This Paper was originally presented at the STAR West Conference, October 1998

ATsTl

(i

AT&T Network & Computing Services

Applying Use-Case M ethodology to SRE and System
Testing

Date: August 10, 1998

From: Steve Meyer
Org: IFA9T3000
OHJ740 717-2
(513) 629-7321
E-mall sameyer@att.com

Ray Sandfoss

Org: 1IFA9T3000
OHJ740 718-1

(513) 629-7204

E-mail rvsandfoss@att.com

Applying Use-Case Methodology to SRE and System Testing Page 1

Table of Contents

L. OVERVIEW e bbb bbb bbb bbb 3

2. USECASES THE OPERATIONSLIST AND SRE METHODOLOGY

2.1 CENERAL STEPS TO SRE ...ttt sttt sttt ettt st sttt
22 GENERAL STEPS TO OPERATIONAL PROFILE DEVELOPMENT

2.3 USE CASES FOR THE OPERATIONAL PROFILEututiuireerireereseesesesessesessesesssssesssesessssssssessssnenns
2.3.1 Stepsfor Identifying I nitiators and Building the Operations List
24 USE CASESFOR TEST AUTOMATION .eutriiuteetrerentesesesessasssesessassessessssessessssssssesssssessessssssssssssssessesssssessssssssssssssssessens
3. APPLICATION DESCRIPTION ...ttt isese s ssesssssesessssssssessssse s sessssssssssssessssesssssessenssssesssnssssessesans 6
4., OPERATIONAL PROFILE.......oi ettt sttt ss s sttt se b s eesas b s e nans 6

4.1 OPERATIONAL IMODES.....cocttiteueueieteueueieieseueiesesesesesesesssesesesesesesesesssesesesesesesesesesesesesesessaesesessaesesessaesese e s eaeseseaenenessaenens
4.2 MAPPING OPERATIONS LIST TO OPERATIONAL MODES
4.3 EVERITY CLASSDEFRINITION ..ovitititeueteteteieieietsieietetessietess sttt ssassesssssesesesssesesesssesesesssesesesssesesesnes

4.4 DEFINING THE MEASURABLE FAILURES BY MODE AND ROOT CAUSEccotuiueutirierenenrisienessesse e essssenesssenens 8

5. TEST AUTOMATIONt s 10

5.1 ASPECTS OF MODELING

5.2 BUILDING THE MODEL

5.3 SAMPLE OQUTPUT .coimireiereereeessessese s ssens
5.3.1 Test Output Stream for manual test execution.............
5.3.2 Test Output Stream for automated test execution

6. CONCLUSIONSocooieerrereercrreresse s teer e s e s s s s e e e e s sene e R e re e e e e e e e s eene e e nen e neais 14

Table of Figures

FIGURE 1: PROCESS FLOW ..ottt nenenes ERROR! BOOKMARK NOT DEFINED.
FIGURE 2: COMMON USE CASE RELATIONSHIPS.....ccceeurereeeieereensesesesseseeseneans ERROR! BOOKMARK NOT DEFINED.

Table of Tables

TABLE 1: APPLICATION FUNCTIONAL PROFILES MAPPING.......ceuttitrtreetetreseetseseseessssessssssssssssssssssssssssssesesssssssesssssssessens 7
TABLE 2: SYSTEM MEASURABLE FAILURES BY ROOT CAUSE AND OPERATIONAL MODE......cccooirieteerereeieineeiereenens 9

Applying Use-Case Methodology to SRE and System Testing Page 2

1. Overview

The main point of exploration in this paper is the techniques used for taking Use Case
Requirements and utilizing them to expedite both Operational Profile development and
Test Design and Automation activities.

The gpplication being studied wanted to improve the quaity and rdiability of their system test cycle
and subsequently their product releases. Past releases suffered from lack of ability to execute
planned functiondity tests and experienced response time, throughput and performance problems
once the gpplication was ddivered to the fidd users. It was decided to implement Software
Rdiability Engineering techniques, conduct a performance andyss sudy and focus on automated
testing as a srategy to address some of these problems. The gpplication enlisted SRE and testing
experts as consultants to guide the application on this directive.

The approach taken was.
Develop an operationd profile to more fully understand application usage and modes
Perform additiona performance andysis to better pinpoint problem areas
Automate portions of the testing usng COTS (Commercia Off-The-Shelf) tools.
TestMaster™ for modding the gpplication and generating test
WinRunner™ as the test execution engine.

