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Abstract

Automated Construction of Software Behavior Models

by

Ibrahim Khalil Ibrahim El-Far

Thesis Advisor: James A. Whittaker, Ph.D.

In recent published work, a novel yet simple concept has been shown to be useful

in understanding and constructing models of software behavior. In the context of software

testing, operational modes have been used to construct Markov chains, which have been, in

turn, used to select tests and compute software quality metrics.

We explore the behavior modeling problem in software testing as a state space

enumeration problem. We present a framework for describing a software state space with

operational modes, based on which an algorithm that automates the construction of behavior

models for software systems is presented. These new findings are supported with detailed

examples illustrating the construction process. Finally, we conclude with a summary and

some perspectives on current and future work.
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Chapter 1

Introduction

We proceed this work with an introduction to software testing: we suggest a definition

and discuss the motivation for choosing testing over other quality assurance approaches; we

briefly suggest and explain a classification of testing strategies; we explain the activities,

problems, and difficulties in testing, giving bibliographical pointers whenever appropriate.

Finally, the problem of modeling is presented, and the objectives of this work are stated.

1.1 Software Testing in a Flash

Program testing is a rapidly maturing area within software engineering that is re-

ceiving increasing notice both by computer science theoreticians and practition-

ers. Its general aim is to affirm the quality of software systems by systematically

exercising the software in carefully controlled circumstances.

E. Miller

“Introduction to Software Testing Technology”, [21]

1.1.1 Definition

In an ideal world, the purpose of testing an implementation of a software system is to deter-

mine whether it is free of errors [11]. The IEEE standard for software testing terminology

[8] defines a fault as an incorrect program component. The same standard defines an er-

ror as the incorrect behavior resulting from a fault. In theory, testing is a deductive form

of verification by which errors can be detected, faults located, and the correctness of the

program under test (or, otherwise, its deviation from specification) deduced.

In practice, it is very difficult to perform testing in the rigid and formal manner

required to prove the correctness of programs as described in, say, [11] and [13]. It can be

1
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observed through the software testing literature that, consequently, the focus has shifted

to presenting more useful practicable techniques. These techniques have almost exclusively

aimed at detecting more errors, exercising more of the implementation code in a variety of

ways, or running “better quality” tests on the application under test. Myers in [25] gives

a definition of testing that is widely accepted today: “Testing is the process of executing a

program with the intent of finding errors.”

1.1.2 Motivation for Testing

How vital and important testing is for any software development process can never be

overemphasized [29] [31] [37]. The reason is primarily a matter of economics. The cost of

the failure of software (which can range anywhere from loss of product image to the loss

of human life) and the cost of software repair (requiring the release of patches or even new

versions of the software) are too high for the software engineering management community

to ignore. Some form of software quality assurance is therefore needed to help reduce the

risk of incurring such costs.

The three most noteworthy approaches to attaining high software quality are formal

verification, program proof, and testing. The main disadvantage of the first two is that they

are inapplicable to large systems in practice, and, sometimes, they are too weakly developed

technically to be effective even for small-scale software systems [21]. The very fact that

formal methods are not easy to understand or to work with seems to have been reason

enough for unpopularity in the testing industry [14]. Furthermore, formal verifications and

proofs normally make a number of assumptions that may or may not hold in the field —

the environment in which the software is actually going to be used.

Testing on the other hand is time-inexpensive and, if performed rigorously, can

reveal more on how the application will perform in the “real world.” Spending human,

computer and tool resources on a testing strategy can reduce overall project costs.

1.1.3 For and Against Testing

The major argument against testing is that it can only show the presence of errors and never

their absence [5] [6]. Testing cannot hope to settle the correctness problem unequivocally for

the same reason there does not exist an algorithm to verify a program. This limitation has

relegated testing in the past to a low position in the priorities of theoreticians [12]. Some

have claimed that when one has given the proof of a program’s correctness, one can dispense

with testing altogether. In other words, since the goal of practical formal verification is to

be able to prove all programs correct before they are put to use, when this goal is attained,
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testing becomes obsolete [2].

Later work has shown the contrary. By constructing a theoretical framework for

testing, results that affirm the necessity of testing in proving the correctness of a program

have been derived. Most remarkable a work is “Toward a Theory of Test Data Selection”

by Goodenough and Gerhart [11] held by Miller and Howden (among many others) as the

first paper on software testing theory in [22]. Another work is “An Introduction to Proving

the Correctness of Programs” by Hantler and King, a paper that shows that testing can be

used to prove the first few base cases in an inductive proof of program correctness[13]. But

even if it were true that testing can never find all the errors in a software system, it will

always be a necessary verification technique, as has been established by today’s academia

and industry[33].

1.1.4 Software Testing Today

In the software engineering related literature, software testing nowadays still receives less

attention than what is expected for an activity that accounts for almost half the costs

of software development[2]. However, we are far from three decades ago when computer

scientists simply did not bother to directly address testing issues [32]. So, what is the state

of software testing today? We shall not attempt to give a full answer. Rather, we bring

forth some observations.

• Software testing is still an art but is more of a science today and its automation cannot

be too distant of a task as implied in early published work such as [30].

• Testing still depends on the development and domain expertise of test engineers and

becomes increasingly difficult in proportion with the complexity of the program. How-

ever, we are advancing away from totally depending on the programmer’s expertise

in deciding when the program is sufficiently correct as argued in [4]. A whole sci-

ence of systematic testing, measuring test progress, and field quality measurement has

emerged and, though not mature, is far from infancy.

• Finally, on a disappointing note, although a large number of software testing tech-

niques have been proposed during the last three decades, there has been surprisingly

little concrete information about how effectively they detect errors [9], or locate faults

— the very purpose of “modern-day” testing.
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1.2 Black-Box versus White-Box Testing

No introductory discussion of software testing is complete without presenting a classification

scheme of testing methods. This is mainly because this brings one closer to an understanding

of what testing is all about. The most popular classification of software techniques is that

which characterizes them as either black box or white box. Most testing strategies usually

fall exclusively in one class or the other, but it is important to be aware that such is not

always the case.

1.2.1 The Black Box Approach

In the black box approach to software testing, we are interested in the inputs and outputs

of the system in addition to an understanding of its behavior or functional properties that

are extracted almost exclusively from the requirements. The construction of tests depends

on looking at these properties while totally ignoring the structure of the implementation.

Exhaustive black box testing is running the program with all possible input combi-

nations. It can be easily seen that such a task is impossible [36] [25]. Myers concludes that,

due to the impossibility of performing exhaustive black box testing, the approach cannot

be used to show the program error-free. Further, the amount of testing to be done (or

selecting test data out of the infinite possibilities) becomes a major problem as it is an issue

of computational and man-hour cost.

Howden in [16] mentions another weakness of the approach. He states that the

disadvantage of black box approach is that it ignores important functional properties of the

program, which are part of its design or implementation and which are not described in the

requirements (on which black box tests are based)1.

1.2.2 The White Box Approach

White box (also known as structural) strategies for testing are driven by the internal control

structure of the program. White box testing, by taking the internal functional properties of

the program into consideration when generating tests, constitutes an attempt to overcome

this particular limitation of black-box testing [17].

There are several types of structural testing, including branch testing, control flow

testing, data flow testing, slicing, and program dependency, just to name a few. Structural
1Howden has proposed a refined black box approach to testing that also makes use of structural infor-

mation: functional program testing [17] [18] [19]. Some refer to black box testing as functional testing (as

opposed to structural testing which is equivocal to white box testing). To avoid ambiguity, the term black

box is used throughout this document.
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testing is probably the most widely used class of program testing strategies [26]. It is

interesting to note that very little has been written on black box testing in comparison to

its white box counterpart, an approach that was supposed to be an improvement over black

box testing [17].

