
various response data.

Many applications are set up to have data dependent call
flows. For example, an investment firm may want to have
different customer call flows based account type or balance.
An insurance company may want to route DNIS numbers
from a disaster area directly to an agent. Testing these
applications requires an object that enables data to be
specified or imported.

It may also be necessary to define objects that represent
screen pops. Some applications have parallel processes that
route a call to an agent while at the same time looking up an
account balance in a database and popping it on the screen
of a designated agent.

Implementing the Re-useable Objects

Once the objects are defined, the first step in implementing
them is to develop the code for executing the object action
on the target test execution system. To make the object as
general purpose as possible, this code should be
parameterized to allow for broad re-use. Some of the
parameters include digits to be dialed/received, voice
prompts, telephony parameters and phone lines used. The
code for the objects should also include default error
handling routines.

The objects also require a means of inputting the parameter
values. Ideally, this should be done graphically with text
boxes, buttons, or pull downs to enable use by non-
programmers. Finally, there should be a means of providing

Call Flow Object Description
1. Prompt-Response play a greeting and receive a response
2. Play Voice play an audio file
3. Place Call make a phone call
4. Record Voice save voice data in a file
5. Go On-Hook disconnect the call
6. Go Off-Hook prepare to accept incoming calls
7. Send Tones send MF or DTMF tones
8. Receive Tones receive MF or DTMF tones
9. Wait For Hangup wait for call to be disconnected
10. Wait For Call wait for an incoming call
11. Wait For Energy wait for energy on line
12. Wait for Silence wait for silence on line
13. Recognize Speech compare speech data with a vocab
14. Reject Call reject incoming call on the line
15. Transfer Call transfer a call to another number
16. Error default error handler
17. Stop Channel stop communications on the channel
18. Send Fax send a fax
19. Receive Fax receive a fax

Figure 4: Re-useable Call Flow objects must describe the
behavior of a Computer Telephony application at the user
interface

specific test comments for documentation purposes.

Creating the Call Flow Diagram

Once the call flow objects are defined and implemented, there
needs to be a method of connecting them together to model the
application behavior in the form of a call flow diagram. The
ideal solution would be to import a call flow diagram directly
from the chosen application builder tool. Unfortunately, there
are no graphical interface standards for call flow diagrams to
facilitate this. Also, since there is not a dominant supplier in
this area, there are no third party solutions for integrating a
call flow diagram of any application builder tool with any test
design tool. Lacking the above, the best approach is to make
it possible for a non-programmer to create a new call flow
diagram that can easily be mapped to the design call flow
diagram. To do this, it must be possible to enter the call flow
diagram from the same application perspective used by the
application builder tools (Figure 5).

In order to support data dependent call flows, the call flow
diagram must be able to represent conditional branching
dependent on data values. Figure 6 shows a call flow diagram

of a voicemail system where the main menu prompt and the
call flow path will vary depending on the data values defined
in the table. For example, a caller with "application access"
turned off would not hear the "press 6 for applications"
prompt. If the 6 digit were then pressed, the caller would be
routed to an error message.

Finally, being able to specify hierarchical call flows enables a
modular approach to test. Figure 6 illustrates a series of sub-
call flow diagrams that get branched to from the main menu.
Drawing all of these on a single flat call flow diagram would
be hard to organize and even more difficult to read. Using
hierarchy, the application can be decomposed to modular
elements that can then be worked on in parallel. Additionally,
having re-useable sub call flows allows the work to be
leveraged across multiple platforms. If the sub call flow
changes, the change can be implemented across all instances
of the sub call flow with a single edit.

Figure 5: An application view is required for easy mapping to the design call flow diagram.

Application View Test View

Main Menu

1 2 3 4 5 6 7,9,# 2,3,4,5,6
unprompted

R S CR PO RS AF

Main Menu
If message in mailbox:(To listen to your messages, press 1.)
If Send= 1 or 2: (To send a message, press 2.)
To check receipt, press 3.
To change your personal options, press 4.
If Restart = Y: (To restart this session, press 5.)
If Application Access= Y:(For applications, press 6.)
To disconnect, press *.

0*8

You have
pressed an
incorrect

key

Your
mailbox

number is
 [xxxx)

Goodbye

Disconnect

Path thru call flow diagram depends on
 data values

Figure 6: Call Flow descriptions must support data dependencies and hierarchy

Test Generation Requirements

After the call flow diagram is entered, the next step is to
define an optimal set of test paths through the diagram. At a
minimum, these test paths should accomplish the following:

• Touch all elements of the call flow diagram(data and call
flow objects) at least once.

• Test for response to negative behavior.

• Verify that illegal conditions can't occur.

Achieving the above can be done either manually or
automatically. In a manual approach, each path is separately
constructed with the call flow objects and the code from each
object is assembled to create a test script. Alternatively, using
the path generation capability of a test design tool can
automatically create the test paths. This approach offers
several advantages:

• Automatically create test paths that cover all objects.
This is particularly important on large, complex call
flows. Manually analyzing dozens of pages of call flows
to determine the optimal set of test paths is tedious, time
consuming and error prone.