The Operational Profile development and test automation tasks were undertaken as two separate
items by interna consultants. The applications architect would conduct the performance work. The
operationa profile and performance work would come together to guide the testing efforts. The test
autometion effort would improve testing efficiency. The three tasks taken together should achieve
improved testing effectiveness and better test coverage. Requirements for the current release were
gated in Use Case modeling methodology. A common reference for a starting point for each of
these tasks was the Use Case modéls.

Andyss, Desgn
Requirements < p and
- UseCases Implementation
Business Rules
Domain Object Model [€] State machine / Testing
Data Dictionary mondl<
Generated
Test Documentation
Executable Tests
Information Sources Operationa
Production Application | »f Profilesand
Historical Documentation Perf
ormance
Knowledge Experts Andvdc

Figure 1: Process Flow
Applying Use-Case Methodology to SRE and System Testing Page 3

2. Use Cases, the Operations List and SRE Methodology

2.1 General Steps to SRE

SRE as practiced encompasses the following steps:

Define Rdiability Objectives and Failure Intensity Objectives
Operationd Profile Devel opment

Designing Tedts

Executing Tests

Interpreting Tests

o owDdNE

Steps one and two can be completed interchangeably and it is often the case the operationd profile
work is done fird. This adlows for better definition of measurable falures during the “Rdiability”
steps.

2.2 General Steps to Operational Profile Development
1. Identify Initiators of Operations (Leverage Use Case Models)
2. Create the Operations List (Leverage Use Case Models)

3. Identify Modes of Operations

4. Determine Operations Occurrence Rates

5. Determine Occurrence Probabilities

6. Refine Operations List (Analyze Use Case Models)

2.3 Use Cases for the Operational Profile

Our development organization has recently advocated Use Case Requirements Modeling as a
sandard methodology for requirements specification. At the same time the SRE and Test
consultants redlized use case modeling provides a good description of the steps needed to perform
apecific task. They took an gpproach of identifying initiators of operations (2.2 Step 1 above) and
cregting the operationslist (2.2 Seps 2 and 6 above) from the use case modds. This was done for
the new functiondity introduced by this feature.

As this was new ground questions were outstanding as to how the use case models would map to
pertinent parts of the operationa profile. It is not aways evident how various use cases interact
within a developed business gpplication solution. In generd use case actors map to initiators of
operations in the operationa profile. Use cases map to operations in the operationa profile. Where
instances occur in the use case modd of <<uses>> and <<extends>> stereotypes, additiond
andysisisnecessary (2.2 Sep 6 above) to more accurately build the operationslist.

Applying Use-Case Methodology to SRE and System Testing Page 4

The following illugtration depicts a Use Case diagram and common Use Case Relationships

<<extends>> O

<<extends>>

A /N

Actor ABC <<uses>> Actor XYZ
<<extends>> <<uses>> /~ Common
/ Use Case
<<uses>>

Figure 2. Common Use Case Relationships

2.3.1 Stepsfor Identifying I nitiators and Building the Operations List
1. All use casss are identified up-front from requirements

2. All of the use cases are then mapped to operations and initiators are identified from the use case
actors. Thefirst pass assumes dl use cases are operations

3. The operdions lig is refined by andyzing the use case <<uses>> and <<extends>>
stereotypes.

This refinement reved s use case to operations relationships. These relationships are

- oneto one, use case to operation, usudly no stereotypesinvolved
one to many, use case to operation, often analysis of the stereotypes <<uses>> and
<<extends>> yields these relationships
One to none, use case to operation, in case of <<extends>> the driver use case is
omitted from the operations list or exists as a placeholder to give the mapping closure.

2.4 Use Cases for Test Automation

Operationd Profiles provide frequency information about use cases. Each operdtion in the
operationd profile represents the invocation of a use case by a specific actor. The use case
describes the operation the operationa profile's frequency information provides details how often an
operation is executed. The initid modding with the TestMagter tool further refined the rdationships
between use cases a a high level. Related use cases were grouped that represented the process
flow for a st of busness tasks. The use case modd diagram proved most useful for this exercise.