White box testing is not without problems or limitations. Stocks and Carrington,

in an elegant argument for specification-based testing, state that not only is it impossible

to test without some sort of specification, but that any testing based only on program

implementation is fundamentally flawed, as also argued by Goodenough and Gerhart in

their landmark work cited earlier[31].

1.2.3 Current Trends

The popularity of structural testing has been consistent throughout the past years, but, par-

ticularly during the past decade, black box testing techniques have made a major comeback

through statistical testing [40] [1], state-machine-based testing [3] [20] [10], and specification-

based testing [7] [27] [28].

What the testing literature suggests is that there is no magic software testing

technique — black box or white box. When it comes to uncovering errors and locating

faults, techniques have been shown to be extremely efficient in certain situations and poor-

performing in others.

Future testing will most probably feature the best of both the black box and white

box paradigms. By combining the understanding of the requirements and specification and

the actual behavior of the program, future techniques may very well reach the level of

sophistication needed for them to be instrumental in proving the correctness of software.

1.3 Phases of Software Testing

Generally, regardless of the paradigm adopted, testing involves four phases: behavior mod-

eling, test generation, test execution and evaluation, and measuring test progress [36] [37].

We describe each phase by its objectives and the artifacts it produces. We then briefly

comment on how well the activities in each phase have been treated in the literature.

By lightly touching on what is involved in every phase, we hope to convey some of

the difficulties — both practical and theoretical — encountered in the field.
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1.3.1 Modeling Program Behavior

Objectives The first task in modeling program behavior is to document all communication

among the system and its users. This involves enumerating all the inputs and outputs

for every user and constructing a representation of the understanding of the possible

input sequences (tests): the ones the users can produce and the ones the system expects

by specification. Finally, interaction among users that may have a consequential effect

on the system needs to be documented. Based on this information, a model of how

the software operates is constructed.

Artifacts

1. A document enumerating all the elements of software-user interaction.

2. A model of software behavior, based on which tests are generated. Examples

of such a model include control and data flow graphs in structural testing and

Markov chains and finite state machines in black box testing.

Comments Modeling is the most fundamental phase of any testing process, since the rest of

the phases (selecting tests, running and evaluating tests, and measuring test progress)

depend on the accuracy of its artifacts. A lot of work has been done on developing

structural models of software, but in the black box testing arena, building models is

one of the least addressed of all issues. Most works in testing assume the existence

of a model based on which tests are to be generated, and it seems that it is the task

of constructing the model that is almost always left for the test engineers in their

individual projects.

1.3.2 Selecting Tests

Objectives We have mentioned how there are infinitely more tests than we can run on the

program in black box testing. This also applies for white box testing of applications

of sufficient complexity (that contain, for example, loops in their branches, paths, and

control and data flow graphs). Therefore, in order to distinguish “interesting” tests

from all others, certain test adequacy criteria have to be set.

Artifacts

1. A document describing each of the test adequacy criteria.

2. An algorithm that, based on the model constructed in the earlier phase, builds a

test that meets the adequacy criteria.
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Comments Selecting tests is not straightforward, and it is what “makes or breaks” a

testing strategy. Most of the work in testing has addressed test selection with various

objectives in mind (such as revealing bugs, covering code, etc. . . ).

1.3.3 Running & Evaluating Tests

Objectives

Running a test involves figuring out how to simulate user action so that the software

“thinks” it is in its intended environment. The task of input simulation is becoming

increasingly easier. There are numerous tools that are dedicated to simulating software

input. In addition, where such tools are not available, their own as a part of their

individual testing endeavors. And writing code for the simulations is another feasible

option, when tools are not available.

Evaluating a test involves verifying the test result (typically either output or variable

values) against some sort of specification. Howden in [15] states that every form of

testing requires or assumes the existence of an oracle. An oracle is an independent

entity that determines whether a result observed in the software after a test has been

run meets expectations (i.e., whether the correct outputs been produced; or, whether

the correct control sequences been followed). Developing an oracle is nontrivial and

is often as complex as the application under test itself. Many times, in practice, the

oracle is an experienced test engineer or developer upon whose expertise the decision

of whether a test has been successful is based.

Artifacts

1. An input simulator that automatically executes tests.

2. An oracle.

Comments The oracle problem is another fundamental problem that has been addressed

by theoreticians before [28]. Unfortunately very few of the approaches have turned out

to be practical or inexpensive enough for the bulk of the software industry to adopt.

1.3.4 Measuring Test Progress

Objectives Generally, there are two classes of measures that testers and project managers

are interested in: stopping criteria and field quality metrics. Stopping criteria describe

the conditions under which it is determined that enough tests have been generated.

Field quality metrics are figures of estimation for how well the software will perform
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when it is released in its intended environment. For example, some of these metrics

estimate how much more testing needs to be done, the time to release, the mean time

between failure, the mean time to the next failure, and reliability (what percentage of

tests will not cause the software to fail in the field).

Artifacts

1. A document describing stopping criteria.

2. A document describing the field quality metrics

3. The actual metrics, which are normally computed based on collected data (pre-

vious test runs).

Comments There is an immense body of literature on software metrics, a small percentage

of which focus on testing metrics. A lot of the published work falls under software

reliability engineering [23] [24] and related work.

1.4 Software Modeling for Black Box Testing

This work focuses on the modeling phase of black box testing. We have mentioned earlier

that this area is addressed neither with the frequency nor the depth worthy of the difficulties

encountered. This can be explained by the fact that not enough work has been written on

black box testing, and what has been written focused on test selection and measuring field

quality. From this perspective, the black box paradigm is a few years behind the white box

one. It took quite a few years until serious work on constructing white box models (control,

data and program dependency graphs) came into existence.

Another explanation to why the testing research community has avoided tackling

this problem is that there is no unified or universal method of expressing requirements and

specifications. Since these are the artifacts that black box testers study when constructing

the model, establishing a generalized model-building strategy is understandably compli-

cated. In comparison, programming languages have matured from a structural point of

view. Hence, in a white box model, the same representation can be derived rather simply

for equivalent control or data program components.

The first step towards resolving this problem would be to have a proper under-

standing of its details. In black box software-modeling, there is one central idea that needs

to be understood and emphasized: state space. A state, from a black-box perspective, is a

representation of how the software reacts to input and produces output. An error is detected

if the software produces the wrong output for a certain sequence of inputs. This is verified
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against specifications. This means that the software, due to either corrupt input, corrupt

internal data or both, is in a state that it should not be in. Either it is in a legal state that it

has been mistakenly driven into, or it is in an illegal state not described by the specification.

Understanding states is therefore crucial to any black box testing technique. More-

over, there is a need to distinguish the legal states of software form the illegal ones. Through-

out this document, we shall call the set of legal states the state space.

In practice, as well as in scholarly journals, we have seen several examples of state

space representations. Finite state machines have been used to generate tests in a vari-

ety of ways; a couple of interesting pointers can be found in [10] and [3]. Markov chains

(particularly finite-state, discrete-parameter chains) have achieved recent popularity in the

field for two reasons: the random variables of the chain are equivalent to states, and the

statistical properties of Markov chains can be exploited in computing statistical software

quality metrics. The fact that researchers have chosen state machines and their equivalents

to work with is at least an unconscious knowledge of the centrality of states in software.

1.5 About This Work

We hope to have served the following points in our introduction:

• Testing is a difficult problem that has received attention in both academia and indus-

try.

• One popular characterization of testing methodologies is to state whether one is black

box or white box.

• Testing depends on the existence of some sort of model that encodes behavior of the

system and guides the performance of all testing activities.

