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Abstract

In August 1998 the US President’s Information Technology Advisory
Committee (PITAC) submitted an interim report [15] emphasizing the
importance of software to the society. A major theme of the PITAC report was
the “fragility” of our software engineering infrastructure. This fragility
manifests itself as “unreliability, lack of security, performance lapses, errors,
and difficulties in upgrading.”

This paper reports on a methodology and software architecture to decrease the
fragility of software. Our methodology focuses on the testing activities in the
software lifecycle. We advocate a model-based approach to testing, and a
philosophy of continuous testing, with design for testing throughout all phases
of the software lifecycle from requirements, to specifications, coding, testing,
release, and maintenance.

We report on several experiments that applied the methodology with varying
degrees of success. We discuss a set of tools, which is constructed according
to the architecture for automated testing, and invite contributions to this
toolset through the open architecture we advocate. We also report on
continuing experiments to refine and improve the methodology.

Software Engineering and Testing

In the waterfall model of software engineering, software passes through a
sequence of phases that repeat themselves as it proceeds from initial to
subsequent releases. These phases are:

e Requirements analysis



e Design
e Development
e Testing

¢ Maintenance

This approach to testing — as an activity that follows development — leads to
the detection of defects at a late stage in the development process, where the
cost of repair is high. Kan et al., [10] report that defects found during
maintenance cost more that 300 times as much to repair than the same defect
would have cost to repair were it discovered during the requirements analysis.
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A more holistic approach to testing is given in Bashir and Goel [1] where they
speak of testing activities running concurrent with all phases of development,
including requirements testing, design testing, code reviews, subsystems
testing, integration testing, and acceptance testing.

Our aim in this paper is to provide a methodology and tools framework for the
automation of the central activities in this life cycle model of testing. That is

the activities associated with design testing, code reviews, subsystems and
integration testing.



Life Cycle Testing

Central Activities

Current software development culture partitions the software development
lifecycle between four distinct groups of professionals:

e System and requirements analysis: typically people with
business process skills and knowledge of the application
domain.

e Software design and implementation: software engineers with a
detailed knowledge of software methods and practices.

e Software testing and quality assurance: typically people lower
in the software development pecking order, with lower levels
of education, and fewer high level skills.

¢ System maintenance: the lowest rank of software professionals,
charged with filtering user complaints, and defect reports back
to the software development and testing teams.

Economic analysis of software development shows that the major
expenditures are in the second and fourth groups, whereas the first and third
groups are under capitalized. This lack of analysis and testing creates software
products that either never reach production, or contain disastrous defects that
are enormously costly in terms of maintenance, loss of business, and in
extreme cases, loss of life.

Widmaier, Smidts and Huang [19] report on a controlled experiment in
software development where two groups of developers where given identical
specifications, and asked to develop a reliable software system using two
different development methodologies with the same schedule and budget. A
third party, using a methodology similar to that reported in this paper, then
tested the resulting systems. Neither of the systems achieved the specified
level of reliability, due to insufficient verification efforts based on a
systematic automated technology.



Software Modelling

Software modelling is an area of research that has enjoyed great popularity in
recent years through the widespread adoption of object-oriented models as an
aid to software design [3]. The use of software models for the generation of
test suites has also been reported in both an academic setting [4, 8, 12, 13, 14],
and in practical experiments [1, 5, 15, 16]. However, the adoption of a
specification based modelling strategy for generating test suites has yet to gain
much industrial momentum. We will discuss some of the reasons for this in
our subsequent section on practical experiments.

We believe that software modelling is an important means of communication
between the developers of a system, the software testing professionals, and the
user community. The complexities of large software systems can only be
accurately communicated by using an abstract language with precisely defined
semantics, and mimicking the structures and objects familiar to the users of
the system. The formal specifications may not be readily comprehensible to
the user community — however formalism is necessary to avoid ambiguities,
incompleteness, and inconsistency in communication between members of the
development and validation teams.

In the subsequent sections we discuss how modelling can be used practically
to give increased efficiency and effectiveness to the software validation
process.



An Automated Software Testing Methodology
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The methodology consists of several phases:

. Write a behavioral model of the software with testing directives.
Specification defects are discovered at this stage.

. Write a testing interface between the model and the application under
test. The testing interface may be written in a language understood by
an existing test execution engine or by a generic test execution engine.
Interface defects are discovered at this stage.

. Review the model and testing interface with the development team and
test team. Further specification defects are discovered at this review.

. Generate one or more abstract test suites derived from the behavioural
model and its coverage criteria using the formal test generator.

