
1

1
Introduction to Web

Services
Maydene Fisher and Eric Jendrock

WEB services, in the general meaning of the term, are services offered via the
Web. In a typical Web services scenario, a business application sends a request to
a service at a given URL using the SOAP protocol over HTTP. The service
receives the request, processes it, and returns a response. An often-cited example
of a Web service is that of a stock quote service, in which the request asks for the
current price of a specified stock, and the response gives the stock price. This is
one of the simplest forms of a Web service in that the request is filled almost
immediately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route for the deliv-
ery of goods. In this case, a business sends a request containing the delivery des-
tinations, which the service processes to determine the most cost-effective
delivery route. The time it takes to return the response depends on the complex-
ity of the routing, so the response will probably be sent as an operation that is
separate from the request.

Web services and consumers of Web services are typically businesses, making
Web services predominantly business-to-business (B-to-B) transactions. An
enterprise can be the provider of Web services and also the consumer of other
Web services. For example, a wholesale distributor of spices could be in the con-
sumer role when it uses a Web service to check on the availability of vanilla
beans and in the provider role when it supplies prospective customers with dif-
ferent vendors’ prices for vanilla beans.

2 INTRODUCTION TO WEB SERVICES

The Role of XML and the Java™
Platform

Web services depend on the ability of parties to communicate with each other
even if they are using different information systems. XML (Extensible Markup
Language), a markup language that makes data portable, is a key technology in
addressing this need. Enterprises have discovered the benefits of using XML for
the integration of data both internally for sharing legacy data among departments
and externally for sharing data with other enterprises. As a result, XML is
increasingly being used for enterprise integration applications, both in tightly
coupled and loosely coupled systems. Because of this data integration ability,
XML has become the underpinning for Web-related computing.

Web services also depend on the ability of enterprises using different computing
platforms to communicate with each other. This requirement makes the Java
platform, which makes code portable, the natural choice for developing Web ser-
vices. This choice is even more attractive as the new Java APIs for XML become
available, making it easier and easier to use XML from the Java programming
language. These APIs are summarized later in this introduction and explained in
detail in the tutorials for each API.

In addition to data portability and code portability, Web services need to be scal-
able, secure, and efficient, especially as they grow. The Java 2 Platform, Enter-
prise Edition (J2EE™), is specifically designed to fill just such needs. It
facilitates the really hard part of developing Web services, which is program-
ming the infrastructure, or “plumbing.” This infrastructure includes features such
as security, distributed transaction management, and connection pool manage-
ment, all of which are essential for industrial strength Web services. And
because components are reusable, development time is substantially reduced.

Because XML and the Java platform work so well together, they have come to
play a central role in Web services. In fact, the advantages offered by the Java
APIs for XML and the J2EE platform make them the ideal combination for
deploying Web services.

The APIs described in this tutorial complement and layer on top of the J2EE
APIs. These APIs enable the Java community, developers, and tool and container
vendors to start developing Web services applications and products using stan-
dard Java APIs that maintain the fundamental Write Once, Run Anywhere™
proposition of Java technology. The Java Web Services Developer Pack (Java
WSDP) makes all these APIs available in a single bundle. The Java WSDP
includes JAR files implementing these APIs as well as documentation and

WHAT IS XML? 3

examples. The examples in the Java WSDP will run in the Tomcat container
(included in the Java WSDP to help with ease of use), as well as in a Web con-
tainer in a J2EE server once the Java WSDP JAR files are installed in the J2EE
server, such as the Sun™ ONE Application Server (S1AS). Instructions on how
to install the JAR files on the S1AS7 server are available in the Java WSDP doc-
umentation at <JWSDP_HOME>/docs/jwsdpons1as7.html.

The remainder of this introduction first gives a quick look at XML and how it
makes data portable. Then it gives an overview of the Java APIs for XML,
explaining what they do and how they make writing Web applications easier. It
describes each of the APIs individually and then presents a scenario that illus-
trates how they can work together.

The tutorials that follow give more detailed explanations and walk you through
how to use the Java APIs for XML to build applications for Web services. They
also provide sample applications that you can run.

What Is XML?
The goal of this section is to give you a quick introduction to XML and how it
makes data portable so that you have some background for reading the summa-
ries of the Java APIs for XML that follow. Chapter 1 includes a more thorough
and detailed explanation of XML and how to process it.

XML is an industry-standard, system-independent way of representing data.
Like HTML (HyperText Markup Language), XML encloses data in tags, but
there are significant differences between the two markup languages. First, XML
tags relate to the meaning of the enclosed text, whereas HTML tags specify how
to display the enclosed text. The following XML example shows a price list with
the name and price of two coffees.

<priceList>
<coffee>

<name>Mocha Java</name>
<price>11.95</price>

</coffee>
<coffee>

<name>Sumatra</name>
<price>12.50</price>

</coffee>
</priceList>

4 INTRODUCTION TO WEB SERVICES

The <coffee> and </coffee> tags tell a parser that the information between them
is about a coffee. The two other tags inside the <coffee> tags specify that the
enclosed information is the coffee’s name and its price per pound. Because XML
tags indicate the content and structure of the data they enclose, they make it pos-
sible to do things like archiving and searching.

A second major difference between XML and HTML is that XML is extensible.
With XML, you can write your own tags to describe the content in a particular
type of document. With HTML, you are limited to using only those tags that
have been predefined in the HTML specification. Another aspect of XML’s
extensibility is that you can create a file, called a schema, to describe the struc-
ture of a particular type of XML document. For example, you can write a schema
for a price list that specifies which tags can be used and where they can occur.
Any XML document that follows the constraints established in a schema is said
to conform to that schema.

Probably the most-widely used schema language is still the Document Type Def-
inition (DTD) schema language because it is an integral part of the XML 1.0
specification. A schema written in this language is commonly referred to as a
DTD. The DTD that follows defines the tags used in the price list XML docu-
ment. It specifies four tags (elements) and further specifies which tags may occur
(or are required to occur) in other tags. The DTD also defines the hierarchical
structure of an XML document, including the order in which the tags must occur.

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

The first line in the example gives the highest level element, priceList, which
means that all the other tags in the document will come between the
<priceList> and </priceList> tags. The first line also says that the priceList

element must contain one or more coffee elements (indicated by the plus sign).
The second line specifies that each coffee element must contain both a name ele-
ment and a price element, in that order. The third and fourth lines specify that
the data between the tags <name> and </name> and between <price> and
</price> is character data that should be parsed. The name and price of each
coffee are the actual text that makes up the price list.

Another popular schema language is XML Schema, which is being developed by
the World Wide Web (W3C) consortium. XML Schema is a significantly more
powerful language than DTD, and with its passage into a W3C Recommendation
in May of 2001, its use and implementations have increased. The community of

WHAT MAKES XML PORTABLE? 5

developers using the Java platform has recognized this, and the expert group for
the Java API for XML Processing (JAXP) has been working on adding support
for XML Schema to the JAXP 1.2 specification. This release of the Java Web
Services Developer Pack includes support for XML Schema.

What Makes XML Portable?
A schema gives XML data its portability. The priceList DTD, discussed previ-
ously, is a simple example of a schema. If an application is sent a priceList doc-
ument in XML format and has the priceList DTD, it can process the document
according to the rules specified in the DTD. For example, given the priceList

DTD, a parser will know the structure and type of content for any XML docu-
ment based on that DTD. If the parser is a validating parser, it will know that the
document is not valid if it contains an element not included in the DTD, such as
the element <tea>, or if the elements are not in the prescribed order, such as hav-
ing the price element precede the name element.

