¥ ERADVNE S

AT&T and Teradyne Software & System Test

Use-Cases Are Not Requirements

Date: March 19, 1999

From: Steve Meyer
AT&T
E-mall sameyer@att.com

Larry Apfelbaum
Teradyne Software & System Test
E-mall larry @sst.teradyne.com

ABSTRACT: Use Cases are Not Requirements

Much work has been done in recent years to improve the process used to develop software.
Increasingly, use of object oriented methodologies have become standard. One aspect
common to many of them is the increased emphasis on Requirements Modeling. Capturing
requirements accurately is essential to developing correct software. A currently popular Object
Oriented method for requirements capture has been use cases, use scenarios or Use Case
Requirements Modeling. A use case is a mechanism where an engineer can describe a specific
scenario for the system, illustrating one or more key characteristics of its business functionality
and processes. Use scenarios provide a valuable means for a team to review the proposed
business solutions under a limited number of specific conditions. It is a communications tool
valuable in the specification, analysis, development and testing of a system. Although a Use
case approach is very effective at capturing business functionality, they are somewhat lacking in
capturing usage and behavior characteristics of the system.

Outline

1. Introduction 2
2. What are use cases? 2
3. What are requirements 3
4. What use cases lack 6
5. Fitting behavioral modeling into the development process 7
6. Use of models 8
7. Conclusions 11

Use Cases are Not Requirements 1

1. Introduction

Mogt systems can have very large numbers of potential usage scenarios. It isnot practica for designers
or system engineers to explicitly describe al usage scenarios for al Use Cases. These scenarios often
only implicitly define the actud behavioral requirements of the sysem. To completdy define the
requirements illustrated by a usage scenario one must explicitly enumerate each possible sequence of
actions. As the number of requirements becomes large, manud pecification of dl possble usage
scenarios becomes increasingly difficult and the possibility of missing, incomplete or ambiguous behavior
increases.

At a minimum Uses Case Requirements Modding provides use scenarios which describe the business
functiondity to be captured as a set of enumerated steps. This may include some pre/post conditions
and some exception processing dternatives. Ivar Jacobson's Requirements Model conssts of: Use
Case Modd, Domain Object Model and Interface Descriptions. A thorough approach to Use Case
Requirements Modeling can include:

Uses Cases described viaawell defined template

Use Case diagrams to illugtrate high-level use case relationships

Domain Object Modd depicting objects in the business domain and their attributes
Interface diagrams, Business Rules, User Interface Descriptions

At best, Use cases fall to provide information that could gregtly enhance subsequent steps in the
development process. An gpproach of using behaviord modeling is an opportunity to further "nail-
down" requirements in away that can provide continuity from System Engineering through test.

This paper presents a methodology where a behaviord mode describing the systems actions can
augment use cases as a compact means of describing them. In addition a process of overlaying the
systems requirements onto this moded will provide a very efficient mechanism for determining when any
arbitrary use scenario generated by the behaviord mode has covered any of the specified requirements.
Benefits of this gpproach include easy andlyss of behavior, rapid response to changes in specifications
of requirements, tedts generation correlaied to requirements as well as automated generation of
requirements based tests.

2. What Are Use Cases?

Use Case Requirements Moddling is one of the first steps in an Object Oriented approach to systems
development. Independent of the subsequent analysis and design methodology used, Use Cases provide
a superior method for communicating the business functiondity to be developed. Traditiond thinking
maintains requirements describe the "what" is required, whereas subsequent devel opment steps trandate
from the "what" to the "how". In spite of improvements in requirement specifications this thinking has led
to a gap between requirements and behavior. Use Cases describe requirements for a developer’s
trandation; from a function but not usage point of view. They lack the ability to portray the business
needs from a behavioral or user perspective. Behaviord modding techniques and tools are now
available and aufficiently mature that can bridge this gap between function and behavior. One such
behaviord approach modes requirements in terms of states and trangtions between states. Use Case

Use Cases are Not Requirements 2

requirements can now be extended with behaviora modding to add context and organization. A sort of
middleware between the What and the How.

