
Use Cases are Not Requirements 1

AT&T and Teradyne Software & System Test

Use-Cases Are Not Requirements

Date: March 19, 1999

From: Steve Meyer
 AT&T

E-mail sameyer@att.com

Larry Apfelbaum
 Teradyne Software & System Test

E-mail larry@sst.teradyne.com

ABSTRACT: Use Cases are Not Requirements
Much work has been done in recent years to improve the process used to develop software.
Increasingly, use of object oriented methodologies have become standard. One aspect
common to many of them is the increased emphasis on Requirements Modeling. Capturing
requirements accurately is essential to developing correct software. A currently popular Object
Oriented method for requirements capture has been use cases, use scenarios or Use Case
Requirements Modeling. A use case is a mechanism where an engineer can describe a specific
scenario for the system, illustrating one or more key characteristics of its business functionality
and processes. Use scenarios provide a valuable means for a team to review the proposed
business solutions under a limited number of specific conditions. It is a communications tool
valuable in the specification, analysis, development and testing of a system. Although a Use
case approach is very effective at capturing business functionality, they are somewhat lacking in
capturing usage and behavior characteristics of the system.

Outline

1. Introduction 2
2. What are use cases? 2
3. What are requirements 3
4. What use cases lack 6
5. Fitting behavioral modeling into the development process 7
6. Use of models 8
7. Conclusions 11

Use Cases are Not Requirements 2

1. Introduction
Most systems can have very large numbers of potential usage scenarios. It is not practical for designers
or system engineers to explicitly describe all usage scenarios for all Use Cases. These scenarios often
only implicitly define the actual behavioral requirements of the system. To completely define the
requirements illustrated by a usage scenario one must explicitly enumerate each possible sequence of
actions. As the number of requirements becomes large, manual specification of all possible usage
scenarios becomes increasingly difficult and the possibility of missing, incomplete or ambiguous behavior
increases.
At a minimum Uses Case Requirements Modeling provides use scenarios which describe the business
functionality to be captured as a set of enumerated steps. This may include some pre/post conditions
and some exception processing alternatives. Ivar Jacobson's Requirements Model consists of: Use
Case Model, Domain Object Model and Interface Descriptions. A thorough approach to Use Case
Requirements Modeling can include:

• Uses Cases described via a well defined template
• Use Case diagrams to illustrate high-level use case relationships
• Domain Object Model depicting objects in the business domain and their attributes
• Interface diagrams, Business Rules, User Interface Descriptions

At best, Use cases fail to provide information that could greatly enhance subsequent steps in the
development process. An approach of using behavioral modeling is an opportunity to further "nail-
down" requirements in a way that can provide continuity from System Engineering through test.

This paper presents a methodology where a behavioral model describing the systems actions can
augment use cases as a compact means of describing them. In addition a process of overlaying the
systems requirements onto this model will provide a very efficient mechanism for determining when any
arbitrary use scenario generated by the behavioral model has covered any of the specified requirements.
Benefits of this approach include easy analysis of behavior, rapid response to changes in specifications
of requirements; tests generation correlated to requirements as well as automated generation of
requirements based tests.

2. What Are Use Cases?
Use Case Requirements Modeling is one of the first steps in an Object Oriented approach to systems
development. Independent of the subsequent analysis and design methodology used, Use Cases provide
a superior method for communicating the business functionality to be developed. Traditional thinking
maintains requirements describe the "what" is required, whereas subsequent development steps translate
from the "what" to the "how". In spite of improvements in requirement specifications this thinking has led
to a gap between requirements and behavior. Use Cases describe requirements for a developer’s
translation; from a function but not usage point of view. They lack the ability to portray the business
needs from a behavioral or user perspective. Behavioral modeling techniques and tools are now
available and sufficiently mature that can bridge this gap between function and behavior. One such
behavioral approach models requirements in terms of states and transitions between states. Use Case

Use Cases are Not Requirements 3

requirements can now be extended with behavioral modeling to add context and organization. A sort of
middleware between the What and the How.