Other features also contribute to the popularity of XML as a method for data
interchange. For one thing, it is written in a text format, which is readable by
both human beings and text-editing software. Applications can parse and process
XML documents, and human beings can also read them in case there is an error
in processing. Another feature is that because an XML document does not
include formatting instructions, it can be displayed in various ways. Keeping
data separate from formatting instructions means that the same data can be pub-
lished to different media.

XML enables document portability, but it cannot do the job in a vacuum; that is,
parties who use XML must agree to certain conditions. For example, in addition
to agreeing to use XML for communicating, two applications must agree on the
set of elements they will use and what those elements mean. For them to use
Web services, they must also agree on which Web services methods they will
use, what those methods do, and the order in which they are invoked when more
than one method is needed.

Enterprises have several technologies available to help satisfy these require-
ments. They can use DTDs and XML schemas to describe the valid terms and
XML documents they will use in communicating with each other. Registries pro-
vide a means for describing Web services and their methods. For higher level
concepts, enterprises can use partner agreements and workflow charts and chore-
ographies. There will be more about schemas and registries later in this docu-
ment.

6 INTRODUCTION TO WEB SERVICES

Overview of the Java APIs for XML
The Java APIs for XML let you write your Web applications entirely in the Java
programming language. They fall into two broad categories: those that deal
directly with processing XML documents and those that deal with procedures.

• Document-oriented

• Java API for XML Processing (JAXP) — processes XML documents
using various parsers

• Java Architecture for XML Binding (JAXB) — processes XML docu-
ments using schema-derived JavaBeans™ component classes

• Procedure-oriented

• Java API for XML-based RPC (JAX-RPC) — sends SOAP method calls
to remote parties over the Internet and receives the results

• Java API for XML Messaging (JAXM) — sends SOAP messages over
the Internet in a standard way

• Java API for XML Registries (JAXR) — provides a standard way to
access business registries and share information

Perhaps the most important feature of the Java APIs for XML is that they all sup-
port industry standards, thus ensuring interoperability. Various network interop-
erability standards groups, such as the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured Information Standards
(OASIS), have been defining standard ways of doing things so that businesses
who follow these standards can make their data and applications work together.

Another feature of the Java APIs for XML is that they allow a great deal of flex-
ibility. Users have flexibility in how they use the APIs. For example, JAXP code
can use various tools for processing an XML document, and JAXM code can use
various messaging protocols on top of SOAP. Implementers have flexibility as
well. The Java APIs for XML define strict compatibility requirements to ensure
that all implementations deliver the standard functionality, but they also give
developers a great deal of freedom to provide implementations tailored to spe-
cific uses.

The following sections discuss each of these APIs, giving an overview and a feel
for how to use them.

JAXP 7

JAXP
The Java API for XML Processing (page 115) (JAXP) makes it easy to process
XML data using applications written in the Java programming language. JAXP
leverages the parser standards SAX (Simple API for XML Parsing) and DOM
(Document Object Model) so that you can choose to parse your data as a stream
of events or to build a tree-structured representation of it. The latest versions of
JAXP also support the XSLT (XML Stylesheet Language Transformations) stan-
dard, giving you control over the presentation of the data and enabling you to
convert the data to other XML documents or to other formats, such as HTML.
JAXP also provides namespace support, allowing you to work with schemas that
might otherwise have naming conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which allows you to plug in an implementation of the SAX or DOM APIs. The
pluggability layer also allows you to plug in an XSL processor, which lets you
transform your XML data in a variety of ways, including the way it is displayed.

JAXP 1.2.2, which includes support for XML Schema, is in the Java WSDP.

The SAX API
The Simple API for XML (page 125) (SAX) defines an API for an event-based
parser. Being event-based means that the parser reads an XML document from
beginning to end, and each time it recognizes a syntax construction, it notifies
the application that is running it. The SAX parser notifies the application by call-
ing methods from the ContentHandler interface. For example, when the parser
comes to a less than symbol (“<”), it calls the startElement method; when it
comes to character data, it calls the characters method; when it comes to the
less than symbol followed by a slash (“</”), it calls the endElement method, and
so on. To illustrate, let’s look at part of the example XML document from the
first section and walk through what the parser does for each line. (For simplicity,
calls to the method ignorableWhiteSpace are not included.)

<priceList> [parser calls startElement]
<coffee> [parser calls startElement]

<name>Mocha Java</name> [parser calls startElement,
characters, and endElement]

<price>11.95</price> [parser calls startElement,
characters, and endElement]

</coffee> [parser calls endElement]

8 INTRODUCTION TO WEB SERVICES

The default implementations of the methods that the parser calls do nothing, so
you need to write a subclass implementing the appropriate methods to get the
functionality you want. For example, suppose you want to get the price per
pound for Mocha Java. You would write a class extending DefaultHandler (the
default implementation of ContentHandler) in which you write your own imple-
mentations of the methods startElement and characters.

You first need to create a SAXParser object from a SAXParserFactory object. You
would call the method parse on it, passing it the price list and an instance of
your new handler class (with its new implementations of the methods startEle-
ment and characters). In this example, the price list is a file, but the parse

method can also take a variety of other input sources, including an InputStream

object, a URL, and an InputSource object.

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();
saxParser.parse("priceList.xml", handler);

The result of calling the method parse depends, of course, on how the methods
in handler were implemented. The SAX parser will go through the file
priceList.xml line by line, calling the appropriate methods. In addition to the
methods already mentioned, the parser will call other methods such as start-

Document, endDocument, ignorableWhiteSpace, and processingInstructions,
but these methods still have their default implementations and thus do nothing.

The following method definitions show one way to implement the methods
characters and startElement so that they find the price for Mocha Java and
print it out. Because of the way the SAX parser works, these two methods work
together to look for the name element, the characters “Mocha Java”, and the
price element immediately following Mocha Java. These methods use three
flags to keep track of which conditions have been met. Note that the SAX parser
will have to invoke both methods more than once before the conditions for print-
ing the price are met.

public void startElement(..., String elementName, ...){
if(elementName.equals("name")){

inName = true;
} else if(elementName.equals("price") && inMochaJava){

THE SAX API 9

inPrice = true;
inName = false;

}
}

public void characters(char [] buf, int offset, int len) {
String s = new String(buf, offset, len);
if (inName && s.equals("Mocha Java")) {

inMochaJava = true;
inName = false;

} else if (inPrice) {
System.out.println("The price of Mocha Java is: " + s);
inMochaJava = false;
inPrice = false;
}

}
}

Once the parser has come to the Mocha Java coffee element, here is the relevant
state after the following method calls:

next invocation of startElement -- inName is true

next invocation of characters -- inMochaJava is true

next invocation of startElement -- inPrice is true

next invocation of characters -- prints price

The SAX parser can perform validation while it is parsing XML data, which
means that it checks that the data follows the rules specified in the XML docu-
ment’s schema. A SAX parser will be validating if it is created by a SAX-

ParserFactory object that has had validation turned on. This is done for the
SAXParserFactory object factory in the following line of code.

factory.setValidating(true);

So that the parser knows which schema to use for validation, the XML document
must refer to the schema in its DOCTYPE declaration. The schema for the price list
is priceList.DTD, so the DOCTYPE declaration should be similar to this:

<!DOCTYPE PriceList SYSTEM "priceList.DTD">

10 INTRODUCTION TO WEB SERVICES

The DOM API
The Document Object Model (page 211) (DOM), defined by the W3C DOM
Working Group, is a set of interfaces for building an object representation, in the
form of a tree, of a parsed XML document. Once you build the DOM, you can
manipulate it with DOM methods such as insert and remove, just as you would
manipulate any other tree data structure. Thus, unlike a SAX parser, a DOM
parser allows random access to particular pieces of data in an XML document.
Another difference is that with a SAX parser, you can only read an XML docu-
ment, but with a DOM parser, you can build an object representation of the doc-
ument and manipulate it in memory, adding a new element or deleting an
existing one.