• It is essential that test engineers understand the state space of the software under

test. This task is usually hindered by the fact that most documentation (particularly

specifications) is not written in a form that can be easily mapped back to states and

transitions.

• In order for testers of any software project to reap the benefits of a model-based testing

strategy, a systematic way of constructing that model needs to be established.

This work expands on earlier efforts in stochastic software testing [36] with new

observations leading to results that will take the modeling of software for black box testing

one step closer to automation.

The objectives this thesis is hoped to meet can be summarized as follows:
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Introduce Operational Modes A brief history of earlier work on operational modes is

presented. An improved set of definitions is then suggested and supported with ex-

amples.

Describe a Model Construction Algorithm We present an algorithm that automates

the construction of models of software behavior using the definitions we set forth

concerning operational modes.

Discuss the Significance of This Work We discuss how this work contributes to soft-

ware testing in general and software behavior modeling in particular. We then discuss

areas of current and future research that spin off this work.



Chapter 2

An Introduction to Operational
Modes

Although the importance of understanding states has not escaped the attention of software

testing researchers, the problem of enumerating states has not been directly isolated and

addressed before Whittaker’s work in [36]. This chapter introduces the concept of an op-

erational mode that constitutes the core of a novel, simple approach to abstract and then

construct the state space of a software system. Operational modes are variables that col-

lectively describe all the states of a system and can be used to reduce the tediousness of

behavior modeling.

2.1 Background and Terminology

Software systems are installed into environments where they are stimulated by users via

inputs and where they produce outputs to be consumed by users. A software user is an

element of its environment that is either responsible for generating system input or expected

to consume system output. Test engineers must document communication between the

software and its users occurring via inputs and outputs.

An input is a user-generated event recognizable by the software. An output is an

event generated by the software directed to one or more of its users. Let I and O be the set

of all inputs and that of all outputs, respectively.

An input i ∈ I is said to be applicable at an identifiable point of software execution

(also referred to as ‘time’ throughout this document) if and only if the user responsible for

generating i is capable of generating it (in such a case i is said to be available to the

user) and the system recognizes it as an allowable stimulus. Applicability of an input is not

necessarily equivalent to its legality from the point of view of its functional specification; an

11
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applicable input is one that gets processed by the system.

An applicable input string is a sequence of inputs such that every input in the

string is applicable after all preceding inputs in the sequence have been processed by the

system.

An input i ∈ I is said to be unreachable at an identifiable point of software

execution if and only if it is not applicable. Unreachable inputs are stimuli that cannot

affect the system due to the unavailability of the required interface (at that particular point

of execution) or that get ignored by interface components. In other words, unreachable

inputs, by specification, never get processed by the system under test.

The functional behavior of a software system at a particular point of execution

is the manner in which it responds to inputs in I (whether it recognizes an input, ignores

it, or processes it; and in the latter case, whether the response is observed as an output or

goes unnoticed by the user as internal computation). This depends on the string of inputs

that has been processed by the system starting with the last invocation of the system up to

the time in question.

Behavior models are discrete structures that describe every possible functional

behavior and the manner in which software transitions from one behavior to another. In the

context of black-box testing, finite state machines are an example representation of behavior

models.

2.2 A Brief History

Whittaker and Thomason in [40] define usage variables as data elements that are of

significance when it comes to applying inputs. States of the Markov chains that they build in

their example are constructed as combinations of values of these usage variables. Although

they do not explain how these variables and their respective domains are designed, it is

implicit that they are to be extracted from a functional specification of the system or any

viable substitute. This is the first time operational modes are used in the manner described

in the context of this paper.

Whittaker carries this work further in [36], where he proposes a systematic way of

constructing a behavior model from operational modes. For a real application, the number

of states that needs to be generated makes the construction cumbersome and labor-intensive.

The major contribution of the paper was, in addition to directly addressing the concept of

operational modes, the introduction of a hierarchical construction technique that builds the

model level by level, each level corresponding to one operational mode. Whittaker does not

discuss the statistics and is only interested in the structure of his Markov chain.
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2.3 A Basic Definition of Operational Modes

We approach the definition of operational modes in a substantially more formal manner

than in earlier work. Our treatment of the subject features a number of modifications to

the theoretical ground on which operational modes stand. This will set the stage for the use

of constraint satisfaction problems as an elegant formulation of the problem of automating

behavior model construction.

An operational mode m is a variable that abstracts a partition of the collection

of system variables that are responsible for all identifiable functional behavior. A variable of

a software governs functional behavior at a particular point of execution if its value at the

time dictates the manner in which the system reacts to user input by either not recognizing

or ignoring the input, performing internal computation, or producing output in response.

Such a variable is called a functionally significant data element. Denote byM the set

of all operational modes.

The domain of each operational mode m, domain(m), is a finite set of discrete

values (also referred to as modal values), each of which is an abstraction of a distinct

partition of possible combinations of values of the variables abstracted by that mode. The

partitions abstracted by any two modal values should be such that they do not have identical

effects on the system’s functional behavior.

Example 1 Strictly Positive Integers

Consider the simple program written in Basic-like pseudocode in figure 2.1. Let

Number with domain {StrictlyPositive,Other} be a variable that abstracts {n}
such that StrictlyPositive stands for all the possible values of n strictly greater

than 0 and less than or equal to MaxInt and Other stands for all other values.

Number satisfies the definition of an operational mode.

Consider another variable Number of domain {−MaxInt, . . . , 0, . . . ,MaxInt}
that abstracts {n} at the lowest possible level of abstraction. Number is not an

operational mode since the values −MaxInt, . . . , 0 have an identical effect on the

program (and the same can be said about the values of 1, . . . ,MaxInt).

2.4 Behavior Models

It follows from the definition of operational modes that they collectively describe the condi-

tions under which software receives and internally responds to inputs. Operational modes
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Sub main ()

Dim n As Integer

Input n

If (n > 0) Then

Print n; “ is strictly positive.”

End If

End Sub

Figure 2.1: Strictly Positive Integers Program

constitute a good ground to build a description of applicable input strings and the state

space of software.

A state of a software system represents one and only one functional behavior of

the system. The state space represents every possible functional behavior of the system.

Therefore, a combination of values of all functionally significant data elements is a sufficient

description of a state. It follows from the definition of operational modes that a state is a

tuple of instantiations for all modes.

Assuming a finite-state-machine-like representation, to build a behavior model is to

enumerate the states and define the state transitions of the model. In other words, we have

to identify the combinations of variable-instantiations that, by specification, can be made

simultaneously. We then have to determine the effect of every input of the system on every

value in every combination (whether a mode changes to another value).

2.5 A Detailed Description of Modal Values

With this perspective on the problem, and with automation in mind, we have carried out an

investigation of descriptors of modal values, a layer of detail that allows us to determine the

relationship between the availability of an input and modal values. In addition, that same

layer must allow us to determine the effect of every input (if any) on every modal value.

Upon investigation of a number of descriptors of modal values, some have turned out

to be useful in verifying the extracted operational modes, providing a formal characterization

of the values, and contributing to our definitions of operational states and behavior models.
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A value v of an operational mode m can be described by:

• In ⊆ I, the set of all inputs that are necessarily applicable by the user when the mode

has legally acquired v.

• Iu ⊆ I, the set of all inputs that are unreachable by the user when the mode has

legally acquired v.

• Ic ⊆ I, the set of all value-critical inputs that, when applicable, and possibly under

the condition that particular assignments to other modes have been made, will cause

m to change to some other distinct value in the domain.

• ϕ : Ic×
∏

mi 6=m

domain(mi) −→ domain(m)− {v}, i = 1, . . . , |M|, is the value-transition

function. ϕ deterministically describes the effect of a value-critical input on the value

v of m, taking into consideration the values of all other modes mi.

