
This Paper was originally presented at the Software Quality Week
Conference, May 1998

1998 Lucent Technologies

Automated Test Generation from a
Behavioral Model

James M. Clarke
Lucent Technologies
2000 Naperville Road

Naperville, IL 60666-7033
(630) 979-1861

jmclarke@lucent.com

Abstract

The challenge for testers: reduce the testing interval without
reducing quality. One answer: find a new way to approach test
design and test generation. This paper will discuss an ongoing
Lucent Technologies experiment in automated test generation from
a behavioral model of the software product under test. Results
indicate that our new approach can increase the effectiveness of
our testing while reducing the cost of test design and
generation.

Outline
1. Introduction
2. 5ESS®-2000 Testing Background
3. Major Challenges for Testers
4. New Test Design Strategy – Behavioral Modeling
5. Automatic Test Generation
6. Case Studies

• Case 1: Call Management Feature
• Case 2: Number Portability Feature

7. Observations and Conclusions

1. Introduction

 At Lucent Technologies, TestMaster™ automates the generation of
tests for call processing features developed for the 5ESS®-2000
Switch. The 5ESS-2000 Switch, a digital exchange for use in the
global switching network, allows service providers, such as
telephone companies, to route ISDN voice and data, local voice

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

calls, long distance calls, Internet access, wireless PCS,
Advanced Intelligent Network services, interactive video and
multimedia services in a high-speed, reliable public network.

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 During the test development phase, a call processing feature's
specification document (FSD) serves as the basis for a
TestMaster state-based model. The model describes the behavior
of the switch/network when a call uses the associated feature.
TestMaster then performs a path analysis on the model,
generating a comprehensive set of tests that are formatted and
executed in the Lucent 5ESS-2000 testing environment.

 In this paper I will review the testing problems we faced, the
solutions we found and the results of implementing those
solutions.

2. 5ESS- 2000 Testing Background

 The 5ESS-2000 Switch is a flexible digital exchange for use in
the global switching network. Digital switches replaced earlier
electromechanical and analog switching systems. A digital
switch is a single system with multiple applications such as
local, toll, and operator services. The 5ESS equipment switches
ISDN voice and data, local voice calls, long distance calls,
Advanced Intelligent Network services as well as other media on
the public switched network. The switch architecture is a
modular, distributed architecture that allows developers to
implement enhancements easily and allows service providers to
change their communication network quickly.

 The modular design of the 5ESS-2000 Switch also carries through
to its software architecture. The software, primarily written in
the C programming language, extends the many advantages of a
distributed processing environment. Lucent Technologies Bell
Laboratories develops and tests the software for the 5ESS-2000
Switches that FCC-required quality monitoring has shown to be
four times more reliable than its nearest competitor.

 At one time Lucent Technologies (at the time a business unit of
AT&T) viewed testing as a standalone phase in the traditional
waterfall process. System testing was done by a separate
organization, and the testers became involved in a project only
after the specifications, design, and the majority of the coding
was complete. This made for expensive and time consuming test
plans. In fact, at one time it required almost 22 months to
deliver a major software release for the 5ESS-2000 Switch.
Process and organizational changes have reduced that figure to
approximately 10 months, but as new features become more
complex, it has become increasingly difficult to maintain both
an aggressive delivery schedule and the high level of software
quality that our customers have come to expect.

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

3. Major Challenges for Testers

 The challenge now for test plan designers is to continue to
achieve the high degree of testing coverage required to ensure
that these increasingly complex features maintain quality
standards. This requires the use of test development methods
that are more effective in managing the coverage of complex
functionality. Traditional methods, such as analyzing each
requirement and developing test cases to verify correct
implementation, are not effective in understanding the
software’s overall complex behavior. Also the cost pressures in
a competitive industry add the constant of cost reduction. This
adds the need for efficiency in using more effective test
development methods. While initially these two goals, reduced
testing costs and maintaining product quality, appeared to be
mutually exclusive our automation test generation initiatives
have indicated that this is not necessarily the case.

