
DNA Enterprises, Inc.
http://www.dnaent.com

Teradyne Software and System Test
http://www.teradyne.com/prods/sst/product_center/sstprod.html

DNA Enterprises, Inc.
DNA Enterprises, Inc.
269 W. Renner Parkway
Richardson, TX 75080
(972) 644-3301

Inside

• System Test Environment
• TestMaster Overview
• Test Harness Overview

Model Driven Testing
By: Brian Berger, Majdi Abuelbassal, and Mohammad Hossain

March 1997

Introduction

Much of the focus of advanced services deployment is
pointed toward application development. Look at the
February 1997 issue of Computer Telephony and you will
see multiple advertisements selling application tool kits.
Application tool kits have allowed developers to rapidly
create advanced services for the telephony market. But
developing these services is only part of the process in
getting a product ready for market.

Once the product development cycle is well underway,
developers have to deal with deployment issues. A major
hurdle in application deployment is integration and test.
Unfortunately, the same amount of effort spent on
development environments has not been applied to test
environments. Test environments are often created in-
house and are highly specialized, lending themselves to one
particular product and, in some cases, one particular
application. Often tests require operator intervention, and
are difficult to reproduce when platforms and software are
modified.

This paper discusses a test environment philosophy and
platform developed at DNA Enterprises to test an
intelligent switching product. This particular test
environment was developed in parallel with the product.
The goal of the test environment was to capture the test
requirements, while providing the flexibility needed to
respond to product changes.

DNA Test Philosophy

DNA’s testing philosophy is to describe a system,
function, or feature in terms of a model. The initial model
should be abstracted to a level that is independent of
implementation details, or equipment required to test the
system, function, or feature. The important first step in
developing a test models is to describe, in some form, how
the application under test should and should not work.
Once accurately captured, these test models become the
centralized building blocks for an application or tested item.
The second step is to tie models together to describe how
features or functions should and should not interact. This
hierarchical development approach produces a testing
environment that, at a high level, is independent of
application and platform implementation issues, and
produces test building blocks that lend themselves to
reusability. Reusability, can in turn, expedite the
development of future tests.

During the test development cycle, application and
platform implementation should be addressed with low level
models. These model perform similarly to driver level
software used in application development. In fact, using
this approach, test model development closely matches an
application development process. Again, the idea in this
type of testing effort is to separate the issues of what
needs to be tested from the issues of how the tests are
implemented. The “whats” and the “hows” are equally
important, but to develop tests that can easily change in

DNA Enterprises, Inc.
http://www.dnaent.com

Teradyne Software and System Test
http://www.teradyne.com/prods/sst/product_center/sstprod.html

response to product or application revision(s), it is essential
that the “whats” and the “hows” are clearly separated.

System Test Environment

The goal of DNA’s system test group was to create an
environment that was geared toward reproducible,
automated testing. This goal was realized by combining a
group of automated tools with remotely controlled test
equipment. Effort was placed on interworking various
automated tools into a cohesive bundle that enable
automated testing across various types of tests.

Tests covered various aspects of the product, such as
load testing, feature testing, alarm testing and Host GUI
testing. Additionally, the environment verified the
interaction between various tests.

For example, the test system is capable of performing
the same feature testing when the system is under heavy
load as when the system is under no load. Test interaction
is controlled by the high level models that link feature and
load tests together.

While the initial system test environment was not
expected to test future product functionality, every effort
was made to create a test environment that will easily
incorporate testing future product enhancements. As
additional test hardware or software is required, it should fit
within the overall system test environment with minimal
additional effort.

The basic system test architecture is divided into two
major components: test case generation component and a
test case execution component.

The test case generation component is a GUI based
model development system. Instead of developing textual
based test cases based on system feature implementation,
graphical models were developed that described each
feature’s function and interaction with other system
components. The model development tool let the test group
address the issues of “what” is to be tested, before
addressing the issues of “how” things are tested.

Once the high level feature models are developed, low
level “driver” models are created. Driver models deal with
the “how” aspect of testing. In dividing test development in
this manner, only the low level models change as the
product is modified. The high level tests remain intact, and
often are the building blocks for more advanced tests.

The second component in the system test architecture is
the test case execution environment. The execution
environment is often referred to a test harness. It is the
responsibility of the test harness to receive command files

from the test generation component and translate these
files into executable events. Additionally, the test harness is
responsible for interpreting responses to these events,
collecting feature metrics, and developing a report that is
either sent to file, and/or displayed to a console.

Test Case Generation

TestMaster™ from Teradyne’s Software and System
Test Group was chosen as the test case generation
component. TestMaster is an automated test program
generator that includes a GUI development environment
that is ideal for building models at both abstract and
implementation dependent levels. TestMaster’s Model
Reference Test (MRT) technology fits accordingly with
DNA’s test philosophy and provides a loosely coupled
interface between the test generation component and the
test case execution component.