• Rapid response to changes in the call flow diagram.
Instead of editing low-level test scripts, tests are modified

or added by editing the call flow diagram and using the
path generator to rapidly create new tests. This has the
greatest impact on new applications with volatile
requirements, or in competitive situations where new
features are frequently added.

• Lower skill levels required to design tests. By reusing
debugged call flow objects, non-technical people can
enter diagrams for test engineers.

The key issue in the using an automated path generator is to
have the test paths that represent relevant applications
scenarios and provide optimal test coverage. Having 100's or
1000's of tests on a part of the call flow happening 1% of the
time may add nothing to quality and just decrease throughput.

Figure 7 illustrates how different path generation algorithms
can result in a varying number of paths through a diagram. A
full cover algorithm, searching for all possible paths in the
diagram, provides the most exhaustive coverage and the
potential for the highest degree of error detection.
Unfortunately, it may produce too many tests to practically
execute. At the other end of the spectrum, a Quick Cover
algorithm provides broad functional coverage with a minimum
number of paths by generating an optimal set of paths that
touch each object at least once. When compared to a manual
approach, this is typically more then enough. Some path

Test Documentation

Ideally, the documentation for the test scripts should
automatically be generated as a separate output whenever new
test scripts are generated. This can be accomplished by
having the generation tool concatenate test descriptions
annotated on each call flow object as it creates each path
through the call flow diagram. This eliminates having an error
prone separate step of documenting the scripts after they are
generated. It also assures that the documentation is always in
sync with the test scripts

While debugging scripts it is also helpful to have a graphical
display that shows the sequence of events on each channel for
each test script. This sequence-based view simplifies review
of the test scripts with other test or development engineers.

generation tools enable the relative likelihood of each path to
be specified so that the distribution of paths created is
consistent with the operational behavior of the application.
This assures that the test scripts created are relevant
application scenarios.

Path generation tools can also be used to generate optimal data
sets for data driven applications. A model of the configuration
options for the voicemail system in Figure 6 can result in
anywhere from 5 to 2600 different combinations, depending
on the coverage algorithm used.

• Quick Cover

– Least Paths.

– Each Transition and State appears in at least one Path.

• N-Switch (N=1)

– Intermediate number of Paths.

– Each Transition “pair” (N+1, where N=1) appears in at
least one Path.

• Full Cover

– Most Paths.

– Each Transition and State appears in all contexts with
every other Transition and State

Full Transition N-Switch Quick Profile

8 Paths 4 Paths 6 Paths 2 Paths User specified

A C D F G
A C D F H
A C E F G
A C E F H
B C D F G
B C D F H
B C E F G
B C E F H

A C D F G
A C D F H
A C E F GorH
B C DorE F GorH

B C E F H
B C E F G
B C D F H
B C D F G
A C E F H
A C D F G

A C D F G
B C E F H

Figure 7: The number of paths created by a path generator depends on the algorithm used

Call Flow
Object

 Object
Properties

Call Flow
Object

 Object
Properties

Data Tables

Graphical
Editor

Path
Generator

Test
Scheduling

Call Flow
Object

 Object
Properties

Call data used across
multiple objects

Re-useable
Call Flow objects

Test Execution

Test
Documentation

Test
Scripts

Figure 8: Example of an integrated solution for automated
Computer Telephony test generation

Summary

Figure 8 summarizes the components of an automated solution
discussed in this paper. The first step is to create a library of re-
useable call flow objects that define the actions at the
application’s user interface. These objects contain the code for
executing the action on the target test execution environment.
The objects are connected using a graphical editor to link the
call flow objects together in the form of a call flow diagram. As
the objects are placed, they are edited with comments describing
the test action. Separate tables for data effecting the path
through the call flow diagram must then be developed. Once
the call flow diagram is completed, the test generator of an
automated test design tool can be used to find paths through the
call flow diagram. As each path is found, the test execution
code and test comments are concatenated together to
automatically create test scripts and documentation.

Implementing this approach can have a significant impact on
the overall product development process by:

• Reducing the time and skill level required to
develop comprehensive test scripts

• Allowing tests for feature changes or additions
to be developed in minutes

• Increasing the quality level by automatically
generating comprehensive end to end tests
across the entire call flow diagram.

These benefits must be weighed against the cost developing
or purchasing such a system.

References

1 Knowland, D., Life-Cycle Testing For Call Center Quality,
CTI Management Magazine, December 1998

2 Gladstone, S., Testing Computer Telephony Systems and
Networks, Flatiron Publishing, New York, 1994, ISBN 0-
936648-57-0

3 Beizer, B., Black Box Testing, ,John Wiley & Sons, New
York, 1995. ISBN 0-471-12094-4

4 Clarke, J., "Automated Test Generation from a Behavioral
Model", Proceedings of the Software Quality Week 1998
Conference, 1998