 A Feature Specification Document, written by the systems
engineering organization, details the requirements for the
behavior of call processing features of the 5ESS. The behavior
of the feature depends on inputs from the parties on the call
and the configuration and signaling input from the 5ESS network.
Complex interactions arise between the calling parties, other
features on the switch, and the network, and these must be
understood to adequately test the new feature. To date, test
generation has relied on manual methods to interpret the Feature
Specification Document, state diagrams, and call processing
behavior of the switch. For a given call, the switch waits for
input, e.g., a set of DTMF tones. The switch processes the
input and changes the state of the call in progress. (Different
inputs from the caller and network configurations cause the 5ESS
switch to process calls differently.) For example, if the user
enters a valid telephone number, the call will be processed; if
not, an announcement will play asking for a valid input.
Advanced features in the 5ESS switch have so many variables that
it is difficult for the test engineer to identify them all, let
alone generate a set of tests to verify that the feature works
in all cases.

4. New Test Design Strategy – Behavioral Modeling

 The traditional test design methods used to generate test cases
became too expensive and labor intensive when applied to these
highly complex features. We had to employ a different strategy

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

to adequately test new and existing functionality, while keeping
the testing interval from growing with the software complexity.

 For the last year our strategy has been to use requirements
behavioral modeling on a number of features to determine the
effectiveness of this approach as a test design and generation

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 strategy. The behavioral modeling we use combines transaction-
flow, control-flow and finite state machine (FSM) testing
techniques in an extended finite state (EFSM) model. EFSM
modeling employs a technique known as predicate notation to
simplify models of complex systems, and reduce the state
explosion problem commonly encountered with pure FSM modeling.
 The goal was to create a EFSM model that would capture the
functional behavior of the requirements for a new 5ESS-2000
software feature. The models, if created during the requirements
definition phase of the development cycle, would prevent
different interpretations of the requirements by the developers
and testers. Minimizing these differences will in itself prevent
some faults from ever reaching the test execution phase, helping
to further reduce testing costs.

 Our initial results indicate that while behavioral modeling is
very effective in ensuring adequate coverage during the test
design phase and in providing the entire development team with a
common view of the requirements, it quickly becomes labor
intensive during the test generation phase. On larger features
the process of manually modeling also quickly becomes too
difficult and expensive. An obvious answer was to find a tool
that could automate some or all of this process. Which
automation tool to use was not as obvious.

5. Automating Test Generation Using Model Reference
Technology

 To help decide which tool to use, we developed a checklist of
the characteristics and functionality to rate automation tools-
characteristics such as execution environment independence,
support for EFSM, flexible output format and the ability to
automatically generate unique paths (tests) from the behavioral
model.

 The tool with the best score based on our checklist is a product
called TestMaster, and Lucent Technologies started a trial
program with to evaluate its ability to allow test engineers to
create and maintain behavioral models of our products.

 TestMaster (produced by Teradyne, Inc.) uses model reference
technology (MRT) to provide automatic test generation driven
from an EFSM model of the application under test. TestMaster
comprises three major components: a graphical editing tool, a
test program generator, and a model debugger.

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 Using the same inputs used to manually generate test scripts or
manually create an EFSM, test engineers use the State Transition
Editor to build a model of the applications behavior. The model
is a series of states connected by transitions. Each transition
defines a state change based on inputs from user or switch. Each

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 transition in the model contains the following associated
programmable fields: the predicate and constraint fields, which
evaluate context in the model, and the test information field
that contains procedures or test code that will be included in
any test case that includes the transition as part of its path.
Predicates are boolean expressions that must evaluate true in
order for the transition to be a valid path within the
behavioral model. The constraint field allows the user to limit
the number of paths produced during test generation. A set of
interactive debugging tools is available to the test engineer as
well.

 The test program generator uses the model to automatically find
valid paths through the model. These paths consist of
transitions that represent the behavior of the application that
has been modeled. Each valid path through the model is converted
into a test case by replacing each transition in the path with
its test information. Thus a complete test case is concatenation
of all the test information field for some valid path. These
test cases can be produced in any target language.

6. Case Studies

 This section will briefly discuss two cases in which we can
compare generating tests with TestMaster to manually writing
tests. In both cases the two methods were used to create
comparable type and number of test cases. Both of these cases
are products that are currently available on the 5ESS-2000
Switch.