This product allowed DNA’s system test group to
develop models at various levels and to tie them together to
create feature models that, in turn, drive low level models.
In this manner, feature models are bound together to create
complex and multifunctional tests.

TestMaster can take a detailed model as an input and
quickly generate a series of test cases. As a result, the
TestMaster model is maintained for each individual test
case. The number of test cases generated is determined by
the amount of test coverage required. A full coverage test
of the model would generate a test case for every possible
path through the model. The output from TestMaster for
each test case, when run through the test harness, is
capable of configuring the switch and the test equipment,
execute a series of tests, and develop reports.

Test Harness

The Test Harness is responsible for taking input test
cases from the TestMaster/parser software, running the
test cases to exercise a switch under test, and creating a
test case report.

The Test Harness is built around a UNIX-based PC
with Ethernet and serial communication links to the switch,
the switch host, and telecom test equipment boxes. Custom
software executing on the UNIX platform coordinates
downloading and executing test cases on the test boxes or
the system and host. Results are collected and formatted
into test case reports for analysis and quality assurance
purposes.

DNA Enterprises, Inc.
http://www.dnaent.com

Teradyne Software and System Test
http://www.teradyne.com/prods/sst/product_center/sstprod.html

Part of the process in defining the Test Harness was to
create the language constructs used by TestMaster to
generate test cases. Special care was taken to develop a
language construct that would let the Test Harness act as a
test director. Additional consideration was given to future
Test Harness expansion.

At the lowest level, the Test Harness consists of a
series of hardware telecom test boxes and switch
interfaces, each being remotely controlled by an
independent software process. Each of these software
processes (termed a communication server) is responsible
for controlling the flow of information to and from an
external interface during the execution of a test case.
Laying on top of these individual communications servers is
an additional layer of software that is responsible for
controlling the sequence of events and the flow of
information between the individual communication servers.
This controlling software is referred to as the Test
Execution Engine. This software is required to coordinate
events and information between various test boxes, and the
product under test. The Test Execution Engine software
resides on a PC referred to as the System Test Controller.

External devices used in the test harness fall into two
primary categories - Telecom Test boxes like Bulk Call
generators and interfaces to the switch under test like a
remote Maintenance and Provisioning (MAP) Terminal or
an Alarm Panel interface. The System Test Controller and
controlling software is connected to remote devices either
through an Ethernet connection, an RS232 serial link, or a
GPIB connection. On the trunk side, the telecom test boxes
are cross-connected to the switch under test via a
jackpanel.

Test Harness Software

The test harness software is broken into major
subsections:

• Test Execution Engine (TEE) - The TEE is
responsible for executing test cases within the
environment. It is driven by a sequential test
execution script file written in Perl 5.0. This
script file is generated by the TestMaster/Parser
software and executed by the TEE executor.
Information regarding the system configuration
is located in the Test Harness database.

• Communication (Comm) Servers -
Communication Servers handle all
communications between external devices
within the test harness. The test execution

engine communicates with any external device
via a communication server for that device using
a Comm Server API.

• Report Generation Server - The Report
Generation Server develops test case reports
based upon raw data from the test execution
engine and the Comm Servers. It is composed
of a report server for raw data acquisition and a
report generator for report formatting and
generation.

Figure 1 Illustrates a model of the Test Harness
subsections and their interactions. Adding equipment or
other interfaces to the Test Harness is a matter of
developing another communications server for that
particular device. This gives the Test Harness the power to
add additional test devices or switching interfaces without
impacting the current configuration.

CRESCENDO
Server

Test Harness
Database

Report Generator

C
re

at
e

R
ea

d

Raw
Data

Format Testcase
Report

C
om

m
un

ic
at

io
ns

 L
ay

er

Test Execution Engine (TEE)

Report
Generation

Software

Communications
Servers

.tee files read

.bcg files

.report
files

Process Controller

TEE
Executor

Report
Server

UUT Server

T-BERD
Server

Future
Servers

Conclusion

The combination of TestMaster with DNA’s Test
Harness has given DNA’s system test group a powerful
and flexible tool set. This tool set has given our system test
group the ability to generate and maintain complex tests
suites with minimal staff.

About DNA Enterprises

DNA Enterprises has established a unique position
within the telecommunications industry. Since 1981, DNA
Enterprises has offered a broad array of services, ranging
from concept evaluation to full system development. Areas
of expertise include software technology, hardware

DNA Enterprises, Inc.
http://www.dnaent.com

Teradyne Software and System Test
http://www.teradyne.com/prods/sst/product_center/sstprod.html

technology, systems architecture, and digital signal
processing systems. We specialize in telecommunications
and multimedia systems and applications.

For additional copies of this paper, or additional
information about DNA Enterprises, visit our Web site at
http://www.dnaent.com, or send e-mail to
info@dnaent.com.

References

TestMaster™ is a trademark of Teradyne, Inc.