Applying Use-Case Methodology to SRE and System Testing Page 5

At some point additiona information about the physicad implementation was needed in addition to
the requirements specifications. In this case the organization of the GUI dients aided in further
detailing and annotating the modd.

TestMadter is a software tool enabling test engineers to visudly modd their System-Under-Test
using state machine based notation. By annotating the mode with test execution system language,
WinRunner TSL in this case, TetMagter can automaticaly generate test scripts for the System-
Under-Test.

WinRunner is a capture/playback tool for testing GUI’s. Getting TestMaster to output executable
tests requires annotating the modd’ s trangitions with TSL code. The test script generator evauates
paths through the model and concatenates the code “code fragments” on individual trangtions to
build executable tests.

3. Application Description

The gpplication being sudied was a dient server syle or digributed sysem. Some of the
components of this gpplication include:

Windows NT Desktop clients

Visud C++, and WEB dient implementations

WindowsNT client Sde WEB server and locd database images

UNIX C++ services and server Side database

Work managed across six internd networks

High availability and Site Fail-over server side configurations

4. Operational Profile

4.1 Operational Modes

Defining the operationa modes was the first step in developing the application operationd profile.
Secondly, the use cases were mapped to the various modes. The application had 5 modes defined.
They were asfollows.

User Online - Thisisthe norma mode of operation. This is the mode where any or dl of the
users in the user organizations are utilizing the gpplication. This mode encompasses the hours
from Monday — Saturday 6:00 am to 10:00 p.m. EDT. Thisis dl of the hours outsde of the
maintenance window, plus Saturdays. However, the norma User online mode is actudly from
8:00 am until 6:00 p.m. EDT. The user community reserves the flexibility to extend this window
to art at 6:00 am and finish at 10:00 p.m.

Pre-Ddivery Window - Thisisthe mode of operation where the gpplication is processing and
preparing information and orders to be sent to various network eements. This mode
encompasses the hours from Monday — Friday 6:00 p.m. to 10:00 p.m. EDT. Also, included in
this mode are the system cleanup activities that take place prior to the Maintenance window.
Maintenance Window - This is the mode of operation where the gpplication is sending
network eement updates to the network eements. This mode encompasses the hours from

Applying Use-Case Methodology to SRE and System Testing Page 6

10:00 p.m. to 8:00 an EDT Monday through Friday and Friday 10:00 p.m. until 800 am
Monday morning.

Software upgrade - This is the mode of operation where the gpplication is introducing new
gpplication software to the field. This mode encompasses the hours from 11:00 am to 1:00 p.m.
EDT Monday through Friday and Saturday from 3:30 p.m. — 10:00 p.m.

Periodic Bulk - ex. 15" of each month: large file processing - This is the mode of
operation where the gpplication is processing large portions of bulk data This mode
encompasses the hours from 10:00 p.m. on the 14™ to 8:00 an EDT on the 15" day of each
month.

4.2 Mapping Operations List to Operational Modes

The next step in the operationd profile development was to map the use cases to an operations list
and then to map that operations list to the 5 operational modes that had been identified for this
application. That mapping was best represented in the form of a table. The table that represented
thislooked like the following.

Tablel: Application Functional Profiles mapping

Total
Actors Use Cases and Operationsand Use Cases Oceur re”fle s
And Operations Occurrence Rates by initial System Operational a;;gtssrﬁ_
Initiator s of Modes Operational
Operations Modes
Mode 1 Mode 2 Mode 3 Mode 4 Mode5
User Group 1 10010 : operation 1 2 1 3times/yr.
10013 : operation 2 4 1 1 6 timed yr.
10020 : operation 3 1 1 timelyr.
10030 : operation 4 3 1 4 timeslyr.
10040 : operation 5 6 1 1 8 timesfyr.
10050 : operation 6 1 1 time'wk
10053 : operation 7 15 3 1 1 20timesfyr
User Group 2 40500 : operation 1 1 time/day
1 1 1 *** could
occur in any
of 3 modes
k
40600 : operation 2 8 2 10 times/day
External System 1 | 60000 : operation 1 40 5 5 50 times/day
70000 : operation 2 1 1 time/day

Applying Use-Case Methodology to SRE and System Testing Page 7

4.3 Severity Class Definition

The next step in the operationd profile development was to determine the level of the severity of the
failures that could occur within the application. Here are the actud definitions that were defined for
this gpplication.