 Case 1: Call Management Feature

 Background
 This feature expands the capabilities of basic Call Waiting to
include a number of call management features. If you subscribe
to Call Waiting on your analog phone line, and a third party
calls you while you are on a phone call, you receive tones
indicating that another call has arrived. At this point you
only have two choices: press the phone switch-hook and answer
the new call or ignore the new call.

 Call Management provides the ability to see the new call’s
telephone number1 and the name of the caller2. At this point you
can conference the two calls together, place either call on

 1 Caller ID Feature
 2 Calling Name Feature

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

hold (music optional), or forward the new call manually or
automatically to another telephone number.

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 Test Generation: Manual vs. TestMaster

 This product was delivered in two phases. Phase two testing
required, modifying some of phase one’s tests, using some of
phase one’s tests as is, and writing new tests. Test generation
is measured by the Technical Head Count Year (THCY) effort
required to produce the test cases required. For example, if
the test generation took an engineer one month to complete, it
would equal a 0.0833 THCY effort.

 To generate the tests manually, we used traditional 5ESS-2000
call processing test design and generation methods. Then, using
TestMaster, we created an EFSM for the product and automatically
generated test cases. Table 1 compares the THCY effort required
by these two methods for this feature.

 Manual Generation TestMaster Generation
 Phase One 0.120 0.014
 Phase Two 0.050 0.002

 Total 0.170 0.016

 Table 1

 The use of TestMaster in this case provided a test generation
productivity improvement of just over 90%. At this level of test
generation productivity improvement one test engineer using
TestMaster can be as productive as ten test engineers using
manual test generation.

 Case 2: Number Portability Feature

 Background

 The competition to provide local phone service is increasing
every year. But most people would probably decline to change
their local service providers if changing companies meant
changing phone numbers. The Number Portability (NP) feature,
mandated by the FCC to overcome this barrier, allows you to
switch service providers without changing your telephone number.

 Test Generation: Manual vs. TestMaster

 For this feature we manually created an EFSM behavioral model of
the requirements and manually generated test cases using the
model. Then, we created an EFSM of the product in TestMaster and

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

automatically generated test cases. Table 2 compares the THCY
effort required by these two methods for this feature.

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

 Test generation is again measured by the Technical Head Count
Year (THCY) effort required to produce the test cases required.

 Manual TestMaster
 Create Model 0.21 0.05

 Generate Tests 0.24 0.003
 Total 0.45 0.05

 Table 2

 In this case TestMaster provided a test generation productivity
improvement of just over 88%. Additional functionality was added
to this feature after the original feature was released. Editing
the TestMaster model to create the new tests case took half a
day4 compared to the estimate of two and a half weeks5 for
manual generation.

7. Observations and Conclusions

TestMaster provides a single environment to capture the
behavior, input variables, configuration, and 5ESS state
information in the form of a model. TestMaster can then
automatically process the model to quickly generate a complete
set of tests. This technology provides the 5ESS-2000 call
processing test team an efficient and effective method of
generating feature tests for 5ESS development projects.

Since starting with TestMaster in September of 1996, we have
successfully modeled, generated, and executed test cases for a
number of advanced call processing features in the 5ESS switch.
To increase the reusability of the models, test engineers are
developing standardized methods for analyzing the Feature
Specification Document and creating TestMaster models. We are
also investigating ways to formally review the models for
completeness. The test cases generated are in a standard format
so they can be used by both manual and automated test executors
who have no knowledge of the TestMaster model and who run the
tests as if they were generated manually. We can easily
incorporate changes into the models to keep pace with changing
feature requirements.

Preliminary data indicates that using TestMaster to automate our
test generation process can increase our productivity by over

 3 Automated test generation, no THCY effort required.
 4 0.00192 THCY effort
 5 0.0288 THCY effort

Automated Test Generation From a Behavioral Model

 1998 Lucent Technologies

80%, while providing a more effective way to analyze complex
requirements.

This Paper was originally presented at the Software Quality Week
Conference, May 1998

1998 Lucent Technologies