In the previous example, we used a SAX parser to look for just one piece of data
in a document. Using a DOM parser would have required having the whole doc-
ument object model in memory, which is generally less efficient for searches
involving just a few items, especially if the document is large. In the next exam-
ple, we add a new coffee to the price list using a DOM parser. We cannot use a
SAX parser for modifying the price list because it only reads data.

Let’s suppose that you want to add Kona coffee to the price list. You would read
the XML price list file into a DOM and then insert the new coffee element, with
its name and price. The following code fragment creates a DocumentBuilderFac-

tory object, which is then used to create the DocumentBuilder object builder.
The code then calls the parse method on builder, passing it the file
priceList.xml.

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse("priceList.xml");

At this point, document is a DOM representation of the price list sitting in mem-
ory. The following code fragment adds a new coffee (with the name “Kona” and
a price of “13.50”) to the price list document. Because we want to add the new
coffee right before the coffee whose name is “Mocha Java”, the first step is to get
a list of the coffee elements and iterate through the list to find “Mocha Java”.
Using the Node interface included in the org.w3c.dom package, the code then cre-
ates a Node object for the new coffee element and also new nodes for the name
and price elements. The name and price elements contain character data, so the

THE DOM API 11

code creates a Text object for each of them and appends the text nodes to the
nodes representing the name and price elements.

Node rootNode = document.getDocumentElement();
NodeList list = document.getElementsByTagName("coffee");

// Loop through the list.
for (int i=0; i < list.getLength(); i++) {

thisCoffeeNode = list.item(i);
Node thisNameNode = thisCoffeeNode.getFirstChild();
if (thisNameNode == null) continue;
if (thisNameNode.getFirstChild() == null) continue;
if (! thisNameNode.getFirstChild() instanceof

org.w3c.dom.Text) continue;

String data = thisNameNode.getFirstChild().getNodeValue();
if (! data.equals("Mocha Java")) continue;

//We’re at the Mocha Java node. Create and insert the new
//element.

Node newCoffeeNode = document.createElement("coffee");

Node newNameNode = document.createElement("name");
Text tnNode = document.createTextNode("Kona");
newNameNode.appendChild(tnNode);

Node newPriceNode = document.createElement("price");
Text tpNode = document.createTextNode("13.50");
newPriceNode.appendChild(tpNode);

newCoffeeNode.appendChild(newNameNode);
newCoffeeNode.appendChild(newPriceNode);
rootNode.insertBefore(newCoffeeNode, thisCoffeeNode);
break;

}

Note that this code fragment is a simplification in that it assumes that none of the
nodes it accesses will be a comment, an attribute, or ignorable white space. For
information on using DOM to parse more robustly, see Increasing the
Complexity (page 215).

You get a DOM parser that is validating the same way you get a SAX parser that
is validating: You call setValidating(true) on a DOM parser factory before
using it to create your DOM parser, and you make sure that the XML document
being parsed refers to its schema in the DOCTYPE declaration.

12 INTRODUCTION TO WEB SERVICES

XML Namespaces
All the names in a schema, which includes those in a DTD, are unique, thus
avoiding ambiguity. However, if a particular XML document references multiple
schemas, there is a possibility that two or more of them contain the same name.
Therefore, the document needs to specify a namespace for each schema so that
the parser knows which definition to use when it is parsing an instance of a par-
ticular schema.

There is a standard notation for declaring an XML Namespace, which is usually
done in the root element of an XML document. In the following namespace dec-
laration, the notation xmlns identifies nsName as a namespace, and nsName is set
to the URL of the actual namespace:

<priceList xmlns:nsName="myDTD.dtd"
xmlns:otherNsName="myOtherDTD.dtd">

...
</priceList>

Within the document, you can specify which namespace an element belongs to
as follows:

<nsName:price> ...

To make your SAX or DOM parser able to recognize namespaces, you call the
method setNamespaceAware(true) on your ParserFactory instance. After this
method call, any parser that the parser factory creates will be namespace aware.

The XSLT API
XML Stylesheet Language for Transformations (page 289) (XSLT), defined by
the W3C XSL Working Group, describes a language for transforming XML doc-
uments into other XML documents or into other formats. To perform the trans-
formation, you usually need to supply a style sheet, which is written in the XML
Stylesheet Language (XSL). The XSL style sheet specifies how the XML data
will be displayed, and XSLT uses the formatting instructions in the style sheet to
perform the transformation.

JAXP supports XSLT with the javax.xml.transform package, which allows you
to plug in an XSLT transformer to perform transformations. The subpackages
have SAX-, DOM-, and stream-specific APIs that allow you to perform transfor-
mations directly from DOM trees and SAX events. The following two examples

THE XSLT API 13

illustrate how to create an XML document from a DOM tree and how to trans-
form the resulting XML document into HTML using an XSL style sheet.

Transforming a DOM Tree to an XML
Document
To transform the DOM tree created in the previous section to an XML document,
the following code fragment first creates a Transformer object that will perform
the transformation.

TransformerFactory transFactory =
TransformerFactory.newInstance();

Transformer transformer = transFactory.newTransformer();

Using the DOM tree root node, the following line of code constructs a DOM-

Source object as the source of the transformation.

DOMSource source = new DOMSource(document);

The following code fragment creates a StreamResult object to take the results
of the transformation and transforms the tree into an XML file.

File newXML = new File("newXML.xml");
FileOutputStream os = new FileOutputStream(newXML);
StreamResult result = new StreamResult(os);
transformer.transform(source, result);

Transforming an XML Document to an HTML
Document
You can also use XSLT to convert the new XML document, newXML.xml, to
HTML using a style sheet. When writing a style sheet, you use XML
Namespaces to reference the XSL constructs. For example, each style sheet has a
root element identifying the style sheet language, as shown in the following line
of code.

<xsl:stylesheet version="1.0" xmlns:xsl=
"http://www.w3.org/1999/XSL/Transform">

When referring to a particular construct in the style sheet language, you use the
namespace prefix followed by a colon and the particular construct to apply. For

14 INTRODUCTION TO WEB SERVICES

example, the following piece of style sheet indicates that the name data must be
inserted into a row of an HTML table.

<xsl:template match="name">
<tr><td>

<xsl:apply-templates/>
</td></tr>

</xsl:template>

The following style sheet specifies that the XML data is converted to HTML and
that the coffee entries are inserted into a row in a table.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="priceList">
<html><head>Coffee Prices</head>

<body>
<table>

<xsl:apply-templates />
</table>

</body>
</html>

</xsl:template>
<xsl:template match="name">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>
<xsl:template match="price">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>

</xsl:stylesheet>

To perform the transformation, you need to obtain an XSLT transformer and use
it to apply the style sheet to the XML data. The following code fragment obtains
a transformer by instantiating a TransformerFactory object, reading in the
style sheet and XML files, creating a file for the HTML output, and then finally
obtaining the Transformer object transformer from the TransformerFactory

object tFactory.

TransformerFactory tFactory =
TransformerFactory.newInstance();

String stylesheet = "prices.xsl";
String sourceId = "newXML.xml";

JAXB 15

File pricesHTML = new File("pricesHTML.html");
FileOutputStream os = new FileOutputStream(pricesHTML);
Transformer transformer =

tFactory.newTransformer(new StreamSource(stylesheet));

The transformation is accomplished by invoking the transform method, passing
it the data and the output stream.

transformer.transform(
new StreamSource(sourceId), new StreamResult(os));

JAXB
The Java Architecture for XML Binding (JAXB) is a Java technology that
enables you to generate Java classes from XML schemas. As part of this process,
the JAXB technology also provides methods for unmarshalling an XML
instance document into a content tree of Java objects, and then marshalling the
content tree back into an XML document. JAXB provides a fast and convenient
way to bind an XML schemas to a representation in Java code, making it easy for
Java developers to incorporate XML data and processing functions in Java appli-
cations without having to know much about XML itself.