Severity 1failure: afailure that occurs which rendersthe system release unavailable to the User
community.

Severity 2failure: afailure that causesthe system release to be avail able to the User community, butin
degraded state.

Severity 3failure: afailure that is defined to cause some part of the system release to be unavailable to
the User community, but with awork-around available.

Severity 4failure: afailure that is defined to cause some part of the system release to be unavailable
but with no impact to the User communities.

4.4 Defining the Measurable failures by mode and root cause

The next step in the operationa profile development was to determine the failures that could occur
across the system various operationd modes that were defined. In addition, root causes were first
defined. The root causes that were defined were:

The categoriesor root causes are asfollows:

GUI Processors (hardware)

GUI Processors (software)

User LANs/ WANSs

Unix server Processors (hardware) used within the system platform
Unix server Processors (software) used within system platform
Processor LANs/ WANS used between the system processors
Networks used to connect to various network eements

Network Element (Hardware and Software)

ONOOA~AWDNPE

In addition, a table that maps these measurable failures to thelr respective severity leves was
developed. Then these failures were mapped to the various root causes that could cause them to
occur. Here is atable that depicts these mgppings.

Applying Use-Case Methodology to SRE and System Testing Page 8

Table2: System Measurable Failuresby Root Cause and Operational Mode

M easurable Failure Severity Operational Root Causes
Class Modes
Cannot Retrievelist of required information 1 1,2,3 1,2,3,45,6
Retrieved required information 1 1,2,3 2,5
inaccurate
Takes “long” time to retrieve required 2 1,2,3 2,345
information
Cannot Retrieve ligt of low leve detals 1 1,2,3 1,2,3,4,5,6
required
Retrieved lig of low levd dealls 1 1,2,3 2,5
inaccurately
Takes“long” time to retrieve list of low 2 1,2,3 2,345
levd ddtalls
Cannot send necessary information to 1 1,2,35 1,2,3,4,5.6
externd system
Necessary information sent to externa 2 1,2,35 2,345
system tekes along time
User Interface Fields rejected 2 1,2,5 2,5
User interface fields take along time to 2 1,2,5 2,345
accept
Cannot notify externd sysem of the 3 12,5 1,2,3,4,5,6
updates
Notify to externd sysem takes a long 2 12,5 2,345
time
Cannot receive events from externd 1 1,2,5 3,4,5,6
system
Receive events from externa system in 2 12,5 2,345
adegraded fashion
Download of events to NE's takes a 2 1,2,34,5 2,34,5,6,7,8
long time
Events received from NE’ s takes along 2 1,2,345 2,34,5,6,7,8
time
Maintenance work cannot be 1 1,2,345 5
Applying Use-Case Methodol ogy to SRE and System Testing Page 9

M easurable Failure Severity Operational Root Causes
Class Modes

performed on system
Maintenance work can be done, but 2 1,2,345 5
isn't correct
Cannot print reports 1 1,2,3,5 2,3,4,5,6
Can print reports, but they are 2 1,235 2,5
inaccurate
Print of reports takes too long 2 1,235 2,345
User LAN / WAN dow to transmit 2 1,2,345 3
data
Server LAN / WAN dow to transmit 2 1,2,345 6
data
User LAN / WAN not available 1 1,2,3,4,5 3
Server LAN / WAN not available 1 1,2,34,5 6
Cannot Upgrade server software 1 4 45,6,7
Server software upgrade takes too long 2 4 4,5,6,7
Cannot perform Database conversion 1 4 45,6,7
Database conversion takes too long 2 4 45,6,7
User cannot login 1 1,2,35 12,345
User login takes too long 2 1,2,3,5 1,2,345,
Cannot run cron jobs 1 1,2,345 4,5
Cannot clean up object space 1 1,2,3,45 45
Cleanup of object space takes too long 2 1,2,34,5 4,5

5. Test Automation

5.1 Aspects of Modeling

TestMaster Models are comprised of States and Trangitions. Where behavior gets more complex a
sub-mode is substituted for a state. Thus, as models grow in complexity layers are added. The
higher levels are characterized by trandtions to sub-models. At the lowest leve there will only be
dates and trangtions. From the modeling approach being used | would expect the System Engineers
models to have three to four layers and the Test Engineers work to add three to four layers.
Indications are most gpplications will have multiple models. In our case the first breakout would be
one of application's GUI clients. It may aso become necessary to further partition the more
complex clients into more than one modd. Partidly modeled behavior can be easly disabled while

Applying Use-Case Methodology to SRE and System Testing Page 10

other parts of the modd are being worked to completion. The partialy modded functiondity can be
revisted as modeling work progresses.