. Translate the abstract test suites to concrete test when the testing
interface is for an existing execution engine.

. Execute the test suites against the software unit under test using an
existing test execution engine or using the generic test execution
engine. Coding defects are discovered at this phase.

. Observe the test results and, if necessary, augment or restrict the model
or interface and repeat steps 4-5.



Write a Behavioural Model for Test
The first step in the methodology is to write a behavioural model of the
software application under test in some formal language. The model is written
on the basis of the software specifications, and in conjunction with the code
architects and developers. The model also contains testing directives,
including descriptions of the coverage goals and test constraints required by
the test suite.

In the tools used in our experiments, the behavioural models, coverage
directives, and test constraints may all be stored in separate files for ease of
configuration management and separation of function. Thus a single
behavioural model may be used with different directives and constraints to
generate test suites of the same software for different purposes — regression
suites, acceptance suites, or full functional testing.

Write a Testing Interface
The second step in the methodology is to create a testing interface between the
model and the application under test. The purpose of the interface is to
provide the connection between concepts and abstractions used in the
behavioural model and those of the software unit and/or the test execution
engine.

When testers use an existing test execution engine, the testing interface is
prepared by coding an abstract to concrete (A2C) test translation table. The
A2C translation algorithm may be written in any programming language
(Java, Perl, etc.) to produce concrete test scripts and verification code.

Abstract test suites can also be executed using a generic test driver customized
by the testers.

In our experiments, both these options were used. In general an established
product with a long development history will already have a customized test
driver, and thus it is sufficient simply to translate the abstract tests into the
language of the driver — or even to a commercial driver like Mercury’s
WinRunner[10].

Review Behavioural Model and Testing Interface

A vital part of our process is the review of the behavioural model and testing
interface. Testers, architects, and developers of the software conduct the
review. The model review discovers inaccuracies, omissions, and
contradictions in the specifications. The testing interface review discovers
problems related to the interface design and specification. These interface
defects are similar to those faced by a customer writing an application or
component which interacts with the software unit under test.

In addition to discovering specification and interface defects the review
process also discovers defects caused by imperfect communication between



members of the development and test team. Catching these bugs early in the
process saves a lot of time and expense later on.

In our experiments, these reviews were important in finding bugs before the
cost of their correction became too great.

Generate Abstract Test Suites
The formal test generation tool generates abstract test suites for the
behavioural model. These test suites are guaranteed to cover the aspects of the
model specified by the tester, while satisfying all the testing constraints
imposed.

The generator used in our experiments reports any coverage tasks that cannot
be covered by a test satisfying the constraints. Often these indicate bugs in the
model or over constrained testing requirements, however, they may also
expose defects in the specification.

Execute the Test Suite
The test execution engine can execute an abstract test suite directly against the
application under test. This produces a test log that, not only records the test
execution, but also compares the outcome of each step in the test with the
outcome predicted by the model.

Alternatively, the user’s test execution engine stimulates the application under
test with stimuli provided from the test suite generated by the behavioural
model.

In our experiments, the test execution phase discovered most of the coding
and design bugs.

Observe and lterate
The results of executing the test should be compared with the coverage goals
of the test plan. If necessary, further modifications should be made to the
model, the testing directives, and/or the test generator’s runtime parameters.
Further abstract test suites can then be generated to improve the effectiveness
of the test.

Our experiments showed that several test suites and several distinct models
could be used to test the same piece of software, each one exposing a different
set of defects.



The Architecture of an Automated Software Testing System
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Our architecture is designed for open participation and interchangeable
components to be developed and implemented as necessary. We recognize
that no one modelling language will be adequate to express all software
models from all domains. Some groups in the telecommunications industry
use SDL to model software, others use the graphical language of the
TestMaster tool, and case studies have been reported using Z, CSP, UML,
Murphi, SPIN, and others. We maintain that our architectural structure allows
for a diversity of modelling languages, and the reuse of existing testing
frameworks and execution engines.

We have used a common test generator with two different compilers to
generate test suites for models written in languages based on both Objective
VHDL][18] and Murphi[6]. We have also demonstrated the feasibility of
having two different generators produce test suites in the same abstract
format, thus enabling the reuse of the test execution engine on test suites
produced by different test generation algorithms. Moreover, we also have
examples of a visualization tool and a coverage analyser that utilize the same
abstract test format.