One benefit of the JAXB technology is that it hides the details and gets rid of the
extraneous relationships in SAX and DOM—generated JAXB classes describe
only the relationships actually defined in the source schemas. The result is highly
portable XML data joined with highly portable Java code that can be used to cre-
ate flexible, lightweight applications and Web services.

See Chapter 9 for a description of the JAXB architecture, functions, and core
concepts and then see Chapter 10, which provides sample code and step-by-step
procedures for using the JAXB technology.

16 INTRODUCTION TO WEB SERVICES

JAXB Binding Process
Figure 1–1 shows the JAXB data binding process.

Figure 1–1 Data Binding Process

The JAXB data binding process involves the following steps:

1. Generate classes from a source XML schema, and then compile the gener-
ated classes.

2. Unmarshal XML documents conforming to the schema. Unmarshalling
generates a content tree of data objects instantiated from the schema-
derived JAXB classes; this content tree represents the structure and content
of the source XML documents.

3. Unmarshalling optionally involves validation of the source XML docu-
ments before generating the content tree. If your application modifies the
content tree, you can also use the validate operation to validate the changes
before marshalling the content back to an XML document.

4. The client application can modify the XML data represented by a content
tree by means of interfaces generated by the binding compiler.

5. The processed content tree is marshalled out to one or more XML output
documents.

XML
Document

Schema

validate
follows

compile

unmarshal

marshal

Derived
Classes

Instances of

Objects

VALIDATION 17

Validation
There are two types of validation that a JAXB client can perform:

• Unmarshal-Time – Enables a client application to receive information
about validation errors and warnings detected while unmarshalling XML
data into a content tree, and is completely orthogonal to the other types of
validation.

• On-Demand – Enables a client application to receive information about
validation errors and warnings detected in the content tree. At any point,
client applications can call the Validator.validate method on the con-
tent tree (or any sub-tree of it).

Representing XML Content
Representing XML content as Java objects involves two kinds of mappings:
binding XML names to Java identifiers, and representing XML schemas as sets
of Java classes.

XML schema languages use XML names to label schema components, however
this set of strings is much larger than the set of valid Java class, method, and con-
stant identifiers. To resolve this discrepancy, the JAXB technology uses several
name-mapping algorithms. Specifically, the name-mapping algorithm maps
XML names to Java identifiers in a way that adheres to standard Java API design
guidelines, generates identifiers that retain obvious connections to the corre-
sponding schema, and is unlikely to result in many collisions.

Customizing JAXB Bindings
The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. JAXB uses default
binding rules that can be customized by means of binding declarations that can
either be inlined or external to an XML Schema. Custom JAXB binding declara-
tions also allow you to customize your generated JAXB classes beyond the
XML-specific constraints in an XML schema to include Java specific refine-
ments such as class and package name mappings.

18 INTRODUCTION TO WEB SERVICES

Example
The following table illustrates some default XML Schema-to-JAXB bindings.

Table 1–1 Schema to JAXB Bindings

XML Schema Java Class Files

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder"
 type="PurchaseOrderType"/>

PurchaseOrder.java

<xsd:element name="comment" type="xsd:string"/> Comment.java

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAd-
dress"/>
 <xsd:element name="billTo" type="USAd-
dress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate"
type="xsd:date"/>
</xsd:complexType>

PurchaseOrder-
Type.java

<xsd:complexType name="USAddress">
 <xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street"
type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state"
type="xsd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country"

type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

</xsd:schema>

EXAMPLE 19

Schema-derived Class for USAddress.java
Only a portion of the schema-derived code is shown, for brevity. The following
code shows the schema-derived class for the schema’s complex type USAddress.

public interface USAddress {
String getName(); void setName(String);
String getStreet(); void setStreet(String);
String getCity(); void setCity(String);
String getState(); void setState(String);
int getZip(); void setZip(int);
static final String COUNTRY=”USA”;

};

Unmarshalling XML Content
To unmarshal XML content into a content tree of data objects, you first create a
JAXBContext instance for handling schema-derived classes, then create an
Unmarshaller instance, and then finally unmarshal the XML content. For exam-
ple, if the generated classes are in a package named primer.po and the XML
content is in a file named po.xml:

JAXBContext jc = JAXBContext.newInstance("primer.po");
Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"
));

To enable unmarshal-time validation, you create the Unmarshaller instance nor-
mally, as shown above, and then enable the ValidationEventHandler:

u.setValidating(true);

The default configuration causes the unmarshal operation to fail upon encounter-
ing the first validation error. The default validation event handler processes a val-
idation error, generates output to system.out, and then throws an exception:

} catch(UnmarshalException ue) {
System.out.println("Caught UnmarshalException");
 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();

20 INTRODUCTION TO WEB SERVICES

Modifying the Content Tree
Use the schema-derived JavaBeans component set and get methods to manipu-
late the data in the content tree.

USAddress address = po.getBillTo();
address.setName("John Bob");
address.setStreet("242 Main Street");
address.setCity("Beverly Hills");
address.setState("CA");
address.setZip(90210);

Validating the Content Tree
After the application modifies the content tree, it can verify that the content tree
is still valid by calling the Validator.validate method on the content tree (or
any subtree of it). This operation is called on-demand validation.

try{
Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
...

} catch(ValidationException ue) {
System.out.println("Caught ValidationException");
...

}

Marshalling XML Content
Finally, to marshal a content tree to XML format, create a Marshaller instance,
and then marshal the XML content:

Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,Boolean.TRUE);
m.marshal(po, System.out);

JAX-RPC
The Java API for XML-based RPC (JAX-RPC) is the Java API for developing
and using Web services. See Chapter 11 for more information about JAX-RPC
and learn how to build a simple Web service and client.

OVERVIEW OF JAX-RPC 21

Overview of JAX-RPC
An RPC-based Web service is a collection of procedures that can be called by a
remote client over the Internet. For example, a typical RPC-based Web service is
a stock quote service that takes a SOAP (Simple Object Access Protocol) request
for the price of a specified stock and returns the price via SOAP.

Note: The SOAP 1.1 specification, available from http://www.w3.org/, defines
a framework for the exchange of XML documents. It specifies, among other things,
what is required and optional in a SOAP message and how data can be encoded and
transmitted. JAX-RPC and JAXM are both based on SOAP.

A Web service, a server application that implements the procedures that are
available for clients to call, is deployed on a server-side container. The container
can be a servlet container such as Tomcat or a Web container in a Java 2 Plat-
form, Enterprise Edition (J2EE) server.

A Web service can make itself available to potential clients by describing itself
in a Web Services Description Language (WSDL) document. A WSDL descrip-
tion is an XML document that gives all the pertinent information about a Web
service, including its name, the operations that can be called on it, the parameters
for those operations, and the location of where to send requests. A consumer
(Web client) can use the WSDL document to discover what the service offers
and how to access it. How a developer can use a WSDL document in the creation
of a Web service is discussed later.

Interoperability
Perhaps the most important requirement for a Web service is that it be interoper-
able across clients and servers. With JAX-RPC, a client written in a language
other than the Java programming language can access a Web service developed
and deployed on the Java platform. Conversely, a client written in the Java pro-
gramming language can communicate with a service that was developed and
deployed using some other platform.