2.1 Use Case Descriptions
A Use Case is a specific way an actor [a person, or process] uses the solution/system by performing
some part of the functionality. A use case specifies the interaction between the actor(s) and the
solution/system and describes the functionality to be performed. Typically these descriptions consist of
an enumerated set of steps that are needed to be performed for the functionality to reach a successful
conclusion. Pre/post conditions and limited exception conditions are often included. Frequency and
arrival rate information is almost never included.

2.2 Use Case Diagrams
Use case diagrams are often used to capture relationships between use cases. Certain modeling
conventions can be used to further define use case relationships. A well-structured diagram with well-
focused use cases is valuable for adding clarity to large models. Following are a couple of trivial
examples:

2.3 Additional Supporting Documentation
Other documentation commonly employed to support Use Cases include: the domain Object model,
interaction diagrams, business rules and user interface specifications. Each adds a level of detail to
support development efforts by providing information relevant to the problem domain.

3. What are Requirements
I think it would be safe to say that, "The customer wants a solution (system) that meets functional
requirements." There may often be constraints in terms of response time or other concerns but it is the

Figure 1 Use Case Diagram for Business Trip

 Setup Business Trip

Reserve Airline Ticket Reserve Rental Car Reserve Lodging

<<extends>
>

<<extends>
> <<extends>

>

Figure 2 Use Case Diagram for Print System

Print

Display Office
Generate Report

<<uses>>
<<uses>>

Use Cases are Not Requirements 4

requirements that describe the intent. Webster’s defines a requirement as “something required:
something wanted or needed”. Within the engineering discipline the definition [IEEE 729, Dorfman &
Thayer1] has focused more on the reasons why we have them: ”1) a software capability needed by a
user to solve a problem or achieve an objective; 2) a condition or capability that must be met or
possessed by a system or a component in order to satisfy a contract, specification standard or other
formally imposed documentation.” The objective of the requirements phase in a development project is
to be able to communicate the needs of the users of a system to the entire team. To accomplish this we
need to first verify that the requirements are correct then as the various part of the development team
work on the project we need a means to correlate the results back to the requirements themselves.
A key aspect of a software requirement specification is to describe what the software is to do without
describing how it is to do it. Davis2 has defined it as a two phased process, problem analysis and
product description. In problem analysis the team will interview people who understand the problem
and it’s constraints until they have a thorough understanding of the problem. Next in the product
description phase the team uses this understanding to define the external behavior of a product that will
solve the problem. The solution may not be complete but the issues around the tradeoffs made should
all be defined and understood. In addition to describing what is desired it is often just as important to
define what is not. Defining the behavior a system should not exhibit is also important in communicating
clearly the problem to be addressed.
Many engineers would rather define how they think something should be built rather than focus on what
the customer cares about. The answer to the how question is best covered in separate phases known
as a functional and design specifications.

3.1 Why are Requirements Important
It is very important to define the requirements accurately, and unambiguously. There have been many
studies documenting the cost of repairing a defect, all define a clear escalation of the cost as the
development process progresses. An example of this is shown in Table 1, it is from Gause &
Weinberg3 and references data from a Boehm4 study of 63 software projects from leading corporations
(IBM, GTE, TRW).

Phase in Which Found Cost Ratio
Requirements 1

Design 3-6
Coding 10

Development Testing 15-40
Acceptance Testing 30-70

Operation 40-1000

Table 1 Relative Cost to Fix an Error

It should be obvious to anyone that the business impact of detecting and repairing defects at the
requirement stage is immense. The escalation in cost is due to two primary factors, 1) the delay from
when the defect was introduced until it was detected and, 2) the cost of the rework involved to repair
the defect. The delay is introduced because the detection process, also known as testing, verification or
review, is based on determining a difference from the article under test and an oracle, a source of truth.
The problem feeds on itself if the basis for the validation is also flawed. If the information used to drive
a stage of the process is flawed then even if the process works perfectly, the output will also be flawed.