2.1 Use Case Descriptions

A Use Case is a specific way an actor [a person, or process] uses the solution/system by performing
some part of the functiondity. A use case specifies the interaction between the actor(s) and the
solution/system and describes the functiondity to be performed. Typicaly these descriptions consst of
an enumerated set of steps that are needed to be performed for the functiondity to reach a successful
concluson. Pre/post conditions and limited exception conditions are often included. Frequency and
arivd raeinformation is amost never included.

2.2 Use Case Diagrams

Use case diagrams are often used to capture relationships between use cases. Certain modeling
conventions can be used to further define use case rdaionships. A well-gructured diagram with well-
focused use casesis vaduable for adding clarity to large models. Following are a couple of trivid
examples:

ReserveAirline Ticket Reserve Rental Car Reserve Lodging
‘ <<extends>
<<extend\

<<extends>
Setup Business Tric

Figure 1 Use Case Diagram for Business Trip

<<uses>>

<<use3>>/7
Generate Report

Display Office

Figure 2 Use Case Diagram for Print System

2.3 Additional Supporting Documentation

Other documentation commonly employed to support Use Cases include: the domain Object modd,
interaction diagrams, business rules and user interface specifications. Each adds a level of detal to
support development efforts by providing information relevant to the problem domain.

3. What are Requirements

| think it would be safe to say that, "The customer wants a solution (system) that meets functiona
requirements” There may often be condraints in terms of response time or other concerns buit it is the

Use Cases are Not Requirements 3

requirements that describe the intent. Webster's defines a requirement as “something required:

something wanted or needed”. Within the engineering discipline the definition [IEEE 729, Dorfman &

Thayer'] has focused more on the reasons why we have them: ”1) a software capability needed by a
user to solve a problem or achieve an objective; 2) a condition or capability that must be met or
possessed by a system or a component in order to satisfy a contract, specification standard or other

formally imposed documentation.” The objective of the requirements phase in a development project is
to be able to communicate the needs of the users of a system to the entire team. To accomplish thiswe
need to firg verify that the requirements are correct then as the various part of the development team
work on the project we need a means to correlate the results back to the requirements themselves.

A key aspect of a software requirement specification is to describe what the software is to do without

describing how it is to do it. Davis? has defined it as a two phased process, problem anaysis and

product description. In problem anaysis the team will interview people who understand the problem
and it's condraints until they have a thorough understanding of the problem. Next in the product
description phase the team uses this understanding to define the externa behavior of a product that will

solve the problem. The solution may not be complete but the issues around the tradeoffs made should

al be defined and understood. In addition to describing what is desired it is often just as important to
define what is not. Defining the behavior a syslem should not exhibit is dso important in communicating
clearly the problem to be addressed.

Many engineers would rather define how they think something should be built rather than focus on what
the customer cares about. The answer to the how question is best covered in separate phases known
asafunctiond and design specifications.

3.1 Why are Requirements Important

It is very important to define the requirements accuratdly, and unambiguoudy. There have been many
gudies documenting the cost of repairing a defect, dl define a clear escdation of the cost as the
development process progresses. An example of this is shown in Table 1, it is from Gause &
Weinberg® and references data from a Boehm® study of 63 software projects from leading corporations
(IBM, GTE, TRW).

Phasein Which Found | Cost Ratio
Requirements 1
Dedgn 3-6
Coding 10
Deveopment Testing 15-40
Acceptance Testing 30-70
Operation 40-1000

Table1l Relative Cost to Fix an Error

It should be obvious to anyone that the business impact of detecting and repairing defects at the
requirement stage is immense. The escdation in cost is due to two primary factors, 1) the delay from
when the defect was introduced until it was detected and, 2) the cost of the rework involved to repar
the defect. The ddlay isintroduced because the detection process, aso known as testing, verification or
review, is based on determining a difference from the article under test and an oracle, a source of truth.
The problem feeds on itsdf if the bads for the vaidation is dso flawed. If the information used to drive
a stage of the processis flawed then even if the process works perfectly, the output will aso be flawed.