What makes this interoperability possible is JAX-RPC’s support for SOAP and
WSDL. SOAP defines standards for XML messaging and the mapping of data
types so that applications adhering to these standards can communicate with
each other. JAX-RPC adheres to SOAP standards, and is, in fact, based on SOAP
messaging. That is, a JAX-RPC remote procedure call is implemented as a
request-response SOAP message.

22 INTRODUCTION TO WEB SERVICES

The other key to interoperability is JAX-RPC’s support for WSDL. A WSDL
description, being an XML document that describes a Web service in a standard
way, makes the description portable. WSDL documents and their uses will be
discussed more later.

Ease of Use
Given the fact that JAX-RPC is based on a remote procedure call (RPC) mecha-
nism, it is remarkably developer friendly. RPC involves a lot of complicated
infrastructure, or “plumbing,” but JAX-RPC mercifully makes the underlying
implementation details invisible to both the client and service developer. For
example, a Web services client simply makes Java method calls, and all the inter-
nal marshalling, unmarshalling, and transmission details are taken care of auto-
matically. On the server side, the Web service simply implements the services it
offers and, like the client, does not need to bother with the underlying implemen-
tation mechanisms.

Largely because of its ease of use, JAX-RPC is the main Web services API for
both client and server applications. JAX-RPC focuses on point-to-point SOAP
messaging, the basic mechanism that most clients of Web services use. Although
it can provide asynchronous messaging and can be extended to provide higher
quality support, JAX-RPC concentrates on being easy to use for the most com-
mon tasks. Thus, JAX-RPC is a good choice for applications that wish to avoid
the more complex aspects of SOAP messaging and for those that find communi-
cation using the RPC model a good fit. The more heavy-duty alternative for
SOAP messaging, the Java API for XML Messaging (JAXM), is discussed later
in this introduction.

Advanced Features
Although JAX-RPC is based on the RPC model, it offers features that go beyond
basic RPC. For one thing, it is possible to send complete documents and also
document fragments. In addition, JAX-RPC supports SOAP message handlers,
which make it possible to send a wide variety of messages. And JAX-RPC can
be extended to do one-way messaging in addition to the request-response style of
messaging normally done with RPC. Another advanced feature is extensible type
mapping, which gives JAX-RPC still more flexibility in what can be sent.

USING JAX-RPC 23

Using JAX-RPC
In a typical scenario, a business might want to order parts or merchandise. It is
free to locate potential sources however it wants, but a convenient way is through
a business registry and repository service such as a Universal Description, Dis-
covery and Integration (UDDI) registry. Note that the Java API for XML Regis-
tries (JAXR), which is discussed later in this introduction, offers an easy way to
search for Web services in a business registry and repository. Web services gen-
erally register themselves with a business registry and store relevant documents,
including their WSDL descriptions, in its repository.

After searching a business registry for potential sources, the business might get
several WSDL documents, one for each of the Web services that meets its search
criteria. The business client can use these WSDL documents to see what the ser-
vices offer and how to contact them.

Another important use for a WSDL document is as a basis for creating stubs, the
low-level classes that are needed by a client to communicate with a remote ser-
vice. In the JAX-RPC implementation, the tool that uses a WSDL document to
generate stubs is called wscompile.

The JAX-RPC implementation has another tool, called wsdeploy, that creates
ties, the low-level classes that the server needs to communicate with a remote
client. Stubs and ties, then, perform analogous functions, stubs on the client side
and ties on the server side. And in addition to generating ties, wsdeploy can be
used to create WSDL documents.

A JAX-RPC runtime system, such as the one included in the JAX-RPC imple-
mentation, uses the stubs and ties created by wscompile and wsdeploy behind
the scenes. It first converts the client’s remote method call into a SOAP message
and sends it to the service as an HTTP request. On the server side, the JAX-RPC
runtime system receives the request, translates the SOAP message into a method
call, and invokes it. After the Web service has processed the request, the runtime
system goes through a similar set of steps to return the result to the client. The
point to remember is that as complex as the implementation details of communi-
cation between the client and server may be, they are invisible to both Web ser-
vices and their clients.

Creating a Web Service
Developing a Web service using JAX-RPC is surprisingly easy. The service itself
is basically two files, an interface that declares the service’s remote procedures

24 INTRODUCTION TO WEB SERVICES

and a class that implements those procedures. There is a little more to it, in that
the service needs to be configured and deployed, but first, let’s take a look at the
two main components of a Web service, the interface definition and its imple-
mentation class.

The following interface definition is a simple example showing the methods a
wholesale coffee distributor might want to make available to its prospective cus-
tomers. Note that a service definition interface extends java.rmi.Remote and its
methods throw a java.rmi.RemoteException object.

package coffees;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface CoffeeOrderIF extends Remote {
public Coffee [] getPriceList()

throws RemoteException;
public String orderCoffee(String coffeeName, int quantity)

throws RemoteException;
}

The method getPriceList returns an array of Coffee objects, each of which
contains a name field and a price field. There is one Coffee object for each of
the coffees the distributor currently has for sale. The method orderCoffee

returns a String that might confirm the order or state that it is on back order.

The following example shows what the implementation might look like (with
implementation details omitted). Presumably, the method getPriceList will
query the company’s database to get the current information and return the result
as an array of Coffee objects. The second method, orderCoffee, will also need
to query the database to see if the particular coffee specified is available in the
quantity ordered. If so, the implementation will set the internal order process in
motion and send a reply informing the customer that the order will be filled. If
the quantity ordered is not available, the implementation might place its own

CREATING A WEB SERVICE 25

order to replenish its supply and notify the customer that the coffee is backor-
dered.

package coffees;

public class CoffeeOrderImpl implements CoffeeOrderIF {
public Coffee [] getPriceList() throws RemoteException; {

. . .
}

public String orderCoffee(String coffeeName, int quantity)
throws RemoteException; {

. . .
}

}

After writing the service’s interface and implementation class, the developer’s
next step is to run the mapping tool. The tool can use the interface and its imple-
mentation as a basis for generating the stub and tie classes plus other classes as
necessary. And, as noted before, the developer can also use the tool to create the
WSDL description for the service.

The final steps in creating a Web service are packaging and deployment. Packag-
ing a Web service definition is done via a Web application archive (WAR). A WAR

file is a JAR file for Web applications, that is, a file that contains all the files
needed for the Web application in compressed form. For example, the CoffeeOr-
der service could be packaged in the file jaxrpc-coffees.war, which makes it
easy to distribute and install.

One file that must be in every WAR file is an XML file called a deployment
descriptor. This file, by convention named web.xml, contains information
needed for deploying a service definition. For example, if it is being deployed on
a servlet engine such as Tomcat, the deployment descriptor will include the serv-
let name and description, the servlet class, initialization parameters, and other
startup information. One of the files referenced in a web.xml file is a configura-
tion file that is automatically generated by the mapping tool. In our example, this
file would be called CoffeeOrder_Config.properties.

Deploying our CoffeeOrder Web service example in a Tomcat container can be
accomplished by simply copying the jaxrpc-coffees.war file to Tomcat’s
webapps directory. Deployment in a J2EE server is facilitated by using the
deployment tools supplied by application server vendors.

26 INTRODUCTION TO WEB SERVICES

Coding a Client
Writing the client application for a Web service entails simply writing code that
invokes the desired method. Of course, much more is required to build the
remote method call and transmit it to the Web service, but that is all done behind
the scenes and is invisible to the client.

The following class definition is an example of a Web services client. It creates
an instance of CoffeeOrderIF and uses it to call the method getPriceList.
Then it accesses the price and name fields of each Coffee object in the array
returned by the method getPriceList in order to print them out.