The compiler converts the model into the IFE or intermediate form encoding
of the model and its testing directives. This is an encoding of a finite state
machine (FSM), which describes the behaviour of the system under test, the
coverage goals of the test suite, and the restrictions imposed by testing
constraints.
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This intermediate form — in our experimental tools — was a C++ source file,
containing:

1. Classes describing the state variables,

2. Methods for computing the set of all next states from a given state,
3. Methods for generating all start states,

4. Methods for computing the test constraints, and

5. Methods to analyse the states in terms of the coverage directives.

The intermediate form is then compiled and linked together with the test
generator code (also in C++) to produce a model-specific test generator in a
similar manner to the model-checker produced by Dill et. al.[6].

The test generator then produces an ATS or abstract test suite, which consists
of paths through the model satisfying the coverage criteria. This format
contains all the information necessary to run the tests and verify the results at
each stage of each test case. The user can validate the model by viewing this
suite, and use this format to communicate with the developers when a defect is
discovered.

Our experimental tools used an XML format for the abstract test suite
comprising elements to describe:

1. The set of all state variables and their ranges,

2. The set of all possible inputs to the state machine (stimuli for the
software under test),

3. The set of all test cases in the suite, each of which consists of a
sequence of transitions.

4. Each transition comprises an input or stimulus, followed by the state
entered by the model after responding to the stimulus.

The execution engine reads the abstract test suite and the test interface objects
in order to execute the test suite against the application being tested. Each
stimulus for each transition is presented to the application under test. The
execution engine then queries the state of the application to verify that the
application and the model agree on the results of applying the stimulus. The
results of the stimulus and verification are written to a structured event trace
(SET) in a standard form accessible to all existing and future productivity
tools including the analyser and visualiser.

Our experimental execution engine is a set of Java classes, which must be
customized by the tester. The tester must code a set of methods:
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1. A method for each stimulus to the software under test,

2. A method to query the values of the software artefacts that correspond
to the state variables, and

3. A method to instantiate the verification logic, which compares the
state predicted by the model with the observed state of the software
under test.

The visualiser is capable of showing both the structured event trace and the
abstract test suite in a visually informative way to enable the test engineer to
comprehend the massive amounts of data generated by automated test
generation and execution.

In our experiments, the main visualization tool used was a tree representation
of the test suites, with colour codes indicating the success or failure of a
particular test suite, test case, or transition. More detailed information on each
test element could be displayed by the use of the mouse. Other visualization
tools give statistical summaries, and enable the creation of bar charts,
histograms, and graphs displaying various aspects of the test suite and its
execution trace.

The analyser is capable of reading the structured event trace and identifying
areas of the model that may not have been covered sufficiently. It is intended
to produce input for the test generator to provide additional test cases. This
feedback to the test generator is important in real situations where the
translation from abstract tests to actual test runs may not be completely
accurate.

In our experiments, this feedback was done manually, by inspecting the test
results and making manual changes to the behavioural models, coverage
directives and test constraints. In future experiments, we will provide an
automated feedback tool.

The user interface includes editors for the models and test interface objects,
and a means of activating the tools and viewing their output. This interface
has not yet been written, and thus was not used in the experiments.

Experimental Evidence

Several experiments using this methodology and some of the tools, in various
stages of their development, have been carried out in various IBM research
and development laboratories. Not all of these experiments were an
unqualified success, however we believe that the results are sufficiently
encouraging to justify continuing refinement of both the tools and
methodologies presented in this paper.
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Experiment 1: Internet Telephony

The application under test in this experiment was an experimental Internet
telephony application. Both the developers and the test team were members of
the IBM Research Laboratory in Haifa. Early prototypes of the tools were
used, and the methodology was partially implemented. Several other
researchers have used this methodology in the telephony software domain [1,

5].

The experiment was judged a success, since the number of defects discovered
and their severity was qualitatively higher than expected given the very
limited resources used in the test.

Experiment 2: Internet API

Following the in-house experiment, the Haifa Research Laboratory undertook
a software-testing contract with a development laboratory in the US. The
application under test was the fourth release of an existing product, which is
an API for accessing legacy host applications over the Internet.

This experiment was judged by the developers and their management to be an
unqualified success. The experiment was completed over a year ago, and no
function test escapes have been reported in the past year. Many defects were
found both in the new code, and in the existing code base used in the third and
prior releases of the product. The developers were so impressed by the quality
of our test tools and methodology that they spontaneously gave them the
accolade “Function Testing on Steroids™ for creating a ‘muscle-bound’ test
suite.

Subsequent to this experiment, and following a competitive evaluation against
a competitor’s tool, the IBM Software Testing Community Leadership
decided to promote wider use of these tools and methodology. Two pilot
projects (referred to below as Experiments 3 and 4) were initiated, with the
modelling and testing being performed by IBM testers rather than research
personnel.