Notation 1 Let v be a modal value; we write v : In, v : Iu, v : Ic, and v : ϕ to denote the

In, Iu, Ic and ϕ attributes of v.

Notation 2 Let v be a modal value of m; for clarity, we sometimes write this as m = v.

Notation 3 Consider the modal value m = v; if v : ϕ(ic, v′, . . . , v(|M|−1)) = w (where w is

another value of m, and v′, . . . , v(|M|−1) are the values of the other modes when m is v), we

say that ic changes v to w under the condition (v′, . . . , v(|M|−1)).

Notation 4 Consider the modal value mq = v; if ic changes v regardless of the values of

the other modes m1, . . . ,mq−1,mq+1, . . . ,m|M| to w, we write v : ϕ(ic, ε, . . . , ε, ε, . . . , ε) = w

or v : ϕ(ic) = w for simplicity. We also say that ic changes v to w unconditionally.

Example 2 Light Switch with a Lock

The inputs of the light switch system are Invoke, Terminate, Switch, and

Lock. Invoke starts the program, and Terminate ends it. Switch increases the

intensity of light from one level to the next in the following sequence: off, dim,

normal, bright. Lock toggles the lock of the switch; when the switch is unlocked,

Switch can be applied; otherwise, Switch is unreachable.

Consider the following functional specification of a light switch system in table

2.1. (An easy-to-understand tabular form is used to present the specification for

the sake of illustration.) Assume the inputs are unreachable under conditions not

described in the specification.
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Input Condition Output Explanation

Invoke The program has not

been started

Off;Unlocked When the system starts

the lights are off.

Terminate The program has been

started

Off;Unlocked When the system is

shutdown the lights are

turned off and the lock

is unlocked.

Switch Switch is unlocked Off/Dim/Normal/Bright Switch to the next light

intensity (from Off to

Dim, Dim to Normal,

and so on . . . ) provided

the light switch is un-

locked

Lock Switch is unlocked and

the system has been

started

Locked Lock the light switch.

Lock Switch is locked and the

system has been started

Unlocked Unlock the light switch.

Table 2.1: Light Switch Specification
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By looking at the conditions in the specification table, the following three oper-

ational modes can be extracted: SwitchSystem of domain {inactive, active} (to

distinguish between situations in which the system is not started and those in which

it is up and running), LightIntensity of domain {off, dim, normal, bright} (to

distinguish among situations in which the light intensity is off, dim, normal or bright

respectively) ,and LockStatus of domain {locked, unlocked} (to differentiate situ-

ations in which the switch is locked and no change in light intensity can be made

by the user, and all other situations).

When SwitchSystem equals inactive, none of the inputs can be applied except

for Invoke, which changes it to active unconditionally. When SwitchSystem is

active, the inputs Lock and Terminate are always applicable, whereas Invoke is

not. Terminate will unconditionally change active to inactive. This can be written

as follows:

SwitchSystem = inactive :


In = {Invoke},
Iu = {Lock, Switch, Terminate},
Ic = {Invoke},
ϕ(Invoke) = active



SwitchSystem = active :


In = {Terminate, Lock},
Iu = {Invoke},
Ic = {Terminate},
ϕ(Terminate) = inactive


The values of LightIntensity do not constrain the applicability of any of the

inputs except for Invoke which can never be applied whenever LightIntensity

is dim, normal or bright since it is implicit in these cases that SwitchSystem is

active. The values govern how the system responds to the input Switch by changing

light intensity. Switch, whenever applicable, changes the value of LightIntensity

from off to dim, from dim to normal, from normal to bright, and from bright

to off provided that the switch is not locked (LockStatus = unlocked). Finally,

Terminate changes dim, normal, and bright to off unconditionally.

LightIntensity = off :


In = ∅,
Iu = ∅,
Ic = {Switch},
ϕ(Switch, LockStatus = unlocked) = dim


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LightIntensity = dim :



In = {Terminate, Lock},
Iu = {Invoke},
Ic = {Terminate, Switch},
ϕ(Terminate) = off,

ϕ(Switch, LockStatus = unlocked) = normal



LightIntensity = normal :



In = {Terminate, Lock},
Iu = {Invoke},
Ic = {Terminate, Switch},
ϕ(Terminate) = off,

ϕ(Switch, LockStatus = unlocked) = bright



LightIntensity = bright :



In = {Terminate, Lock},
Iu = {Invoke},
Ic = {Terminate, Switch},
ϕ(Terminate) = off,

ϕ(Switch, LockStatus = unlocked) = off


Finally, when LockStatus is locked, Switch should not be applicable by speci-

fication. When its value is unlocked, Switch is only applicable when the system is

up and running (and that has nothing to do with LockStatus). Lock toggles the

value of LockStatus which can be written as follows:

LockStatus : unlocked


In = ∅,
Iu = ∅,
Ic = {Lock},
ϕ(Lock) = locked,



LockStatus : locked


In = ∅,
Iu = {Switch, Invoke},
Ic = {Lock},
ϕ(Lock) = unlocked,


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2.6 The Phone Example

It is useful to look at another example of slightly greater complexity. Consider a software

that simulates a phone device that communicates with other phone devices through a phone

switch center (a user of that system). For simplicity, let us make the following assumptions:

• The users of the system are humans (who pick up and hang up the receiver and dial

a number) and a phone switch (that informs the system: when there is an incoming

call, when the party being dialed is busy, when the incoming call is canceled by the

calling party, when the connected calling party disconnects, and when the device of

the party being called is ringing)

• The phone switch only processes seven-digit phone numbers.

• Only two parties can be connected at the same time.

• Real-time issues, such as when the party being called hangs up at roughly the same

time the phone places the call, are not considered.

• The human user dials a number of an existing party.

• Dialing digits is disabled after the device is informed that the party dialed is not

available.

Refer to table 2.2 for a detailed listing and description of the inputs of the Phone

System.

Example 3 The Phone System — Operational Modes

In what follows, we list and briefly discuss the operational modes of the phone system.

A complete description of all the values follows.

1. PhoneReceiver of domain {onhook, offhook}.

onhook describes the situation when the receiver is on the device’s hook, and, therefore,

certain inputs such as DialDigit are unreachable. The only input the human user is nec-

essarily able to apply whenever PhoneReceiver is onhook is PickUp. offhook describes

the other possible status of the receiver. When PhoneReceiver is offhook, we have no

indication of whether any of the system inputs is applicable (with the obvious exception

of PickUp and HangUp).

2. DeviceStatus of domain {idle, ringing, dialtone, partyringing, connected, busysignal}.

The values of DeviceStatus distinguish among the following situations:
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Input Description

HangUp The human user hangs up the receiver of the device.

PickUp The human user picks up the receiver of the device.

DialDigit The human user dials a digit that is assumed to get pro-

cessed eventually by the phone switch user.

PartyNotAvailable The switch informs the device that the party whose num-

ber has been supplied is not available (either busy or dis-

connected service situations).

PartyCalling The device is informed that a party is calling.

CallingPartyCanceled The device is informed that the party attempting to estab-

lish connection has cancelled its request (either by hanging

up or being disconnected in some form).

PartyP ickUp The party being called picks up and establishes connection.

PartyHangUp The calling party, having established connection, hangs up

or terminates connection in some manner.

PartyDeviceRinging The device of the party being called is ringing; connection

can be established when the other party picks up.

Table 2.2: The Phone Inputs
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(a) DeviceStatus = idle. The device is idle (with its receiver on hook), and there

is no party requesting a connection. This situation necessitates that only PickUp

and PartyCalling be applicable. When applied, PickUp and PartyCalling change

this value to ringing and dialtone, respectively.