The class CoffeeOrderServiceImpl is one of the classes generated by the map-
ping tool. It is a stub factory whose only method is getCoffeeOrderIF; in other
words, its whole purpose is to create instances of CoffeeOrderIF. The instances
of CoffeeOrderIF that are created by CoffeeOrderServiceImpl are client side
stubs that can be used to invoke methods defined in the interface CoffeeOr-

derIF. Thus, the variable coffeeOrder represents a client stub that can be used
to call getPriceList, one of the methods defined in CoffeeOrderIF.

The method getPriceList will block until it has received a response and
returned it. Because a WSDL document is being used, the JAX-RPC runtime
will get the service endpoint from it. Thus, in this case, the client class does not
need to specify the destination for the remote procedure call. When the service
endpoint does need to be given, it can be supplied as an argument on the com-
mand line. Here is what a client class might look like:

package coffees;

public class CoffeeClient {
public static void main(String[] args) {

try {
CoffeeOrderIF coffeeOrder = new

 CoffeeOrderServiceImpl().getCoffeeOrderIF();
Coffee [] priceList =

coffeeOrder.getPriceList():
for (int i = 0; i < priceList.length; i++) {

System.out.print(priceList[i].getName() + " ");
System.out.println(priceList[i].getPrice());

}
} catch (Exception ex) {
ex.printStackTrace();
}

}
}

INVOKING A REMOTE METHOD 27

Invoking a Remote Method
Once a client has discovered a Web service, it can invoke one of the service’s
methods. The following example makes the remote method call getPriceList,
which takes no arguments. As noted previously, the JAX-RPC runtime can deter-
mine the endpoint for the CoffeeOrder service (which is its URI) from its WSDL
description. If a WSDL document had not been used, you would need to supply
the service’s URI as a command line argument. After you have compiled the file
CoffeeClient.java, here is all you need to type at the command line to invoke
its getPriceList method.

java coffees.CoffeeClient

The remote procedure call made by the previous line of code is a static method
call. In other words, the RPC was determined at compile time. It should be noted
that with JAX-RPC, it is also possible to call a remote method dynamically at
run time. This can be done using either the Dynamic Invocation Interface (DII)
or a dynamic proxy.

JAXM
The Java API for XML Messaging (JAXM) provides a standard way to send
XML documents over the Internet from the Java platform. It is based on the
SOAP 1.1 and SOAP with Attachments specifications, which define a basic
framework for exchanging XML messages. JAXM can be extended to work with
higher level messaging protocols, such as the one defined in the ebXML (elec-
tronic business XML) Message Service Specification, by adding the protocol’s
functionality on top of SOAP.

Note: The ebXML Message Service Specification is available from
http://www.oasis-open.org/committees/ebxml-msg/. Among other
things, it provides a more secure means of sending business messages over the
Internet than the SOAP specifications do.

See Chapter 12 to see how to use the JAXM API, then run the sample JAXM
applications that are included with the Java WSDP.

Typically, a business uses a messaging provider service, which does the behind-
the-scenes work required to transport and route messages. When a messaging
provider is used, all JAXM messages go through it, so when a business sends a

28 INTRODUCTION TO WEB SERVICES

message, the message first goes to the sender’s messaging provider, then to the
recipient’s messaging provider, and finally to the intended recipient. It is also
possible to route a message to go to intermediate recipients before it goes to the
ultimate destination.

Because messages go through it, a messaging provider can take care of house-
keeping details like assigning message identifiers, storing messages, and keeping
track of whether a message has been delivered before. A messaging provider can
also try resending a message that did not reach its destination on the first attempt
at delivery. The beauty of a messaging provider is that the client using JAXM
technology (“JAXM client”) is totally unaware of what the provider is doing in
the background. The JAXM client simply makes Java method calls, and the mes-
saging provider in conjunction with the messaging infrastructure makes every-
thing happen behind the scenes.

Though in the typical scenario a business uses a messaging provider, it is also
possible to do JAXM messaging without using a messaging provider. In this
case, the JAXM client (called a standalone client) is limited to sending point-to-
point messages directly to a Web service that is implemented for request-
response messaging. Request-response messaging is synchronous, meaning that
a request is sent and its response is received in the same operation. A request-
response message is sent over a SOAPConnection object via the method SOAP-

Connection.call, which sends the message and blocks until it receives a
response. A standalone client can operate only in a client role, that is, it can only
send requests and receive their responses. In contrast, a JAXM client that uses a
messaging provider may act in either the client or server (service) role. In the cli-
ent role, it can send requests; in the server role, it can receive requests, process
them, and send responses.

Though it is not required, JAXM messaging usually takes place within a con-
tainer, such as a servlet container. A Web service that uses a messaging provider
and is deployed in a container has the capability of doing one-way messaging,
meaning that it can receive a request as a one-way message and can return a
response some time later as another one-way message.

Because of the features that a messaging provider can supply, JAXM can some-
times be a better choice for SOAP messaging than JAX-RPC. The following list
includes features that JAXM can provide and that RPC, including JAX-RPC,
does not generally provide:

• One-way (asynchronous) messaging

• Routing of a message to more than one party

• Reliable messaging with features such as guaranteed delivery

GETTING A CONNECTION 29

A SOAPMessage object represents an XML document that is a SOAP message. A
SOAPMessage object always has a required SOAP part, and it may also have one
or more attachment parts. The SOAP part must always have a SOAPEnvelope

object, which must in turn always contain a SOAPBody object. The SOAPEnve-

lope object may also contain a SOAPHeader object, to which one or more head-
ers can be added.

The SOAPBody object can hold XML fragments as the content of the message
being sent. If you want to send content that is not in XML format or that is an
entire XML document, your message will need to contain an attachment part in
addition to the SOAP part. There is no limitation on the content in the attach-
ment part, so it can include images or any other kind of content, including XML
fragments and documents.

Getting a Connection
The first thing a JAXM client needs to do is get a connection, either a SOAPCon-

nection object or a ProviderConnection object.

Getting a Point-to-Point Connection
A standalone client is limited to using a SOAPConnection object, which is a
point-to-point connection that goes directly from the sender to the recipient. All
JAXM connections are created by a connection factory. In the case of a SOAPCon-

nection object, the factory is a SOAPConnectionFactory object. A client
obtains the default implementation for SOAPConnectionFactory by calling the
following line of code.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

The client can use factory to create a SOAPConnection object.

SOAPConnection con = factory.createConnection();

Getting a Connection to the Messaging
Provider
In order to use a messaging provider, an application must obtain a ProviderCon-

nection object, which is a connection to the messaging provider rather than to a

30 INTRODUCTION TO WEB SERVICES

specified recipient. There are two ways to get a ProviderConnection object, the
first being similar to the way a standalone client gets a SOAPConnection object.
This way involves obtaining an instance of the default implementation for Pro-
viderConnectionFactory, which is then used to create the connection.

ProviderConnectionFactory pcFactory =
ProviderConnectionFactory.newInstance();

ProviderConnection pcCon = pcFactory.createConnection();

The variable pcCon represents a connection to the default implementation of a
JAXM messaging provider.

The second way to create a ProviderConnection object is to retrieve a Pro-

viderConnectionFactory object that is implemented to create connections to a
specific messaging provider. The following code demonstrates getting such a
ProviderConnectionFactory object and using it to create a connection. The first
two lines use the Java Naming and Directory Interface™ (JNDI) API to retrieve
the appropriate ProviderConnectionFactory object from the naming service
where it has been registered with the name “CoffeeBreakProvider”. When this
logical name is passed as an argument, the method lookup returns the Provider-

ConnectionFactory object to which the logical name was bound. The value
returned is a Java Object, which must be narrowed to a ProviderConnection-

Factory object so that it can be used to create a connection. The third line uses a
JAXM method to actually get the connection.