5.2 Building the Model

The subsat of functiondity initially modeled incorporated behavior from six fairly complex use cases.
The GUI implementation contained many common objects menus, buttons, pick ligts, ...
Approximately eight screens with gpproximately 25 data el ements total were modeled completely or
in pat. Screen leved and fidd leve edits were in place dong with “Back”, “Next” and “Cancd”
buttons.

A high leve modd of the new functionality was created from Use Cases (Systems Engineering
Model) This modd was then extended (Test Engineering Model). The extensions concentrated on a
subset of the functiondity. Aswork progressed more of the functiondity would be completed within
the modd. This subset was identified as appropriate for the initid modding effort. To complete the
extended model, more detailed information of the physica implementation was necessary. For this
an integration load of the application was used. This provided the physicd implementation details
(screens, data e ements and workflow) to complete the mode to a point where it fully captured the
goplications behavior.

Firgt the modd was annotated and congtrained to produce test documentation paths and steps.
TestMager dgorithms found paths through the modd and each step in a path was numbered. The
output was reviewed and the modd iterdively refined. The modd subset produces 9 — 16 pathsin
trangition coverage and 50 — 100 in full coverage. The variation is based on the level of condraints
that are enabled.

Next a second test script output stream was defined. This stream would produce executable
WinRunner Scripts. One capture playback session exercising the GUI provided enough WinRunner
TSL to dlow agood portion of the modd to be annotated for the executable output stream. Some
of the TSL gathered in this session included: NULL entriesin required fidds, invalid entries, button
presses, menu-salections ...

As ameasure of rdative complexity note the following hash counts for various TestMaster model
components.

1 Root mode

Deepest sub-mode layering -- 6

two test output streams

- test documentation for manua test execution
- WinRunner executable test scripts

38 sub-modd's

908 states

178 trangtions —

- 87 trangtions were annotated

Applying Use-Case Methodology to SRE and System Testing Page 11

5.3 Sample Output

The following are sample test output streams from TestMagter. Each numbered step is a trangtion.
Trangtion information in a path is concatenated to produce a test scenario. The step numbering was
a characteristic added by the modder. This makes it easy to recognize separation between
trangtions and enhances the ability to cross-reference multiple output streams. A sample script for
each output stream path04 is provided. These stream have been modified to protect sensitive
information

5.3.1 Test Output Stream for manual test execution
path4(05/19/1998)
1. Select Add XXXX from Ligt

2. Task Manager Create Button to Menu select Node
To Add XXXX
3. Verify Add XXXX Window Appears with Blank fields
4. Sdect Vdid Vaiadle vaue from pick lig;
5. Enter Vdid XXXX into Feld,
6. Select Vaiable vaue from lig;
7. No Optional varidble vdue Entered
8. Press Next Button
9. Veify Summary Window Information
Verify Task Name: ADD XXXX
Verify XXXX
Veify YYYY
Veify 27277
Verify User Id is: abedefg
10. Back Button Pressed from Summary Window
11. Verify Add XXXX Window Appears with previous Fields Populated
12. Sdlect Vdid vaiadle vdue from pick list
13. Enter Vdid XXXX into LLI FHeld
14. Select Vaidble vdue from lig
15. No Optiond varigble value Entered
16. Press Next Button From Add XXXX Window
17. Verify XXXX Summary Window
Veify Task Name ADD XXXX
Verify XXXX
Veify YYYY
Veify 2277
Veify User Id is abcdefg
18. Press Finish Button from Summary Window
smeyer -- 05/19/1998 14:54:40}
END PATH 4

Applying Use-Case Methodology to SRE and System Testing Page 12

5.3.2 Test Output Stream for automated test execution
path(4) -- (05/19/1998)
1. Add XXXX

2. From Task Manager navigate through menu'sto ADD XXXX;
win_activate ("Task Manager - XXX");
set_ window "Task Manager - XXX", 10);
toolbar_button_press ("ToolbarWindow32", "#1");
win_activate ("Tasks Menu');
list_expnd item ("SystreeView32", "Tasks,Node"); # Item Number 2;
list_select_item ("SystreeView32", "TasksNode; ADD XXXX"); # ltem Number 6;
button press ("OK™);
Add XXXX Appears Focus on Window;
win_activate ("Add XXXX");
set_ window ("Add XXXX", 10);