(b) DeviceStatus = ringing. The device’s receiver is on hook, and there is a

party that has already requested connection, so the device is ringing. This situ-

ation necessitates that only PickUp and PartyCalling be applicable. PickUp and

PartyCalling change ringing to connected and idle, respectively.

(c) DeviceStatus = dialtone. The human user is about to start dialing digits, is in

the process of doing so, or has just completed dialing a seven digit number but no

indication on whether the party dialed is available has been received yet. It is nec-

essary, in this situation, that HangUp and DialDigit be applicable. No action by any

party device trying to call is possible (so, PartyCalling and CallingPartyCanceled

are unreachable). Also, since no connection has been established at this point, no ac-

tion by the party being dialed is possible (thus, PartyP ickUp and PartyHangUp

are unreachable). The situation is changed if the human user hangs up, or (once

all seven digits have been dialed) the switch applies either PartyNotAvailable or

PartyDeviceRinging.

(d) DeviceStatus = partyringing. The party dialed is available for connection, and

its device is in ringing status. In this case, the inputs HangUp, DialDigit, and

PartyP ickUp are necessarily applicable, and the rest of system’s inputs are unreach-

able. HangUp and PartyP ickUp change partyringing to idle and connected,

respectively.

(e) DeviceStatus = connected. The party dialed has picked up and connection

has been established. In this case, it is necessary that HangUp, DialDigit, and

PartyHangUp be applicable and the rest of the inputs unreachable. HangUp and

PartyHangUp change connected to idle and dialtone, respectively.

(f) DeviceStatus = busysignal. The party dialed has been reported by the switch

not to be available; the device is busy until the human user hangs up. HangUp

changes the value back to idle.

3. DigitsDialed of domain {0, 1, 2, 3, 4, 5, 6, 7}. 0 collectively describes all possible situa-

tions in which either dialing a digit is not possible or it does not represent the dialing of

any of the seven digits needed to establish a connection with a party. That includes both

the busy and connected situations. 1, 2, 3, 4, 5, 6 describe situations in which 1, 2, 3, 4, 5, 6
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digits have been dialed, respectively. 7 describes the case in which a seven-digit number

has been dialed, and in which the device is awaiting one of the switch’s possible inputs at

this time: PartyNotAvailable and PartyDeviceRinging.

PhoneReceiver = onhook :



In = { PickUp},
Iu = { HangUp,

DialDigit,

PartyNotAvailable,

PartyP ickUp,

PartyHangUp,

PartyDeviceRinging},

Ic = { PickUp},
ϕ(PickUp) = offhook



PhoneReceiver = offhook :


In = { HangUp},

Iu = { PickUp},

Ic = { HangUp},
ϕ(HangUp) = onhook



DeviceStatus = idle :



In = { PickUp,

PartyCalling},
Iu = { HangUp,

DialDigit,

PartyNotAvailable,

CallingPartyCanceled,

PartyP ickUp,

PartyHangUp,

PartyDeviceRinging},
Ic = { PartyCalling

P ickUp},
ϕ(PartyCalling) = ringing

ϕ(PickUp) = dialtone


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DeviceStatus = ringing :



In = { PickUp,

CallingPartyCanceled},
Iu = { HangUp,

DialDigit,

PartyNotAvailable,

PartyCalling,

PartyP ickUp,

PartyHangUp,

PartyDeviceRinging},
Ic = { PickUp,

CallingPartyCanceled},
ϕ(PickUp) = connected

ϕ(CallingPartyCanceled) = idle



DeviceStatus = dialtone :



In = { HangUp,

DialDigit},
Iu = { PickUp,

PartyCalling,

CallingPartyCanceled,

PartyP ickUp,

PartyHangUp},
Ic = { HangUp,

PartyNotAvailable,

PartyDeviceRinging},
ϕ(HangUp) = idle

ϕ(PartyNotAvailable,DigitsDialed = 7) = busysignal

ϕ(PartyDeviceRinging,DigitsDialed = 7) = partyringing


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DeviceStatus = partyringing :



In = { HangUp,

DialDigit,

PartyP ickUp},
Iu = { PickUp,

PartyNotAvailable,

PartyCalling,

CallingPartyCanceled,

PartyHangUp,

PartyDeviceRinging},
Ic = { HangUp,

PartyP ickUp},
ϕ(HangUp) = idle

ϕ(PartyP ickUp) = connected



DeviceStatus = connected :



In = { HangUp,

DialDigit,

PartyHangUp},
Iu = { PickUp,

PartyNotAvailable,

PartyCalling,

CallingPartyCanceled,

PartyP ickUp,

PartyDeviceRinging},
Ic = { HangUp,

PartyHangUp},
ϕ(HangUp) = idle

ϕ(PartyHangUp) = dialtone


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DeviceStatus = busysignal :



In = { HangUp},
Iu = { PickUp,

DialDigit,

PartyNotAvailable,

PartyCalling,

CallingPartyCanceled,

PartyP ickUp,

PartyHangUp,

PartyDeviceRinging},

Ic = { HangUp},
ϕ(HangUp) = idle



DigitsDialed = 0 :



In = ∅,
Iu = { PartyNotAvailable,

PartyDeviceRinging},

Ic = { DialDigit},
ϕ(DialDigit,DeviceStatus = dialtone) = 1



DigitsDialed = k :



In = { HangUp,

DialDigit},
Iu = { PickUp,

PartyNotAvailable,

PartyCalling,

CallingPartyCanceled,

PartyP ickUp,

PartyHangUp,

PartyDeviceRinging},
Ic = { DialDigit,

HangUp},
ϕ(DialDigit) = k + 1

ϕ(HangUp) = 0



; k = 1, 2, 3, 4, 5, 6
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DigitsDialed = 7 :



In = { HangUp,

DialDigit,

PartyNotAvailable,

PartyDeviceRinging},
Iu = { PickUp,

PartyCalling,

CallingPartyCanceled,

PartyP ickUp,

PartyHangUp,

Ic = { HangUp,

PartyNotAvailable,

PartyDeviceRinging},
ϕ(HangUp) = 0

ϕ(PartyNotAvailable) = 0

ϕ(PartyDeviceRinging) = 0



2.7 Notes on Operational Modes

An operational mode only partially describes the state of a software system. Therefore,

an arbitrary input i ∈ I is not necessarily in either of In or Iu. In the phone example,

the inputs PartyCalling and CallingPartyCanceled are neither in the In nor the Iu at-

tributes of PhoneReceiver = onhook. This is because it is the values of DeviceStatus

that dictate whether these inputs are applicable. Also one could easily think of exam-

ples in which a value-critical input can be affected by its membership in the Iu attribute

of some value of a different mode. For example, in the light switch system, Switch is in

LightIntensity = off : Ic. However, if the mode SwitchSystem is inactive, Switch will

not affect LightSwitch = off simply because it is also in SwitchSystem = inactive : Iu.

On the other hand, if an input is in In ∩ Ic, then it will always be applicable and critical to

the value whenever it is legally acquired. In the phone example, PartyHangUp is in both

the Ic and the In attributes of DeviceStatus = connected. In other words, regardless of

the values of PhoneReceiver and DigitsDialed, PartyHangUp will always be applicable

whenever DeviceStatus = connected and it will always change that value to dialtone if it

gets applied.

Finally the values of an operational mode m are always such that either
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1. the modal values v1, . . . , v|domain(m)| have mutually different In sets,

2. the modal values v1, . . . , v|domain(m)| have mutually different Iu sets,

3. it must be that either

(a) v1 : Ic, . . . , v|domain(m)| : Ic are pairwise unequal or,

(b) for a pair of values of m, vi and vj , if vi : Ic = vj : Ic, then for at least one ic

in that set, vi : ϕ maps ic to a different value from (or to the same value under

different conditions than) vj : ϕ, or

4. any combination of 1, 2, and 3.