Use Cases are Not Requirements 5

Given that each stage of the development process is not perfect what we have is a larger and larger
proportion of defects. Table 25 describes the compounding affects of defects.

Requirements Functional Design Code
Correctly defined
requirements

Correctly defined
functional description

Correctly designed
specifications

Correctly coded software

Incorrectly defined
requirements: missing,
misunderstood, ignored,
outdated, unneeded,
unspoken (assumed)

Erroneous functional
specs based on
incorrectly defined
requirements

Design errors based on
incorrectly defined
requirements

Coding errors based on
incorrectly defined
requirements

Incorrectly defined
functional specs

Design errors based on
incorrectly defined
functional specs

Coding errors based on
incorrectly defined
functional specs

Design errors Coding errors based on
design errors

Coding errors

Table 2. Compounding Effect of Defects, even good work on a faulty base will result in a defective product

This is analogous to the problems encountered in determining the yield of a multi-stage manufacturing
process. Using a formula of:

Qualityof this stage = Qualityof previous stage * % DefectLevelof this stage

a simple analysis of the problem as shown in Table 3, results in some scary conclusions. Even scarier
than the mathematical analysis is the consistency of the conclusion to many real life situations.

Scenario Stage-> Requirements Functional Design Code
All Stages at 90% % Work Done Correctly 90% 90% 90% 90%

Correct Cumulative Defect % 90% 81% 73% 66%

All Stages at 85% % Work Done Correctly 85% 85% 85% 85%

Correct Cumulative Defect % 85% 72% 61% 52%

Table 3. Cumulative Effects on a Multi-stage Process, at an 85% quality level almost half of the code delivered will
be defective

3.2 Characteristics of Good Requirements
The primary goal of good requirements is an effective communications mechanism. Customers will have
their expectations met and the entire development team can discuss all aspects of the product in terms
that relate directly to the customer goals. In particular the work done in the system-testing phase can be
directly tied to the needs of the customer. An additional long-term value of the requirements spec is the
ability to quickly understand the affects of changes made to the system as it evolves.

This paper is focused on some of the issues related to creating a robust description of a system’s
behavior. For most modern systems there is an infinite number of potential scenarios that can be
defined for a system. Clearly an engineer/analyst cannot define this many scenarios, a common
substitute is a long text description of the system combined with some use cases. These tomes are often
too large for effectively communicating the desired behavior of a system and lack an effective means of
helping the engineers analyze the specification. The use cases do aid the engineer by providing a clear

Use Cases are Not Requirements 6

description of a use scenario. A problem with this approach is the lack of a standard mechanism to
generalize the example used in the use scenario to the robust model needed to communicate the system
to engineers.

4. What Use Cases Lack
Some things Use Cases lack in describing the requirements are described below. An example of a
good use case diagram and the problems described is shown in Figure 3.

1. Sequence and flow of operations. Although Use Case diagrams can illustrate some of the
relationships between individual Use Cases, they do not convey sequence and flow of related
operational usage. In a large model detailing to this level of behavior becomes increasingly
difficult. Besides requirements traceability this is one of the biggest benefits of behavioral
modeling. It gives the engineer an opportunity to describe requirements from a usage
standpoint.

2. Frequency and arrival rate information of individual Use Cases. Such information can be
used for performance engineering of a system and help define load test scenarios. This type of
information is easily portrayed in a state transition model, not so easily captured with Use
Cases. Once sequence and flow is effectively modeled annotating frequency information can
enhance the graphical representation. This information can be valuable for performance and load
testing

3. Use cases often describe only best case (successful completion of operation) and limited
exception information. Visualizing and modeling many exception conditions can be a large task.
This is more easily undertaken using state machine techniques.

4. How the system(s) are used, or could be used. An improved process can be realized if the
actual requirements are separated from the discrete descriptions of individual use cases.
Following paths through a behavioral model has proven to be a very effective approach to
understanding how requirements might be used with in a "System" framework. This modeling
gives the engineers a chance to further nail-down requirements and how they behave.