3. Add GUI Checkpoint Window Verification here;

4. Sdect Vdid Vaiable vdue from Lig
edit_set insert_pos ("XXXX *:_1" 0, 0);
list_sdlect_item ("XXXX *:_0", "22"); #List Item Num 4;

5. Eneter Vdid XXXX;
edit_set insert_pos ("XXXX *:*, 0, 0);
type ("X XXX XXXXXXX");

6. Sdect Vaidblevadue from lig;
edit_set insert pos ("XXXX *:_1",0, 1);
list sdect item ("XXXX *:_0","5");

7.No Optiond Varigble vdue Entered;

8. Next Button Pressed From Add XXXX Window;,
st window (Add XXXX", 10);
button_press ("Next >");
Summary Window Appears,
win_activate ("Summary”);

9. Verify Dataentered on Add X XXX Window;
lig sdect item
lig sdect item
lig sdect item
list_sdect item.....

10. Back Button Press From Summary Window;
Applying Use-Case Methodology to SRE and System Testing Page 13

button_press ("< Back");

Add XXXX Window returns,
win_activate (Add XXXX");
st window ("Add XXXX", 10);

11. Add GUI Checkpoint Window Data Verification TSL here;

12 Sdect Vaid Vaiablevaue from Lis
edit set insart pos ("XXXX *: 1" 0, 0);
list sdect item ("XXXX *:_0","22"); # Ligt Item Num 4;

13, Eneter Vaid XXXX;
edit_set_insert_pos ("XXXX *:", 0, 0);
type ("XXXXXXXXXX");

14. Sdect Vaidblevdue from lig;
edit_set_insert_pos ("XXXX *:_1", 0, 1);
list sdect item ("XXXX *:_0","5");

15. No Optiond Variable vaue Entered;

16. Next Button Pressed From Add XXXX Window;
set_ window (Add XXXX", 10);
button_press ("Next >");
Summary Window Appears,
win_activate (" Summary™);

17. Veify Data entered on Add XXXX Window;
lig sdect item
ligt sdect item
lig sdect item
list sdlect item

18. Pressthe Summary Window Flnish Button;
button_press ("Finish");

smeyer -- 05/19/1998 14:54:40;
END PATH path(4)

6. Conclusions

Use Cases lend themsdves particularly well to Operationd Profile development. There is a natura
mapping of Actors in the Use Cases to Initiators of Operations in the Operationa Profile. Mapping
use cases to operations is an dficient and effective way to build the operations lig for the
operationd profile. A necessary step to the trandation of use cases to operations is andysis of the
use casss diagrams and underganding how use cases rdate Use Case <<uses>> and

<<extends>> gereotypes should be given attention when refining the operations list. By leveraging
Applying Use-Case Methodology to SRE and System Testing Page 14

use case requirements modeling the work needed to produce an operationa profile can be greetly
reduced.

System engineers regard modeling the Use Cases with TestMaster as another way to further nall
down requirements. It provides clarity for both testers and developers and can be used as away to
uncover requirement inconsstencies. It gives organization to the use cases that is sometimes needed
to understand how various use cases interact.

The initid modding from requirements gives the Test engineers a good framework to start their
work of test design and creetion. At some point knowledge of physical implementation beyond what
is provided by the use cases is necessary. Use case requirements modeling and extension into both
the operationa profile and modeling provides a consstent point of reference from requirements
through testing.

TestMagter's various coverage schemesinclude profile coverage. Rdlative likelihood information can
be annotated on various trangtions. This adlows operationa profile occurrence information to be
recorded within test models. This information when provided in the modd will cause the generated
tests to reflect amix of operations tests as documented in the operationd profile.

Use case requirements modeling provides a strong point of focus for subsequent operationa profile
development. Use cases provide a common point of reference connecting the operationa profile to
test design and creation. These gpproaches are an effective way to strengthen the redization of
requirements through development, test and into field release.

Applying Use-Case Methodology to SRE and System Testing Page 15

Applying Use-Case Methodology to SRE and System Testing Page 16