Chapter 3

Building Models of Software
Behavior

The main objective of this thesis is to present a technique to enumerate the state space of

a software system. Building on the material of the previous chapter, we derive some results

including that the state enumeration problem is a constraint satisfaction problem that can be

solved automatically. We briefly introduce the concept of a constraint satisfaction problem,

present a state generation algorithm, and then extend it to generate the state transitions.

3.1 Constraint Satisfaction Problems

A constraint satisfaction problem [34] [35] or CSP is a triplet (X,C,O), where X is

a set of variables with possibly different domains, and C is a set of constraints or rules

governing the assignment of values to these variables. Typically, the objective, O, is to find

the first, best, or all solutions (i.e. combinations of variable-assignments) that satisfy the

constraints in C. Let SOLUTIONS(P ) denote the set of all tuple solutions to a CSP P ;

then

SOLUTIONS(P ) = {sol ∈
∏
x∈X

domain(x)|∀c ∈ C, sol satisfies c}

Example 4 Couples of Distinct Digits

Let P be the problem of generating all the couples of distinct ternary (base 3)

digits (i.e. 0, 1, and 2). P can be formulated as a constraint satisfaction problem

as follows:

1. The set of variables is X = {firstdigit, seconddigit}, where both variables

have the domain {0, 1, 2}.

28
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2. The assignment of firstdigit and seconddigit is constrained by that firstdigit 6=
seconddigit. One way to write C is for it to be the set of all impossible solu-

tions to P .

3. The objective is to find all solutions.

We write

P = ({firstdigit, seconddigit), {(d, d)|d ∈ {0, 1, 2}}, ‘all solutions’)

SOLUTIONS(P ) = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}

There is a wealth of algorithms and implementations to solve CSP’s that are widely

used by the artificial intelligence community. (Tsang’s “Foundations of Constraint Satis-

faction” [34] is one example book that can orient the reader into the basics of CSP’s and

CSP-solver algorithms.) We can then be assured that an automated solution can be found

to any problem that can be formulated as a constraint satisfaction problem.

3.2 State Generation Problem

The problem of enumerating all the legal states of a software system from its operational

modes is a constraint satisfaction problem. The set of variables is the set of operational

modes. The variable assignment is constrained by the fact that some combinations of values

cannot exist in a legal state. The objective, of course, is to generate all possible solutions

— i.e., all the states — to the problem. We call this the state generation constraint

satisfaction problem or SGCSP.

We now can define a software operational state in terms of what we just dis-

cussed as an element of SOLUTIONS(SGCSP ). The operational state space is exactly

SOLUTIONS(SGCSP ).

Our early discussion of behavior models (section 2.4) implies that any definition of

a state should be such that not only every state represents exactly one functional behavior,

but that there is one and only one state for each functional behavior. Proving the following

claim establishes this fact for our definition of a software operational state.

Notation 5 If a value v is one of the values constituting a state s in SOLUTIONS(SGCSP ),

we say that v is in s.
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Claim 1 For every possible functional behavior of a software system, there exists exactly

one descriptive operational state as defined above.

Proof

We proceed to prove this claim by showing the existence of an operational state

for every functional behavior and then the uniqueness of such a state.

1. Existence (There exists at least one state)

Assume there exists no state for the behavior. This implies that there is

no combination of modal values that reflects that behavior. Consequently,

there is no possible internal data element(s) that would cause such a be-

havior (since, by definition, operational modes collectively abstract all such

internal data elements). We could only infer one of two things: either the

functional behavior is impossible (in which case the assumption is contra-

dicted), or there exists some operational mode or modal-value detail that

accounts for this behavior and that is missing from the test design (in which

case the claim is out of context).

By contradiction, there exists at least one operational state for the func-

tional behavior.

2. Uniqueness (There exists at most one state)

Assume there are two or more states, and hence value-combinations in

SOLUTIONS(SGCSP ) for the same behavior. This implies that some

modes have more than one value for which the system will behave in the

same exact manner — given a combination of fixed values for the other

modes. By definition, no two values can contribute to the same behavior

under the same conditions. Therefore, the two different states are identical,

which contradicts the assumption.

By contradiction, there exists at most one operational state for the func-

tional behavior.

It follows from 1 and 2 that for every functional behavior of a software system

there exists exactly one operational state.

3.3 An Example State Generation Algorithm

Let S = SOLUTIONS(SGCSP ), the set of states. We present algorithm 1 to show

that the automatic generation of the set of states S from M is feasible (a result used in
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the behavior model constructor algorithm presented later in this chapter). The algorithm

assumes a SGCSP formulated as (M, C, ‘all solutions’), where C is the set of all tuples of

modal values that cannot coexist in a state in S.

Notation 6 Let A and B be two sets. Denote by A − B the difference of the set B from

set A, the set of all elements in A but not in B.

Algorithm 1 A Simple State-Generator

• Input: SGCSP = (M, C, ‘all solutions’)

• Output: State Set S.

1. Let S =
∏
m∈M

domain(m)

2. For every s in S, if there are two or more values in s that constitute a tuple

in C then S = S − {s}.

Example 5 Generating the States of Light Switch System Using Algorithm 1

SGCSP is



{SwitchSystem,LightIntensity, LockStatus}
{(SwitchSystem = inactive, LightIntensity = dim),

(SwitchSystem = inactive, LightIntensity = normal),

(SwitchSystem = inactive, LightIntensity = bright),

(SwitchSystem = inactive, LockStatus = locked)}
‘all solutions’


1. S = domain(SwitchSystem)×domain(LightIntensity)×domain(LockStatus)

2. S starts with 2 × 4 × 2 = 16 elements. After removing every element s ∈ S
such that there is a couple (v, v′) ∈ C and both v and v′ are in S (such as

(inactive, dim, unlocked)), we end up with the following states in S:

(a) (inactive, off, unlocked)

(b) (active, off, unlocked)

(c) (active, dim, locked)

(d) (active, normal, unlocked)

(e) (active, bright, locked)

(f) (active, off, locked)
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(g) (active, dim, unlocked)

(h) (active, normal, locked)

(i) (active, bright, unlocked)

3.4 Behavior Models

A behavior model is the couple (S, δ), where S = SOLUTIONS(SGCSP ) is the state space

and δ : S × I −→ S is the deterministic transition function of the model.

By looking at the examples presented so far, we notice that extracting operational

modes is not overly complicated. Also, the automation of state generation is now only

dependent on determining the constraints among modal values. This is a major step up

from manually determining the states. Nevertheless, the task of manually enumerating the

constraints is still marginally tedious.

We have introduced the attributes of values with the purpose of improving on our

ability to determine the constraints of SGCSP. We will next present a way to automate the

generation of these constraints.

The binary modal-value constraint, ⊗, is a subset of ∪i<jdomain(mi)× domain(mj),

where i = 1, . . . , |M| − 1 and j = 2, . . . , |M|. (m = v,m′ = v′) ∈ ⊗ if and only if there is

no operational state s such that both v and v′ are in s. From a black box perspective, such

a situation arises only when v : In ∩ v′ : Iu 6= ∅ or v : Iu ∩ v′ : In 6= ∅.