Use Cases are Not Requirements 4

Given that each stage of the development process is not perfect what we have is a larger and larger
proportion of defects. Table 2° describes the compounding affects of defects.

requirements functional description specifications

Requirements Functional Design Code
Correctly defined ’ Correctly defined » Correctly designed » Correctly coded software
n

Incorrectly defined Erroneous functional Design errors based o Coding errors based on

requirements: missing, specs based on incorrectly defined incorrectly defined
misunderstood, ignored, M incorrectly defined requirements requirements
outdated, unneeded, requirements
unspoken (assumed)
Incorrectly defined Design errors based o Coding errors based on
functional specs incorrectly defined incorrectly defined
functional specs functional specs
Design errors Coding errors based on

design errors

I'| Codi ng errors

Table 2. Compounding Effect of Defects, even good work on afaulty base will result in a defective product

This is andogous to the problems encountered in determining the yidd of a multi-stage manufacturing
process. Using aformula of:

QUd itYOf this stage = QUd itYOf previous stage * % DdeCtLEVdof this stage
asmple andysis of the problem as shown in Table 3, results in some scary conclusons. Even scarier
than the mathematical andyssis the consstency of the concluson to many red life Stuations.

Scenario Stage-> | Requirements | Functional | Design | Code
All Stages at 90% % Work Done Correctly 90% 90% 90% 90%
Correct Cumulative Defect % 90% 81% 73% 66%
All Stages at 85% % Work Done Correctly 85% 85% 85% 85%
Correct Cumulative Defect % 85% 2% 61% 52%

Table3. Cumulative Effectson a M ulti-stage Process, at an 85% quality level almost half of the code deliver ed will
be defective

3.2 Characteristics of Good Requirements

The primary goa of good requirements is an effective communications mechanism. Customers will have
their expectations met and the entire development team can discuss dl aspects of the product in terms
that relate directly to the customer goas. In particular the work done in the system-testing phase can be
directly tied to the needs of the customer. An additiona long-term value of the requirements spec is the
ability to quickly understand the affects of changes made to the system asiit evolves.

This paper is focused on some of the issues related to cresating a robust description of a system’s
behavior. For most modern systems there is an infinite number of potentia scenarios that can be
defined for a sysem. Clealy an engineer/andyst cannot define this many scenarios, a common
subdtitute is along text description of the system combined with some use cases. These tomes are often
too large for effectively communicating the desired behavior of a system and lack an effective means of
helping the engineers andyze the specification. The use cases do aid the engineer by providing a clear

Use Cases are Not Requirements 5

description of a use scenario. A problem with this approach is the lack of a standard mechanism to
generdize the example used in the use scenario to the robust mode needed to communicate the system
to engineers.

4. What Use Cases Lack

Some things Use Cases lack in describing the requirements are described below. An example of a
good use case diagram and the problems described is shown in Figure 3.

1. Sequence and flow of operations. Although Use Case diagrams can illugtrate some of the
relationships between individuad Use Cases, they do not convey sequence and flow of related
operationa usage. In a large modd detailing to this level of behavior becomes increasngly
difficult. Beddes requirements tracesbility this is one of the biggest benefits of behaviord
modeling. It gives the engineer an opportunity to describe requirements from a usage
standpoint.

2. Frequency and arrival rate information of individud Use Cases. Such information can be
used for performance engineering of a syslem and help define load test scenarios. This type of
information is eadly portrayed in a sae trandtion modd, not o0 easly captured with Use
Cases. Once sequence and flow is effectively modeled annotating frequency information can
enhance the graphical representation. Thisinformation can be valuable for performance and load
testing

3. Use cases often describe only best case (successful completion of operation) and limited
exception information. Visudizing and modeling many exception conditions can be a large task.
Thisis more easly undertaken using state machine techniques.

4. How the system(s) are used, or could be used. An improved process can be redized if the
actud requirements are separated from the discrete descriptions of individud use cases.
Following paths through a behaviord modd has proven to be a very effective approach to
understanding how requirements might be used with in a "Sysem” framework. This modeling
gives the engineers a chance to further nail-down requirements and how they behave.

Use Cases are Not Requirements 6

Hie d il
Update Layout

Query Order List uses
Update Order @
N extends uses
g

W
o3

X
NS
i tend N ,r
4 L Update oxenee Delete Order Uses ' 0
< Qrder Information Notify 2

NM
NP A
Applications extends uses /7Appllcatlons

Describe Order

\

Figure 3Simplified - High Level Use Case Model [Ehrlich 1998°]. Where is -- 1. Sequence and Flow, 2. Frequency
and Arrival Rate, 3. Only Best Case, 4. How the system(s) are used?