These first attempts at technology transfer required a large investment in the
creation of educational materials, documentation, and the setting up of a
communications infrastructure connecting the developers of the tools with its
users. Both experiments were kick-started with a four-day course in the
methodology and technology behind the tools. The course included both
lectures and exercises in the art of modelling, the use of the generation tool
and the execution tools. A retrospective insight into this course is that the
syntax of a modelling language, and the mechanics of tool use can be taught
relatively quickly, but that the art of software modelling requires more
maturity and experience than can be crammed into a crash course.
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Experiment 3: File System Features

This experiment was a retest of certain features of a POSIX compliant file
system implemented in the ninth release of an IBM operating system. The
records from the previous manually written test of these features were
compared with the results of using this automated test generation and
execution.

In the original test, eighteen defects were found in the relevant features. The
automatically generated test suites found fifteen of these defects and found
two new defects that had escaped the earlier test. These results are highly
significant since the personnel resources invested in the experiment —
including training, model writing, test generation and execution — was 20%
less than in the original test using traditional manual test generation.

Moreover, significant changes were implemented in the tools and
methodology following this experiment, mainly due to the complexity of the
existing test case driver for the system. . The existing test case driver provided
methods to invoke file system commands but it did not have the notion of
state or the corresponding verification logic. Therefore code test interface
mechanisms were required to instantiate the verification logic, which
compares the state predicted by the model with the observed state of the
software under test.

The management of the testing unit involved were sufficiently impressed by
the results of this pilot to commit to future use of the tools in subsequent
releases of the product, and to recommend its use to other groups in the
development laboratory.

Experiment 4: Internet APl Mark 2 — A failure

We initiated a further test of new features of the software product tested in
Experiment 2, using an experienced tester to write the models and testing
interfaces. This particular experiment did not produce a successful test for a
number of reasons. The most obvious factor was the lack of resources for the
experiment. Only one person, a very experienced tester, was assigned to the
experiment, and at several stages during the experiment this person was
required to leave the experiment and contribute to more urgent testing issues
in his department. This lack of continuity and under-resourcing led the
experiment into a situation where time pressures did not allow for the
introduction of a new and unfamiliar testing technique. The experienced tester
found efficient ways to test the software using ad hoc methods and custom
made scripts without recourse to the novel tools and methodology.
Paradoxically, the assignment of an experienced and valuable tester to this
experiment was its ultimate downfall.

Experiment 5: Call Centre API
A fifth experiment is currently under way testing a set of APIs for managing
call centres. Both the development and testing of this product is split between
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the research and development arms of IBM. To date, the experiment is
progressing to a successful conclusion with models being written and
exploited for test generation in both sites. The defects being found are
significant, and the early discovery of several design faults has been a feature
of this effort.

Creating the test interface was far from trivial and was very time consuming
but it yielded a lot defect discoveries related to the API that ultimately the
customer might have encountered. The problem was that the very complexity
that made modelling so desirable also meant that the interface was equally
complex. The initial development documentation was not sufficient to
understand the API usage completely. This meant experimentation was
necessary to debug the interface. However, both the model and interface were
created before the application to be tested was stable. This is a natural
situation when doing unit/function testing. More mature documentation early
in the development cycle would simplify the test interface creation and thus
enhance parallel test and code development.

The conclusions that we draw from these experiments is that the methodology
and tools have a great deal to contribute, but their use must be accompanied
by appropriate education, resource allocation, and management involvement
in the deployment. Furthermore, the early involvement of testers in the
development process improves the quality of the software, but puts additional
strain on the documentation process — requiring earlier and more complete
documentation than currently available.

These conclusions regarding technology transfer are similar to those reported
by Nishiyama, Ikeda, and Niwa[ 12].

Future Directions

Our focus for the future development of our tools and methodology is on
distributed component-based software. We believe that the strengths of our
tools lie in the testing of complex interactions between API calls with shared
resources and distributed execution environments. To this end we are
enriching the modelling language to include the possibility of non-
deterministic outcomes for stimuli to the software.

We are also engaged in the development of a new object oriented software
modelling language and tools for use in the architecture with a consortium of
European universities and industrial partners. This endeavour, called the
AGEDIS project includes controlled experimentation with large distributed
software being tested at various stages of the development of the tools. An
important aspect of the AGEDIS project will be the publication of the open
interfaces for IEF, ATS, and SET so that any software testing group can add
its own productivity, translation, or generation tools to the suite, without
having to duplicate the effort of writing the remaining tools.
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