Context ctx = getInitialContext();
ProviderConnectionFactory pcFactory =
(ProviderConnectionFactory)ctx.lookup("CoffeeBreakProvider");

ProviderConnection con = pcFactory.createConnection();

The ProviderConnection instance con represents a connection to The Coffee
Break’s messaging provider.

Creating a Message
As is true with connections, messages are created by a factory. And similar to the
case with connection factories, MessageFactory objects can be obtained in two
ways. The first way is to get an instance of the default implementation for the

POPULATING A MESSAGE 31

MessageFactory class. This instance can then be used to create a basic SOAPMes-

sage object.

MessageFactory messageFactory = MessageFactory.newInstance();
SOAPMessage m = messageFactory.createMessage();

All of the SOAPMessage objects that messageFactory creates, including m in the
previous line of code, will be basic SOAP messages. This means that they will
have no pre-defined headers.

Part of the flexibility of the JAXM API is that it allows a specific usage of a
SOAP header. For example, protocols such as ebXML can be built on top of
SOAP messaging to provide the implementation of additional headers, thus
enabling additional functionality. This usage of SOAP by a given standards
group or industry is called a profile. (See the JAXM tutorial section
Profiles, page 492 for more information on profiles.)

In the second way to create a MessageFactory object, you use the Provider-

Connection method createMessageFactory and give it a profile. The SOAP-

Message objects produced by the resulting MessageFactory object will support
the specified profile. For example, in the following code fragment, in which
schemaURI is the URI of the schema for the desired profile, m2 will support the
messaging profile that is supplied to createMessageFactory.

MessageFactory messageFactory2 =
con.createMessageFactory(<schemaURI>);

SOAPMessage m2 = messageFactory2.createMessage();

Each of the new SOAPMessage objects m and m2 automatically contains the
required elements SOAPPart, SOAPEnvelope, and SOAPBody, plus the optional
element SOAPHeader (which is included for convenience). The SOAPHeader and
SOAPBody objects are initially empty, and the following sections will illustrate
some of the typical ways to add content.

Populating a Message
Content can be added to the SOAPPart object, to one or more AttachmentPart

objects, or to both parts of a message.

32 INTRODUCTION TO WEB SERVICES

Populating the SOAP Part of a Message
As stated earlier, all messages have a SOAPPart object, which has a SOAPEnve-

lope object containing a SOAPHeader object and a SOAPBody object. One way to
add content to the SOAP part of a message is to create a SOAPHeaderElement

object or a SOAPBodyElement object and add an XML fragment that you build
with the method SOAPElement.addTextNode. The first three lines of the follow-
ing code fragment access the SOAPBody object body, which is used to create a
new SOAPBodyElement object and add it to body. The argument passed to the
createName method is a Name object identifying the SOAPBodyElement being
added. The last line adds the XML string passed to the method addTextNode.

SOAPPart sp = m.getSOAPPart();
SOAPEnvelope envelope = sp.getSOAPEnvelope();
SOAPBody body = envelope.getSOAPBody();
SOAPBodyElement bodyElement = body.addBodyElement(

envelope.createName("text", "hotitems",
"http://hotitems.com/products/gizmo");

bodyElement.addTextNode("some-xml-text");

Another way is to add content to the SOAPPart object by passing it a
javax.xml.transform.Source object, which may be a SAXSource, DOMSource,
or StreamSource object. The Source object contains content for the SOAP part
of the message and also the information needed for it to act as source input. A
StreamSource object will contain the content as an XML document; the SAX-

Source or DOMSource object will contain content and instructions for transform-
ing it into an XML document.

The following code fragments illustrates adding content as a DOMSource object.
The first step is to get the SOAPPart object from the SOAPMessage object. Next
the code uses methods from the JAXP API to build the XML document to be
added. It uses a DocumentBuilderFactory object to get a DocumentBuilder

object. Then it parses the given file to produce the document that will be used to

POPULATING A MESSAGE 33

initialize a new DOMSource object. Finally, the code passes the DOMSource object
domSource to the method SOAPPart.setContent.

SOAPPart soapPart = message.getSOAPPart();

DocumentBuilderFactory dbf=
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("file:///foo.bar/soap.xml");
DOMSource domSource = new DOMSource(doc);

soapPart.setContent(domSource);

Populating the Attachment Part of a Message
A Message object may have no attachment parts, but if it is to contain anything
that is not in XML format, that content must be contained in an attachment part.
There may be any number of attachment parts, and they may contain anything
from plain text to image files. In the following code fragment, the content is an
image in a JPEG file, whose URL is used to initialize the javax.activa-

tion.DataHandler object dh. The Message object m creates the Attachment-

Part object attachPart, which is initialized with the data handler containing
the URL for the image. Finally, the message adds attachPart to itself.

URL url = new URL("http://foo.bar/img.jpg");
DataHandler dh = new DataHandler(url);
AttachmentPart attachPart = m.createAttachmentPart(dh);
m.addAttachmentPart(attachPart);

A SOAPMessage object can also give content to an AttachmentPart object by
passing an Object and its content type to the method createAttachmentPart.

AttachmentPart attachPart =
m.createAttachmentPart("content-string", "text/plain");

m.addAttachmentPart(attachPart);

A third alternative is to create an empty AttachmentPart object and then to pass
the AttachmentPart.setContent method an Object and its content type. In

34 INTRODUCTION TO WEB SERVICES

this code fragment, the Object is a ByteArrayInputStream initialized with a
jpeg image.

AttachmentPart ap = m.createAttachmentPart();
byte[] jpegData = ...;
ap.setContent(new ByteArrayInputStream(jpegData),

"image/jpeg");
m.addAttachmentPart(ap);

Sending a Message
Once you have populated a SOAPMessage object, you are ready to send it. A stan-
dalone client uses the SOAPConnection method call to send a message. This
method sends the message and then blocks until it gets back a response. The
arguments to the method call are the message being sent and a URL object that
contains the URL specifying the endpoint of the receiver. .

SOAPMessage response =
soapConnection.call(message, endpoint);

An application that is using a messaging provider uses the ProviderConnection
method send to send a message. This method sends the message asynchronously,
meaning that it sends the message and returns immediately. The response, if any,
will be sent as a separate operation at a later time. Note that this method takes
only one parameter, the message being sent. The messaging provider will use
header information to determine the destination.

providerConnection.send(message);

JAXR
The Java API for XML Registries (JAXR) provides a convenient way to access
standard business registries over the Internet. Business registries are often
described as electronic yellow pages because they contain listings of businesses
and the products or services the businesses offer. JAXR gives developers writing
applications in the Java programming language a uniform way to use business
registries that are based on open standards (such as ebXML) or industry consor-
tium-led specifications (such as UDDI).

Businesses can register themselves with a registry or discover other businesses
with which they might want to do business. In addition, they can submit material

USING JAXR 35

to be shared and search for material that others have submitted. Standards groups
have developed schemas for particular kinds of XML documents, and two busi-
nesses might, for example, agree to use the schema for their industry’s standard
purchase order form. Because the schema is stored in a standard business regis-
try, both parties can use JAXR to access it.

Registries are becoming an increasingly important component of Web services
because they allow businesses to collaborate with each other dynamically in a
loosely coupled way. Accordingly, the need for JAXR, which enables enterprises
to access standard business registries from the Java programming language, is
also growing.

See Chapter 13 for additional information about the JAXR technology, including
instructions for implementing a JAXR client to publish an organization and its
web services to a registry and to query a registry to find organizations and ser-
vices. The chapter also explains how to run the examples that are provided with
this tutorial.