It is not dways evident how various Use Cases interact within a developed solution. Systems engineers
can use models to further refine the relationships between Use Cases & a high levd. Thisis useful in
confirming the Use Case framework used to describe the feature functiondlity of the solution. [Meyer
May 1998]

5. Fitting Behavioral Modeling into the Development Process

This discusson will focus on the " State machine modds' box as the piece inserted into the devel opment
process (see Figure 4). The premise here is modeling work is gppropriate for both system engineers
and test engineers. There are dso implications the system engineers models could be useful for the
andysis, design and implementation teams. As the gpplication progresses to integration and system tes,
executable test scripts will have been produced to exercise the applications behavior.[Meyer Jan 19997

5.1 System Engineers Model

The focus of the system engineers modeling work is to further nail-down requirements by describing
them with daeftrangtion methodology. This description should provide organization and sequence
information and requirements traceghility.

Use Cases are Not Requirements 7

) Andysis, Desgn
Reguirements < »| and
" UseCases Implementation
= Business Rules S
= Ul Descriptions ate
« DomainObject Model [€P] Machine
* DataDictionary Models
Generated

= Test Documentation
= Executable Tests

Information Sources Operationa

= ProductionApplication | 3 Profilesand
= Historical Documentation Performance

= Knowledge Experts .
ge=Xp Andvss

Figure4 System Development Process, a step has been added to develop state models

5.2 Test Engineers Model

Test enginears can teke the system engineers state-machine behaviord models and extend them.
Cdculating paths through these extended models exposes a great amount of complex behavior that
needs testing. Taken a step further these paths become tests.

6. Use of Models

The use of models to define behavior is not new, it has been used in both development and test
processes.>!° The recent popularity of Object Oriented Anaysis and Design technicues have increased
the deployment of mode based techniques across the software development community.

We have developed a technique where a behaviora modd of a system can be used to replace the sets
of use cases used to describe a system’s requirements. The modd provides a means of generating use
scenarios when needed. Each path through the modd is equivaent to a unique use scenario. By
exploring different paths, including potentia loops, error conditions etc. a more robust understanding of
the system can be developed. Furthermore, as the system is changed the graphical view of the mode
makes communicating the impact of a change much essier.

6.1 Building a Model

Modding is not new, engineers aways build and use modds. The ‘modd’ may only exist for a short
time and live on a ngpkin or remain in the mind of the engineer; it is not dways preserved in areussble
form. This model of behavior is andyzed when one creates requirements, writes a use case, designs
code, or develops a test plan; an engineer must understand the basic operations and actions of the
system. The means used to implement the behavior is not required until design and/or implementation
begins. Modding a the behaviord levd is draghtforward and can contain information from
specifications, use case diagrams, sequence diagrams and flowcharts.

Use Cases are Not Requirements 8

This approach is based on the concept of a state machine (see Figure 5) where the transactions,
represented by arrows in the diagram, correspond to the actions (trangtions in the state machine), while
icons in a variety of shapes represent the states. State machines are an established modeling approach
and have been extended™ to provide a more powerful means of describing complex systems. Actions
that can occur during the use of the system are defined by adding arrows and or states to the basic
diagram. The actions that “could” occur also imply that that there may be more than one possible action
at a specific point in the process. Most modding techniques support the idea that there are multiple
potentid “next” actions. Some of these actions can only occur if certain conditions exig in the system,
this information can be added to the basic modd by associating a rule or condition with each action. In
our approach these are included as predicate expressions on the trangtions. An effective modeling
technique alows an engineer [andys or other specifier] to unambiguoudy define these dternative
sequences and any rules asociated with them. Another modeling technique we utilize is hierarchical
models, where a state can be replaced by a‘cdl’ to another mode that defines the behavior within the
date, this gpproach is aso referred to as ‘ super-states . Hierarchica modes alow complex behavior to
be decomposed into smpler lower level models.