Conflicting Couples of Values The Inputs Causing the Conflicts in

v v′ v : In v′ : In

inactive dim Invoke Lock, Terminate

inactive normal Invoke Lock, Terminate

inactive bright Invoke Lock, Terminate

inactive locked Invoke None

Table 3.1: Constraints of the Light Switch
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Conflicting Couples of Values The Inputs Causing the Conflicts in

v v′ v : In v′ : In

onhook dialtone P ickUp HangUp,

DialDigit

onhook partyringing P ickUp HangUp,

DialDigit,

PartyP ickUp

onhook connected P ickUp HangUp,

DialDigit,

PartyHangUp

onhook busysignal P ickUp HangUp

onhook 1,2,3,4,5,6 PickUp HangUp,

DialDigit

onhook 7 PickUp HangUp,

DialDigit,

PartyNotAvailable,

PartyDeviceRinging

offhook ringing HangUp PickUp

offhook idle HangUp PickUp

idle 1,2,3,4,5,6 PickUp,

PartyCalling

HangUp,

DialDigit

idle 7 PickUp,

PartyCalling

HangUp,

DialDigit,

PartyNotAvailable,

PartyDeviceRinging

continued on next page
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continued from previous page

Conflicting Couples of Values The Inputs Causing the Conflicts in

v v′ v : In v′ : In

ringing 1,2,3,4,5,6 PickUp,

CallingPartyCanceled

HangUp,

DialDigit

ringing 7 PickUp,

CallingPartyCanceled

HangUp,

DialDigit,

PartNotAvailable,

PartyDeviceRinging

partyringing 1,2,3,4,5,6 PartyP ickUp None

partyringing 7 PartyP ickUp PartyNotAvailable,

PartyDeviceRinging

connected 1,2,3,4,5,6 PartyHangUp None

connected 7 PartyHangUp PartyNotAvailable,

PartyDeviceRinging

busysignal 1,2,3,4,5,6 None DialDigit

busysignal 7 None DialDigit,

PartyNotAvailable,

PartyDeviceRinging

Table 3.2: Constraints of the Phone Device

3.5 The Construction Algorithm

We proceed by formulating the state generation constraint satisfaction problem using the

⊗ as the set of constraints, thus obtaining the state set S. Next the algorithm iterates on

every state s, determining the transition function δ that maps s to other states based on

the attributes of all the values in that state.
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Notation 7 Let s : Iu, the set of all inputs unreachable from state s, be the union of all

the unreachable-set-attributes of all the values in s, ∪v in sv : Iu.

Notation 8 Let s : Ic denote the set of all the state-changing inputs. s : Ic is computed as

∪v in sv : Ic − s : Iu.

Notation 9 Let s : Il denote the set of all inputs that do not change state s. s : Il is

computed as I − s : Ic − s : Iu.

Algorithm 2 Behavior Model Constructor

• Input: Operational Mode Set M.

• Output: Behavior Model (S, δ).

1. Formulate SGCSP as (M,⊗, ‘all solutions’).

2. Generate the states. Using a CSP-solver, such as algorithm 1 or simple

backtracking, say, generate S = SOLUTIONS(SGCSP ).

3. Generate the transitions. For every state s = (v1, . . . , v|M|) ∈ S, perform

steps 4, 5, and 6, thus generating δ.

4. Define the impossible transitions. An input that is unreachable from the

state should not affect the system in that state in any way; in other words,

it is impossible to compute a corresponding transition.

∀i ∈ s : Iu,

δ(s, i) = ε.

5. Define the loop transitions. If an input is neither in the unreachable set of

the state, nor critical to any value of the state, then a loop transition must

be computed for that input.

∀i ∈ s : Il,

δ(s, i) = s.

6. Define the state-changing transitions. Consider every input that is not

unreachable from the state currently under investigation and that is critical

to one of the values in that same state. Take into consideration all the

values’ value-transition functions to determine the effect of that input on
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the values and therefore the states:

∀i ∈ s : Ic,

δ(s, i) = (w1, . . . , w|M|)

where

wk =

 vk : ϕ(i, v1, . . . , vk−1, vk+1, . . . , v|M|) if i ∈ vk : Ic

vk otherwise

k = 1, . . . , |M|

3.6 How the Algorithm Works in the Phone Example

The first three steps are simple enough:

1. SGCSP is



{PhoneReceiver,DeviceStatus,DigitsDialed}
{(onhook, dialtone), (onhook, partyringing), (onhook, connected),

(onhook, busysignal), (onhook, k), (offhook, idle),

(offhook, ringing), (idle, k), (ringing, k),

(partyringing, k), (connected, k), (busysignal, k)}
‘all solutions’


where k = 1, . . . , 7.

2. The thirteen states in S are:

(a) (onhook,idle, 0)

(b) (onhook,ringing, 0)

(c) (offhook,dialtone, 0)

(d) (offhook,dialtone, 1)

(e) (offhook,dialtone, 2)

(f) (offhook,dialtone, 3)

(g) (offhook,dialtone, 4)

(h) (offhook,dialtone, 5)

(i) (offhook,dialtone, 6)

(j) (offhook,dialtone, 7)

(k) (offhook,partyringing, 0)



CHAPTER 3. BUILDING MODELS OF SOFTWARE BEHAVIOR 37

(l) (offhook,connected, 0)

(m) (offhook,busysignal, 0)

We give three examples of generating transitions: from (onhook, idle, 0), from

(onhook, ringing, 0), and from (offhook, dialtone, 7). Steps 4 and 5 of the algorithm are

straightforward. We elaborate on step 6:

s = (onhook, idle, 0)

• s : Iu = {HangUp DialDigit, PartyNotAvailable, PartyP ickUp, PartyHangUp,
PartyDeviceRinging, CallingPartyCanceled}

• s : Il = ∅

• s : Ic = {PickUp, PartyCalling}

1. PickUp ∈ onhook : Ic and PickUp ∈ idle : Ic.

δ((onhook, idle, 0), P ickUp) = (offhook, dialtone, 0)

2. PartyCalling ∈ idle : Ic.

δ((onhook, idle, 0), PartyCalling) = (onhook, ringing, 0)

s = (onhook, ringing, 0)

• s : Iu = {HangUp DialDigit, PartyNotAvailable, PartyP ickUp, PartyHangUp,
PartyDeviceRinging, PartyCalling}

• s : Il = ∅

• s : Ic = {PickUp CallingPartyCanceled}

1. PickUp ∈ onhook : Ic and PickUp ∈ ringing : Ic.

δ((onhook, ringing, 0), P ickUp) = (offhook, connected, 0)

2. CallingPartyCanceled ∈ ringing : Ic.

δ((onhook, ringing, 0), CallingPartyCanceled) = (onhook, idle, 0)

s = (offhook, dialtone, 7)

• s : Iu = {PickUp, PartyCalling, CallingPartyCanceled, PartyHangUp, PartyP ickUp}

• s : Il = {DialDigit}
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• s : Ic = {HangUp, PartyNotAvailable, PartyDeviceRinging}

1. HangUp ∈ offhook : Ic, HangUp ∈ dialtone : Ic, and HangUp ∈ 7 : Ic.

δ((offhook, dialtone, 7),HangUp) = (onhook, idle, 0)

2. PartyNotAvailable ∈ dialtone : Ic and PartyNotAvailable ∈ 7 : Ic.

δ((offhook, dialtone, 7), PartyNotAvailable) = (offhook, busysignal, 0)

3. PartyDeviceRinging ∈ dialtone : Ic and PartyDeviceRinging ∈ 7 : Ic.

δ((offhook, dialtone, 7), PartyDeviceRinging) = (offhook, partyringing, 0)