Use Cases are Not Requirements 7

NP
Applications

NM
Applications

Delete Order

Describe Order

Describe
Hierarchy

Update Order
Query List

Query Order List

Notify

Subscribe

Unsubscribe

Create Order

Update
Order Information

Update Layout

extends

extends

extends

uses

uses

uses

uses

Figure 3 Simplified - High Level Use Case Model [Ehrlich 19986]. Where is -- 1. Sequence and Flow, 2. Frequency
and Arrival Rate, 3. Only Best Case, 4. How the system(s) are used?

It is not always evident how various Use Cases interact within a developed solution. Systems engineers
can use models to further refine the relationships between Use Cases at a high level. This is useful in
confirming the Use Case framework used to describe the feature functionality of the solution. [Meyer
May 19987]

5. Fitting Behavioral Modeling into the Development Process
 This discussion will focus on the "State machine models" box as the piece inserted into the development
process (see Figure 4). The premise here is modeling work is appropriate for both system engineers
and test engineers. There are also implications the system engineers models could be useful for the
analysis, design and implementation teams. As the application progresses to integration and system test,
executable test scripts will have been produced to exercise the applications behavior.[Meyer Jan 19998]

5.1 System Engineers Model
The focus of the system engineers modeling work is to further nail-down requirements by describing
them with state/transition methodology. This description should provide organization and sequence
information and requirements traceability.

Use Cases are Not Requirements 8

5.2 Test Engineers Model
Test engineers can take the system engineers state-machine behavioral models and extend them.
Calculating paths through these extended models exposes a great amount of complex behavior that
needs testing. Taken a step further these paths become tests.

6. Use of Models
The use of models to define behavior is not new, it has been used in both development and test
processes.9,10 The recent popularity of Object Oriented Analysis and Design techniques have increased
the deployment of model based techniques across the software development community.

We have developed a technique where a behavioral model of a system can be used to replace the sets
of use cases used to describe a system’s requirements. The model provides a means of generating use
scenarios when needed. Each path through the model is equivalent to a unique use scenario. By
exploring different paths, including potential loops, error conditions etc. a more robust understanding of
the system can be developed. Furthermore, as the system is changed the graphical view of the model
makes communicating the impact of a change much easier.

6.1 Building a Model
Modeling is not new, engineers always build and use models. The ‘model’ may only exist for a short
time and live on a napkin or remain in the mind of the engineer; it is not always preserved in a reusable
form. This model of behavior is analyzed when one creates requirements, writes a use case, designs
code, or develops a test plan; an engineer must understand the basic operations and actions of the
system. The means used to implement the behavior is not required until design and/or implementation
begins. Modeling at the behavioral level is straightforward and can contain information from
specifications, use case diagrams, sequence diagrams and flowcharts.

§

Requirements
§ Use Cases
§ Business Rules
§ UI Descriptions
§ Domain Object Model
§ Data Dictionary

State
Machine
Models

Analysis, Design
and
Implementation

Generated
§ Test Documentation
§ Executable Tests

Automated
Testing

Operational
Profiles and
Performance
Analysis

Information Sources
§ Production Application
§ Historical Documentation
§ Knowledge Experts

Figure 4 System Development Process, a step has been added to develop state models

Use Cases are Not Requirements 9

This approach is based on the concept of a state machine (see Figure 5) where the transactions,
represented by arrows in the diagram, correspond to the actions (transitions in the state machine), while
icons in a variety of shapes represent the states. State machines are an established modeling approach
and have been extended11 to provide a more powerful means of describing complex systems. Actions
that can occur during the use of the system are defined by adding arrows and or states to the basic
diagram. The actions that “could” occur also imply that that there may be more than one possible action
at a specific point in the process. Most modeling techniques support the idea that there are multiple
potential “next” actions. Some of these actions can only occur if certain conditions exist in the system,
this information can be added to the basic model by associating a rule or condition with each action. In
our approach these are included as predicate expressions on the transitions. An effective modeling
technique allows an engineer [analyst or other specifier] to unambiguously define these alternative
sequences and any rules associated with them. Another modeling technique we utilize is hierarchical
models, where a state can be replaced by a ‘call’ to another model that defines the behavior within the
state, this approach is also referred to as ‘super-states’. Hierarchical models allow complex behavior to
be decomposed into simpler lower level models.