Transition—
in/out
A B
Current Next

Transitions define actions that move the system from the current state to a new state
Transitions can be based on specific stimuli and/or previous actions
Text descriptions of user actions can also be associated with transitions

Use cases are built by concatenating the descriptions from a sequence of transitions through a
diagram

Figure5. A Finite State MachineisComposed of Statesand Transitions

Developing a specification in the form of amodd is a very effective means of:

1) discovering defectsin the system (many are made visible by the modeling effort aone),

2) rapidly defining the basis for use scenarios of the system, and

3) presarving thisinvestment for future releases or other Smilar systems.
Furthermore, the process of developing a mode is best done in a measured series of smal incremental
deps. This incrementa building gpproach dlows the core functiondity to be defined, evauaed and
understood before dl of the secondary features are added. This aso allows alarger team to be applied
to the problem. They can divide up the more detailed specifications (typicdly in lower level models),
and integrate the work into the larger moded!.

Once a modd has been developed, even if it is a partid modd, use scenarios can be developed by
finding paths. A path is a sequence of events or actions that traverse through the modd defining an
actud use scenario of the system. Each dement in a path, a trangtion or state, can have some text
associated with it. Concatenating dl of the text found on the path eements will provide us with a textud
description of the entire use scenario. This process can be repested for another path, which defines
another use scenario, and validates another sequence of actions. Many methods can be used to select
paths, each with its own distinct objectives and advantages. Operationa profiles, reliability/criticdity
data, and coverage al provide different tradeoffs to the type of scenarios and the resulting coverage. A
primary advantage of this type of structured definition of the behavior is that automated tools can be

Use Cases are Not Requirements 9

used to help inthe andysis. This gpproach aso dlows an engineer or andyst to see potentid secondary
paths that may exis. The benefits of having this complete view of dl of the potentid behaviors a any
point in the flow will dlow a more complete analysis as well as make updates and changes easer to
insert.

6.2 Overlaying Requirements on the Model

At this point we can define a behaviord requirement in terms of model objects. If a syssem must
provide a specific behavior as one of its requirements it can be expressed in terms of the objects in the
modd. For example in Figure 6 we define a voicemail system. If a requirement specification included
“Requirement timeout_transfer : On abusy line, the system shdl transfer a cdller to the attendant after
the specified timeout period” we could define this by linking the requirements to the dements of the
mode [block arrowsin Figure 6] with an expression like:

“timeout_transfer = Busy && (Timeout -> Attendant)”

The -> operator is defined as “is immediately followed in a sequence by”, the operands are the
objects in the modd diagramn [Busy and Timeout are events, Attendant is a dae (actudly a
uperdae)]. This expresson now provides us with a versatile mechanism for understanding when any
path is verifying the requirement. Any path where timeout_transfer evauates to true is one that verifies
the requirement. This model and expression based gpproach now alows other portions of the model

to change without affecting this requirement, and as new paths are generated they can dl be evaluated to
X Model: NewCall Path: ./

a @ = ¢ Eg |P: Number |= LaStNUm.bBrl
E: Answered PhoneLines E] @ Foiry
B: Ring

Use Scenario

E: Line Error
P: LineError

Figure 6 Voicemail Model Example. A model can show a use casein the context of the overall system
functionality. Thisexampleillustratesa use scenario where after the greeting is played on a busy
lineacaller will betransferred to the attendant after atimeout period.

Use Cases are Not Requirements 10

see which of them verify arequirement.

The graphical modd can aso be processed by an automated test generation tool to produce not
only test plans and scripts but a detailed document describing how each requirement was covered in the
resulting set of tests. As the tests are created and later executed a team can track the project's
completeness and the product's consistency with the requirements. A sample of a report from an
automated test process with the requirements tracking integrated into it is shown in Figure 7.

Ancther benefit occurs when changes are introduced, if a new feature is added, an incrementd edit is
made to the modd and then paths can be regenerated to confirm that the old requirements are il
covered. If the changes originate with the requirements, they can be added as new requirement
expressons and then the modd can be analyzed to see if the requirement is dready covered by the
exiging functionality or new behaviors must be added.