Using JAXR
The following sections give examples of two of the typical ways a business reg-
istry is used. They are meant to give you an idea of how to use JAXR rather than
to be complete or exhaustive.

Registering a Business
An organization that uses the Java platform for its electronic business would use
JAXR to register itself in a standard registry. It would supply its name, a descrip-
tion of itself, and some classification concepts to facilitate searching for it. This
is shown in the following code fragment, which first creates the RegistrySer-

vice object rs and then uses it to create the BusinessLifeCycleManager object
lcm and the BusinessQueryManager object bqm. The business, a chain of coffee
houses called The Coffee Break, is represented by the Organization object org,
to which The Coffee Break adds its name, a description of itself, and its classifi-
cation within the North American Industry Classification System (NAICS).
Then org, which now contains the properties and classifications for The Coffee

36 INTRODUCTION TO WEB SERVICES

Break, is added to the Collection object orgs. Finally, orgs is saved by lcm,
which will manage the life cycle of the Organization objects contained in orgs.

RegistryService rs = connection.getRegistryService();

BusinessLifeCycleManager lcm =
rs.getBusinessLifeCycleManager();

BusinessQueryManager bqm =
rs.getBusinessQueryManager();

Organization org = lcm.createOrganization("The Coffee Break");
org.setDescription(

"Purveyor of only the finest coffees. Established 1895");

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName("ntis-gov:naics");

Classification classification =
(Classification)lcm.createClassification(cScheme,
"Snack and Nonalcoholic Beverage Bars", "722213");

Collection classifications = new ArrayList();
classifications.add(classification);

org.addClassifications(classifications);
Collection orgs = new ArrayList();
orgs.add(org);
lcm.saveOrganizations(orgs);

Searching a Registry
A business can also use JAXR to search a registry for other businesses. The fol-
lowing code fragment uses the BusinessQueryManager object bqm to search for
The Coffee Break. Before bqm can invoke the method findOrganizations, the
code needs to define the search criteria to be used. In this case, three of the possi-
ble six search parameters are supplied to findOrganizations; because null is
supplied for the third, fifth, and sixth parameters, those criteria are not used to
limit the search. The first, second, and fourth arguments are all Collection

objects, with findQualifiers and namePatterns being defined here. The only
element in findQualifiers is a String specifying that no organization be
returned unless its name is a case-sensitive match to one of the names in the
namePatterns parameter. This parameter, which is also a Collection object
with only one element, says that businesses with “Coffee” in their names are a
match. The other Collection object is classifications, which was defined

SAMPLE SCENARIO 37

when The Coffee Break registered itself. The previous code fragment, in which
the industry for The Coffee Break was provided, is an example of defining clas-
sifications.

BusinessQueryManager bqm = rs.getBusinessQueryManager();

//Define find qualifiers
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArrayList();
namePatterns.add("%Coffee%"); // Find orgs with name containing
//’Coffee’

//Find using only the name and the classifications
BulkResponse response = bqm.findOrganizations(findQualifiers,

namePatterns, null, classifications, null, null);
Collection orgs = response.getCollection();

JAXR also supports using an SQL query to search a registry. This is done using a
DeclarativeQueryManager object, as the following code fragment demon-
strates.

DeclarativeQueryManager dqm = rs.getDeclarativeQueryManager();
Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,
"SELECT id FROM RegistryEntry WHERE name LIKE %Coffee% " +

"AND majorVersion >= 1 AND " +
"(majorVersion >= 2 OR minorVersion >= 3)");

BulkResponse response2 = dqm.executeQuery(query);

The BulkResponse object response2 will contain a value for id (a uuid) for
each entry in RegistryEntry that has “Coffee” in its name and that also has a
version number of 1.3 or greater.

To ensure interoperable communication between a JAXR client and a registry
implementation, the messaging is done using JAXM. This is done completely
behind the scenes, so as a user of JAXR, you are not even aware of it.

Sample Scenario
The following scenario is an example of how the Java APIs for XML might be
used and how they work together. Part of the richness of the Java APIs for XML
is that in many cases they offer alternate ways of doing something and thus let
you tailor your code to meet individual needs. This section will point out some

38 INTRODUCTION TO WEB SERVICES

instances in which an alternate API could have been used and will also give the
reasons why one API or the other might be a better choice.

Scenario
Suppose that the owner of a chain of coffee houses, called The Coffee Break,
wants to expand by selling coffee online. He instructs his business manager to
find some new coffee suppliers, get their wholesale prices, and then arrange for
orders to be placed as the need arises. The Coffee Break can analyze the prices
and decide which new coffees it wants to carry and which companies it wants to
buy them from.

Discovering New Distributors
The business manager assigns the task of finding potential new sources of coffee
to the company’s software engineer. She decides that the best way to locate new
coffee suppliers is to search a Universal Description, Discovery, and Integration
(UDDI) registry, where The Coffee Break has already registered itself.

The engineer uses JAXR to send a query searching for wholesale coffee suppli-
ers. The JAXR implementation uses JAXM behind the scenes to send the query
to the registry, but this is totally transparent to the engineer.

The UDDI registry will receive the query and apply the search criteria transmit-
ted in the JAXR code to the information it has about the organizations registered
with it. When the search is completed, the registry will send back information on
how to contact the wholesale coffee distributors that met the specified criteria.
Although the registry uses JAXM behind the scenes to transmit the information,
the response the engineer gets back is JAXR code.

Requesting Price Lists
The engineer’s next step is to request price lists from each of the coffee distribu-
tors. She has obtained a WSDL description for each one, which tells her the pro-
cedure to call to get prices and also the URI where the request is to be sent. Her
code makes the appropriate remote procedure calls using JAX-RPC API and gets
back the responses from the distributors. The Coffee Break has been doing busi-
ness with one distributor for a long time and has made arrangements with it to
exchange JAXM messages using agreed-upon XML schemas. Therefore, for this

CONCLUSION 39

distributor, the engineer’s code uses JAXM API to request current prices, and the
distributor returns the price list in a JAXM message.

Comparing Prices and Ordering Coffees
Upon receiving the response to her request for prices, the engineer processes the
price lists using SAX. She uses SAX rather than DOM because for simply com-
paring prices, it is more efficient. (To modify the price list, she would have
needed to use DOM.) After her application gets the prices quoted by the differ-
ent vendors, it compares them and displays the results.

When the owner and business manager decide which suppliers to do business
with, based on the engineer’s price comparisons, they are ready to send orders to
the suppliers. The orders to new distributors are sent via JAX-RPC; orders to the
established distributor are sent via JAXM. Each supplier, whether using JAX-
RPC or JAXM, will respond by sending a confirmation with the order number
and shipping date.

Selling Coffees on the Internet
Meanwhile, The Coffee Break has been preparing for its expanded coffee line. It
will need to publish a price list/order form in HTML for its Web site. But before
that can be done, the company needs to determine what prices it will charge. The
engineer writes an application that will multiply each wholesale price by 135%
to arrive at the price that The Coffee Break will charge. With a few modifica-
tions, the list of retail prices will become the online order form.

The engineer uses JavaServer Pages™ (JSP™) technology to create an HTML
order form that customers can use to order coffee online. From the JSP page, she
gets the name and price of each coffee, and then she inserts them into an HTML
table on the JSP page. The customer enters the quantity of each coffee desired
and clicks the “Submit” button to send the order.

Conclusion
Although this scenario is simplified for the sake of brevity, it illustrates how
XML technologies can be used in the world of Web services. With the availabil-
ity of the Java APIs for XML and the J2EE platform, creating Web services and
writing applications that use them have both gotten easier.

Chapter 19 demonstrates a simple implementation of this scenario.