• Transitions define actions that move the system from the current state to a new state
• Transitions can be based on specific stimuli and/or previous actions
• Text descriptions of user actions can also be associated with transitions
• Use cases are built by concatenating the descriptions from a sequence of transitions through a

diagram

Current
State

Next
State

Transition
in/out

A B

Figure 5. A Finite State Machine is Composed of States and Transitions

Developing a specification in the form of a model is a very effective means of:
1) discovering defects in the system (many are made visible by the modeling effort alone),
2) rapidly defining the basis for use scenarios of the system, and
3) preserving this investment for future releases or other similar systems.

Furthermore, the process of developing a model is best done in a measured series of small incremental
steps. This incremental building approach allows the core functionality to be defined, evaluated and
understood before all of the secondary features are added. This also allows a larger team to be applied
to the problem. They can divide up the more detailed specifications (typically in lower level models),
and integrate the work into the larger model.

Once a model has been developed, even if it is a partial model, use scenarios can be developed by
finding paths. A path is a sequence of events or actions that traverse through the model defining an
actual use scenario of the system. Each element in a path, a transition or state, can have some text
associated with it. Concatenating all of the text found on the path elements will provide us with a textual
description of the entire use scenario. This process can be repeated for another path, which defines
another use scenario, and validates another sequence of actions. Many methods can be used to select
paths, each with its own distinct objectives and advantages. Operational profiles, reliability/criticality
data, and coverage all provide different tradeoffs to the type of scenarios and the resulting coverage. A
primary advantage of this type of structured definition of the behavior is that automated tools can be

Use Cases are Not Requirements 10

used to help in the analysis. This approach also allows an engineer or analyst to see potential secondary
paths that may exist. The benefits of having this complete view of all of the potential behaviors at any
point in the flow will allow a more complete analysis as well as make updates and changes easier to
insert.

6.2 Overlaying Requirements on the Model

At this point we can define a behavioral requirement in terms of model objects. If a system must
provide a specific behavior as one of its requirements it can be expressed in terms of the objects in the
model. For example in Figure 6 we define a voicemail system. If a requirement specification included
“Requirement timeout_transfer : On a busy line, the system shall transfer a caller to the attendant after
the specified timeout period” we could define this by linking the requirements to the elements of the
model [block arrows in Figure 6] with an expression like:

“timeout_transfer = Busy && (Timeout -> Attendant)”

The -> operator is defined as “is immediately followed in a sequence by”, the operands are the
objects in the model diagram [Busy and Timeout are events, Attendant is a state (actually a
superstate)]. This expression now provides us with a versatile mechanism for understanding when any
path is verifying the requirement. Any path where timeout_transfer evaluates to true is one that verifies
the requirement. This model and expression based approach now allows other portions of the model
to change without affecting this requirement, and as new paths are generated they can all be evaluated to

Figure 6 Voicemail Model Example. A model can show a use case in the context of the overall system
functionality. This example illustrates a use scenario where after the greeting is played on a busy
line a caller will be transferred to the attendant after a timeout period.

Use Scenario

Use Cases are Not Requirements 11

see which of them verify a requirement.

The graphical model can also be processed by an automated test generation tool to produce not
only test plans and scripts but a detailed document describing how each requirement was covered in the
resulting set of tests. As the tests are created and later executed a team can track the project's
completeness and the product's consistency with the requirements. A sample of a report from an
automated test process with the requirements tracking integrated into it is shown in Figure 7.