The completely generated transition function δ is displayed in tables 3.3 and 3.4.
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HangUp PickUp DialDigit PartyNotAvailable PartyCalling

onhook

idle

0

ε

offhook

dialtone

0

ε ε

onhook

ringing

0

onhook

ringing

0

ε

offhook

connected

0

ε ε ε

offhook

dialtone

0

onhook

idle

0

ε

offhook

dialtone

1

ε ε

offhook

dialtone

1

onhook

idle

0

ε

offhook

dialtone

2

ε ε

offhook

dialtone

2

onhook

idle

0

ε

offhook

dialtone

3

ε ε

offhook

dialtone

3

onhook

idle

0

ε

offhook

dialtone

4

ε ε

offhook

dialtone

4

onhook

idle

0

ε

offhook

dialtone

5

ε ε

offhook

dialtone

5

onhook

idle

0

ε

offhook

dialtone

6

ε ε

offhook

dialtone

6

onhook

idle

0

ε

offhook

dialtone

7

ε ε

offhook

dialtone

7

onhook

idle

0

ε loop

offhook

busysignal

0

ε

offhook

partyringing

0

onhook

idle

0

ε loop ε ε

offhook

connected

0

onhook

idle

0

ε loop ε ε

offhook

busysignal

0

onhook

idle

0

ε ε ε ε

Table 3.3: The Phone Device Transition Function
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CallingPartyCanceled PartyP ickUp PartyHangUp PartyDeviceRinging

onhook

idle

0

ε ε ε ε

onhook

ringing

0

onhook

idle

0

ε ε ε

offhook

dialtone

0

ε ε ε ε

offhook

dialtone

1

ε ε ε ε

offhook

dialtone

2

ε ε ε ε

offhook

dialtone

3

ε ε ε ε

offhook

dialtone

4

ε ε ε ε

offhook

dialtone

5

ε ε ε ε

offhook

dialtone

6

ε ε ε ε

offhook

dialtone

7

ε ε ε

offhook

partyringing

0

offhook

partyringing

0

ε

offhook

connected

0

ε ε

offhook

connected

0

ε ε

offhook

dialtone

0

ε

offhook

busysignal

0

ε ε ε ε

Table 3.4: The Phone Device Transition Function
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Conclusions

4.1 Summary

Testers face difficulties as they perform the various tasks during software testing. The

behavior modeling phase for black box testing is particularly labor-intensive, often hindered

by lack of proper and complete specification. The problem most central to the behavior

modeling phase in black box testing is that of enumerating the state space. Operational

modes can help testers address this issue.

Operational modes are variables that abstract the internal data elements responsible

for the behavior of a software system. Operational modes are used to build a model of that

behavior from which we can designate the applicable input strings (and the illegal ones

as well). Using the formulation of constraint satisfaction problems in addition to binary

constraint relationships, the problem of generating states is rendered automatable, given

the set of the system’s operational modes. We presented an algorithm that automates the

generation of the states and state-transitions of the behavior model based on descriptive

attributes of the modal values.

The following steps summarize the procedure to model a software system using

operational modes:

1. Observe all available documentation including the specification, if available.

2. Enumerate the system’s inputs.

3. Extract the system’s operational modes.

4. Apply the algorithm of section 3.5 to the set of operational modes, which results in

the system’s behavior model.

41
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4.2 Significance and Expected Impact

The contribution of this work can be summarized in the following points:

Operational Modes More Formally Defined The definition of operational modes pre-

sented here was more precise in linking the modes to functional behavior, applicability

and effect of applicable inputs, in addition to behavior models. In particular the veri-

fication rules of section 2.7 on page 26 carry the artful work of testers one step closer

to scientific method.

Relationship Between States and Functional Behavior Better Understood Defining

functional behavior in the way presented in this paper makes such concepts as states,

state space, and behavior models much more intuitive, since there is a one-to-one

correspondence between functional behavior and states of the system.

Behavior Modeling Less Labor-Intensive The behavior model is of practical impor-

tance to testers since it specifies the input sequences that testers must consider.

Without automation such models can be too time consuming to develop. Practi-

tioners often work with abstracted models and fail to fully define expected behavior.

Algorithm 2 allows a fully detailed model to be generated, decreasing the tester’s

reliance on abstractions.

There are also a number of research projects that remain to be conducted.

Identifying Operational Modes Still an Art There is no formal way of going about

extracting operational modes. Clearly, the definition of operational modes and their

values can yield a number of guidelines by which a variable can be verified to be an

operational mode. The process of going about the review of specification and other

relevant documentation and figuring out operational modes of a system in the absence

of straight-to-the-point data specifications is still an adhoc one. However, the art of

operational modes is not unattainable by the average tester and is indeed a practical

approach to constructing a model even in the most inadequate of circumstances.

Soundness and Completeness of the Algorithm It can be argued that the behavior

model constructor will not result in a situation in which s, an element of∏
m∈M

domain(m)− SOLUTIONS(SGCSP ) is a legal operational state of a software

described by M (the binary operational constraint is sound). However, there is no

ground for assuming the completeness of the algorithm mainly because the definition

of operational modes does not guarantee the extraction of all operational modes. The
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constraints, however, can be argued to be complete from a functional point of view.

In other words, if the set of modesM is not complete, then so is S and δ — the result

of the algorithm.

Working With Modal-Value Attributes Rather Tedious Some may argue that spec-

ifying the attributes may be too much work for testers — mainly because it is almost

equivalent to writing the specification of the subset of behavior being tested. The te-

diousness can be significantly relieved by creating a simple tool that makes the process

of attribute-data entry easier. Further, this still involves several orders of magnitude

less work than constructing states based on individual testing projects and then fig-

uring out the transitions to build the model. Using the algorithm and the attributes

achieves time gains over earlier endeavors with usage variables [40] and operational

modes [36].

4.3 Prospects for Future Work

Future work that is immediately related to this thesis includes the following:

Generating Markov Chains The next step in our research agenda is to automate the

generation of probabilities based on an operational profile. Exploiting the simplifica-

tion offered by operational modes is speculated to be greatly advantageous. In our

experiments that accompanied this research, we have used only uniform probabilities

for our Markov chains. We are investigating the use of CSP’s to generate non-uniform

probability assignments. This will be particularly useful in applications for which

significant prior usage data exists.

More Precise Rules for Extracting Operational Modes The completeness issues dis-

cussed earlier can be resolved upon the discovery of a more precise definition of oper-

ational modes that allows even the inexperienced tester to work with modes. We are

currently investigating further descriptors of operational modes in addition to informal

guidelines to extract modes from software documentation.

Verification of Generated Behavior Model The correctness of the model generated is

greatly dependent on the rather large amount of data that has to be artfully extracted

and manually fed as input to the algorithm. In order for testers to proceed with

trust, verification techniques need to be developed to assess whether the resultant

behavior model is the one desired. Discrepancies include unreachable states and sink
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non-terminal states among others, and all of them should be traced to the operational

modes documented in the test design.

Static Comparative Analysis of Behavior and Implementation Models One inter-

esting research direction that we are investigating is the extraction of operational

modes of both the software specification and implementation, thus producing models

of the supposed and actual behavior of the software. A static comparative analysis of

the two models may lead us to estimate the distance between the models. In other

words, this may allow us to produce a rather-confident answer to the question: how

far is the software from its specifications?

In addition to this, the work on operational modes and the construction algorithm has

spawned work in the following areas:

Test Case Adequacy Criteria Random testing is inexpensive. It is also a waste of ef-

fort and time that can be spent on building better tests instead of repetitive ones.

Whittaker and Al-Ghafees have achieved significant progress on methodical test case

selection with criteria depending on the content of states — modal values. Early

results are found in [38].

Guidelines for Better Software Design Working with operational modes forces us to

think like developers. If a system under test were designed and implemented with

operational modes as the back-bone of specification, most of the errors would be

traced back to either missing operational modes or missing or ill-described values. In

fact, it turns out that designing software with operational modes helps prevent certain

classes of errors. More of this work can be found in [39].
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