Микропроцесорски системи

5. блок: Аналогни улази и излази

др Срђан Митровић, дипл. инж.

зимски семестар, 2016./2017. год.

Садржај:

- Увод
 D/А конверзија

 Digital/Analog Conversion
 PWM and RC filter
 binary-weighted resistors
 R-2R resistor ladder

 Аналогни компаратор

 Analog Comparator

 A/D конверзија
- Analog/Digital Conversion
- Conversion Techniques
- Flash Converter
- Tracking Converter
- Successive Approximation Converter
- Conversion Errors
- Usage
- Differential/Bipolar Conversion

A/D, D/A, намена

- микроконтролер обрађује дигиталне информације
- "спољашњи свет" је најчешће аналоган:
 - фототранзистор
 - потенциометар
 - селсин !?
 - . . .
- не поседују сви контролери A/D, D/A (цена)

D/А конверзија

Чему служи? Шта подразумева?

- Разматрамо једнодимензионалне сигнале.
- Не разматрамо слику!

Дигитални сигнал представљен са r бита $B = (b_{r-1} \dots b_0)_2$, где је $r \ge 1$, који се налази у опсегу $[0, 2^r - 1]$, желимо да конвертујемо у аналогну вредност V_0 .

Микроконтролери у општем случају имају мале или немају никакве могућности генерисања аналогних излаза^а.

^ачита се *немају*, али ...

Уколико апликација зајтева употребу D/A конвертора, најчешће се проблем мора решавати ван микроконтролера^{*a*}.

^а кључна реч *најчешће*

Аналогни излаз без D/A конвертора

- употребом само једног пина и једног бита
- користећи РWM (Pulse-Width Modulation)
- однос сигнал пауза је пропорционалан дигиталној вредности В

Импулсно ширинска модулација

Карактеристике PWM као A/D конвертора

- осцилације зависе од избора *R* и *C*, као и од периоде PWM.
- велики R и $C \to \begin{cases} мање осцилације \\ дуже време стабилизације \end{cases}$
- потребан је прецизан тајмер за генерисање PWM сигнала.
- користи се само један пин контролера

- r битни дигитални улаз
- потребни прецизни отпорници
- тешко остварљив у пракси

$$V_o = V_{ref} \sum_{i=1}^r \frac{1}{2^i} b_{r-i}$$

Модификација

- r битни дигитални улаз
- потребна само два типа отпорника
- лакше остварљив у пракси

$$V_o = V_{ref} \frac{B}{2^r}$$

• поређење два напона

- поређење напона са референтним напоном
 - аутомат за светло са фототранзистором
- ullet када је $V_1 > V_0$ излаз O=1
- ullet када је $V_1 \leq V_0$ излаз O=0
- метастабилност када је $V_1 \approx V_0$ (не користи се Шмитово коло)
 - нарочито у комбинацији са прекидима

Аналогно-Дигитална конверзија

"If the voltage value is important, for example if we want to use our photo transistor to determine and display the actual brightness, a simple comparator is not sufficient. Instead, we need a way to represent the analog value in digital form. For this purpose, many microcontrollers include an *analog-to-digital converter* (ADC) which converts an analog input value to a binary value."^a

^aG. Gridling & B. Weiss, Introduction to Microcontrollers, Vienna Institute of Technology, 2007

Аналогно-Дигитална конверзија

Шенонова теорема

$$f_{max} < rac{f_s}{2} = rac{1}{2 au_s}$$

Аналогно-Дигитална конверзија

Принцип рада

- flash converter
- tracking converter
- successive approximation converter
- . . .
 - Wilkinson ADC
 - integrating ADC
 - delta-encoded ADC (counter-ramp)
 - pipeline ADC (subranging quantizer)
 - sigma-delta ADC (delta-sigma ADC)
 - time-interleaved ADC
 - ADC with intermediate FM stage
 - . . .

Флеш A/D конвертор

- брзина (flash)
- цена
- димензије

- користи DA конвертор за AD конверзију
- исувише спор за већину апликација

A/D са сукцесивним апроксимацијама

- Користи SAR уместо DAC
- Бинарно претраживање уместо инкрементирања и декрементирања
- Константно време конверзије
- Често се користи у микроконтролерима

A/D са сукцесивним апроксимацијама

Грешке конверзије

Квантиозациона грешка

$$C(V_{in}) = \min\left\{ \left\lfloor \frac{V_{in} - GND}{V_{ref} - GND} \cdot 2^r + 0.5 \right\rfloor, 2^r - 1 \right\}$$

- у идеалном случају је 1 *lsb*
- у реалној примени грешка је већа:
 - offset error
 - gain error
 - DNL (Differential Non-Linearity) error
 - INL (Integral Non-Linearity) error

Slika : Типичне грешке конверзије a/d конвертора. (a) Offset error, (b) gain error(грешка појачања), (c) DNL error and INL error. Функција (c) је намерно померена доле како би се лакше уочила разлика у односу на идеалну функцију..

Практична примена ADC

- Уобичајено 4-16 аналогних улазних канала
- Више канала се не може истовремено очитавати ¹
- Старт конверзије може задати корисник, али и други извори trigger-а
- Често постоји непрекидни мод (і-конв. готова, почиње і+1)
- Конверзија има своје трајање
- За конверзију је потребан сигнал такта (властити или спољ.)
- Скалирање такта може бити потребно
- Сувише брз такт, нетачна конверзија
- ullet Крај конверзије: резултат o регистар
- 10-битни конвертор, 8-битна архитектура?
- Напон ван опсега: lsb, msb или трајно оштећење

¹Одабере се канал и започне конверзија. По завршетку конверзије читамо резултат и иницијализујемо следећи канал.

Диференцијална и двострана АД конверзија

- Директно упоређивање два сигнала
- Неки контролери нуде диференцијални улаз
- Улазни опсег $[-V_{ref}/2, \ V_{ref}/2] o$ негативне вредности
- За представљане нег. бројева $\rightarrow \begin{cases} други комплемент \\ excess representation \end{cases}$
- Подесиво појачање

value	two's complement	excess
3	011	111
2	010	110
1	001	101
0	000	100
-1	111	011
-2	110	010
-3	101	001
-4	100	000