Another benefit occurs when changes are introduced, if a new feature is added, an incremental edit is
made to the model and then paths can be regenerated to confirm that the old requirements are still
covered. If the changes originate with the requirements, they can be added as new requirement
expressions and then the model can be analyzed to see if the requirement is already covered by the
existing functionality or new behaviors must be added.
A second type of analysis, similar to the requirement can also be performed on a model. If there are
requirements that the system not allow certain behaviors to occur, they too can be expressed as
expressions and verified. For example, in a system there may be relationships that should not be
violated, sometimes referred to as invariants, these can also be verified using an expression. The
expression, similar to the ones used for specifying requirements, is evaluated during the path generation
process; if at any time it becomes false, we have uncovered a design flaw in the system.

7. Conclusions

An approach where a system’s behavioral requirements are used to incrementally develop a behavioral

model can provide a team with significant advantages. It can be used to thoroughly describe application
behavior from specifications or models and automate the creation of use cases as well as test programs.
A path generation tool can be used to extract directly executable tests.12

Figure 7 Tests vs. Requirements Report – This allows the engineer to determine which tests
are redundant as well as which requirements are not yet covered. In addition, tests that are not
adding new requirements can be dropped to optimize test execution time.

3

1

2

1

0

2

3

0

1

1

2 3 2 3 3 0 1

Use Cases are Not Requirements 12

Benefits include:
• Provides early detection of incomplete or inconsistent requirements.
• Significantly improves test coverage of requirements.
• Provides an easy method of documenting covered requirements by tests
• Manual testing can be error prone and not always reproducible
• Given a change to the requirements, it is easier to adapt model and then automatically re-generate

the test scripts than to manually change all the test scripts.
• Facilitates test suite management as the model can be base-lined for a particular release [Meyer Jan

99]

Furthermore if the requirements of the system are integrated as expressions, the system can also
automatically track the progress and completeness of the team. This system level behavioral model can
serve as a reference for the systems engineering as well as the development and test phases of product
development, see Figure 8.

Benefits of this approach include easy analysis of behavior, rapid response to changes in specifications
of requirements, tests generation correlated to requirements as well as automated generation of
requirements based tests. This system provides an organization with an efficient, reusable mechanism to
both maintain a suite of tests and respond to feature or requirements changes during the product
development cycle.

References

1 Dorfman M, and Thayer R. Standards, Guidelines and Examples of System and Software
Requirements Engineering. Washington D.C. IEEE 1990
2 A. Davis, Software Requirements Objects Functions and States, New Jersey, Prentice Hall, 1993

System
Req’s

Desired
Behavior
of System

Define
Implementation

and Code

Generate
Test Plan
& Scripts

Decompose
into Design
Structure

Add Test
Strategy &
 Execution

Verify Actual
System
Behavior

System Engineering

Design EngineeringTest Engineering

R
E
Q
U
I
R
E
M
E
N
T

Simulation
Verification

Figure 8 The System Behavior is the reference for all later stages. Requirements
defined based on the system level model will carry forward into the test.

Use Cases are Not Requirements 13

3 D. Gause & G. Weinberg, Exploring Requirements – Quality Before Design, New York, Dorset
House Publishing, 1989
4 B. Boehm, Software Engineering Economics, Prentice Hall, New Jersey, 1981
5 J. Taft, “Implementing the ‘V-Model’ Quality Framework, Software Testing Analysis & Review
West, 1997
6 W. Ehrlich, "Facility Component System", Use Case Diagram, 1998
7 S. Meyer, " Foundation Architecture Evaluation Results - Release 7.0 , Test Case Generation Tools
", AT&T Internal Memorandum, 1997
8 S. Meyer, "TestMaster Pilot Update", AT&T Internal Memorandum, 1999
9 Beizer, B., Black Box Testing, New York, John Wiley & Sons, 1995. ISBN 0-471-12094-4
10 L. Apfelbaum. Doyle, J., “Model Based Testing”, Proceedings of the Software Quality Week 1997
Conference, 1997.
11 D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer
Programming 8, 1987
12 J. Clarke, “Automated Test Generation from a Behavioral Model”, Proceedings of the Software
Quality Week 1998 Conference, 1998