A second type of analyds, smilar to the requirement can aso be performed on amodd. If there are
requirements that the system not alow certain behaviors to occur, they too can be expressed as
expressons and verified. For example, in a sysem there may be reationships that should not be
violated, sometimes referred to as invariants, these can dso be verified usng an expresson. The
expression, Smilar to the ones used for specifying requirements, is evauated during the path generation
process, if at any time it becomes fase, we have uncovered adesign flaw in the system.

7. Conclusions

An gpproach where a system'’s behaviora requirements are used to incrementaly develop a behaviord

: : Requirenﬁent Nufmbers : :
Total Tesﬁ per Req. 2 3 2 3 3 (1
Total Test
Req per 10 101 102 11 111 1.2 1.2.1
Number
Test
3 1 X X X
1 2 X
2 3 X X
1 4 i
A 5
. & X X
- 7 b4 X b4
3
2
° o b
L 10 X

Figure 7 Testsvs. Requirements Report — Thisallowsthe engineer to determinewhich tests
areredundant aswell aswhich requirementsarenot yet covered. In addition, teststhat are not
adding new requirements can be dropped to optimize test execution time.

model can provide ateam with Sgnificant advantages. It can be used to thoroughly describe application
behavior from specifications or models and automeate the creation of use cases as well astest programs.
A path generation tool can be used to extract directly executable tests.™

Use Cases are Not Requirements 11

Bendfits include:
- Provides early detection of incomplete or inconsstent requirements.
Significantly improves test coverage of requirements.
Provides an easy method of documenting covered requirements by tests
Manua testing can be error prone and not alway's reproducible
Given a change to the requirements, it is easer to adagpt modd and then automatically re-generate
the test scripts than to manudly change dl the test scripts.
Facilitates test suite management as the mode can be base-lined for a particular release [Meyer Jan

I Desired
|:> Behavior [System Engineering]
of System

Add Test Decompose
Strategy & into Design
Execution Structure

[Test Engineering] @ Sifnulation @ [Design Engineering
erification
Generate Define

Test Plan Implementation
& Scripts and Code

N 4
N7
\ Verty Actal /
System

Behavior

SmMmxu—cOmmxm

R
Al

Iz

2

Figure8 The System Behavior isthereferencefor all later stages. Requirements
defined based on the svstem level model will carrv forward into the test.

Furthermore if the requirements of the system are integrated as expressons, the system can dso
automatically track the progress and completeness of the team. This system level behaviord modd can
serve as a reference for the systems engineering as well as the development and test phases of product
development, see Figure 8.

Benefits of this approach include easy andysis of behavior, rapid response to changes in specificaions
of requirements, tests generation correlated to requirements as well as automated generation of
requirements based tests. This syslem provides an organization with an efficient, reusable mechanism to
both maintain a suite of tests and respond to feature or requirements changes during the product
development cycle.

References

! Dorfman M, and Thayer R. Standards, Guiddines and Examples of System and Software
Requirements Engineering. Washington D.C. 1EEE 1990
2 A. Davis, Software Requirements Objects Functions and States, New Jersey, Prentice Hall, 1993

Use Cases are Not Requirements 12

®D. Gause & G. Wenberg, Exploring Reguirements — Quality Before Design, New York, Dorset
House Publishing, 1989

* B. Boehm, Software Engineering Economics, Prentice Hall, New Jersey, 1981

5 J. Taft, “Implementing the ‘V-Modd’ Qudity Framework, Software Testing Andyss & Review
West, 1997

6 W. Ehrlich, "Facility Component System”, Use Case Diagram, 1998

" S. Meyer, " Foundation Architecture Evaluation Results - Release 7.0, Test Case Generation Tools
", AT&T Internal Memorandum, 1997

8 S Meyer, "TestMaster Pilot Update’, AT& T Internal Memorandum, 1999

% Beizer, B., Black Box Testi ng, New Y ork, John Wiley & Sons, 1995. ISBN 0-471-12094-4

10 Apfelbaum. Doyle, J., “Modd Based Testing”, Proceedings of the Software Quality Week 1997
Conference, 1997.

1 D. Had, “Statechartss A Visud Formdism for Complex Systems’, Science of Computer
Programming 8, 1987

121, Clarke, “Automated Test Generation from a Behavioral Modd”, Proceedings of the Software
Quality Week 1998 Conference, 1998

Use Cases are Not Requirements 13

