
Foundations of the WinWin Requirements Negotiation System

by

Ming-june Lee

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Ful�llment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

August 1996

Copyright 1996 Ming-june Lee

ii

Abstract

This dissertation summarizes the results of applying several formal modeling

capabilities to the WinWin system, and identi�es the system improvements resulting

from the analysis. WinWin is a groupware support system driven by the WinWin

spiral process model. It enables multiple stakeholders to collaborate and negotiate

requirements in an incremental and evolutionary way. It uses \win conditions" to

capture individual stakeholder objectives. \Issues" are provided by the system to

capture sets of con
icting win conditions along with \options", which are possible

resolutions to issues. An \agreement" adopts options chosen by stakeholders to

resolve an issue and to reconcile the win conditions involved in that issue. These

artifacts provide scalable structure for a groupware tool and accommodate changes

to requirements.

Initial use of WinWin uncovered several anomalous usage situations. These made

it feasible and important to formally model these artifacts and operations to provide

solid foundations of the system. The research described in this thesis models the

WinWin requirements negotiation infrastructure and dynamics. It involves formal

descriptions of multiple views for the WinWin requirements negotiation system,

iii

including win condition interaction in the requirements space view, artifacts and

their relationships, artifact life cycles and the equilibriummodel. The results showed

that these models improved the system in three primary ways: 1) fully understand

the lower-level interactions of the system's features; 2) prevent aberrant behavior of

the system; and 3) provide process guidance for the users to avoid problem situations

and e�ciently reach win-win solutions. While these models are formulated, a big

challenge for a multi-view framework is to maintain consistency. This thesis also

presents how the relationships among the various views of WinWin are determined

in order to reconcile them into an integrated model. The reconciliation methodology

can be generalized and applied to other multi-view frameworks.

iv

Contents

Abstract iii

List Of Tables viii

List Of Figures ix

I Overview 1

1 Introduction 3
1.1 Problem Statement : 3
1.2 Research Objective : 6

2 Background 8
2.1 Evolution of Requirements Engineering : : : : : : : : : : : : : : : : : 8

2.1.1 Classical Requirements Engineering : : : : : : : : : : : : : : : 8
2.1.2 Transitional Requirements Engineering : : : : : : : : : : : : : 11

2.2 Collaborative Requirements Engineering : : : : : : : : : : : : : : : : 12
2.2.1 Multi-stakeholder Consideration : : : : : : : : : : : : : : : : : 13
2.2.2 Incremental and Evolutionary Acquisition : : : : : : : : : : : 15
2.2.3 Groupware : 16

2.3 Collaborative Requirements Engineering System Objectives : : : : : : 18
2.4 Current Capabilities v.s. Objectives : : : : : : : : : : : : : : : : : : : 19

3 The WinWin Requirements Negotiation System 20
3.1 The WinWin Spiral Model : 20
3.2 The Operational Concept : 22
3.3 The WinWin Support System : 26

3.3.1 Term : 28
3.3.2 Taxonomy : 29
3.3.3 Win Condition : 30
3.3.4 Issue : 32
3.3.5 Option : 34

v

3.3.6 Agreement : 35

II The Proposed Models 37

4 Inter-Win-Condition Relationship 39

5 The WinWin Artifact Types and Their Relationships 48
5.1 Artifact Set and Relationship De�nitions : : : : : : : : : : : : : : : : 49
5.2 Rules and Assumptions of Relationship : : : : : : : : : : : : : : : : : 50

5.2.1 Existence Rule : 51
5.2.2 Cardinality Rule : 53
5.2.3 Artifact Dropping Rule : 55

5.3 Artifact Chain and Artifact Set : 57
5.3.1 Artifact Chain : 58
5.3.2 Artifact Set : 62

6 The WinWin Artifact Life Cycle 63
6.1 Agreement : 64
6.2 Option : 65
6.3 Issue : 66
6.4 Win Condition : 68

6.4.1 Basic States : 69
6.4.2 State Transition Operators : 73

6.4.2.1 Basic Operators : 76
6.4.2.2 Rules : 79
6.4.2.3 State Set De�nitions : : : : : : : : : : : : : : : : : : 80
6.4.2.4 Axioms : 82

6.4.3 State Transition Computation : : : : : : : : : : : : : : : : : : 97
6.4.3.1 Next State: Sub States : : : : : : : : : : : : : : : : : 97
6.4.3.2 Next State: Super States : : : : : : : : : : : : : : : 98

6.4.4 Augmented Hierarchical State Model : : : : : : : : : : : : : : 100
6.4.4.1 free(�) : 100
6.4.4.2 bound : 101
6.4.4.3 bound(frozen) : 104
6.4.4.4 partially covered : 108
6.4.4.5 partially covered(frozen) : : : : : : : : : : : : : : : : 111
6.4.4.6 (fully) covered : 115

6.4.5 Functional description of the states for the win condition : : : 116
6.5 The Exhaustiveness and Mutual Exclusiveness of the Artifact States : 131

vi

7 The WinWin Hierarchical Equilibrium Model 139
7.1 No outstanding issue : 142

7.1.1 Equilibrium : 144
7.1.2 Enter win condition : 146
7.1.3 Assess new agreement : 147
7.1.4 Vote on agreement : 148

7.2 Resolve Single Issue : 149
7.2.1 Assess the only issue : 150
7.2.2 Negotiate the best feasible option : : : : : : : : : : : : : : : : 150
7.2.3 Assess agreement : 152
7.2.4 Vote on agreement : 153

7.3 Resolve Multiple Issues : 154
7.3.1 Assess the many issues : 155
7.3.2 Select feasible options resolving each individual issue : : : : : 156
7.3.3 Determine option feasibility with respect to other issues or

agreements : 157
7.3.4 Assess agreements resolving some issue(s) : : : : : : : : : : : 159
7.3.5 Vote on agreements resolving some issues : : : : : : : : : : : : 160
7.3.6 Propose agreements resolving all issues : : : : : : : : : : : : : 162
7.3.7 Vote on agreements resolving all issues : : : : : : : : : : : : : 163

8 Integrated Formal Model 165

9 Model Implications 170
9.1 Upgrading insights : 173

9.1.1 Explicit relationships and Referential integrity : : : : : : : : : 173
9.1.2 Suggesting stronger status summary : : : : : : : : : : : : : : 175
9.1.3 Process guidance : 180

9.2 Identifying and preventing potential aberrant behavior : : : : : : : : 181

10 Conclusions 184

III Bibliography 187

Reference List 188

vii

List Of Tables

2.1 Issues Addressed in Requirements Engineering Approaches : : : : : : 19

2.2 Groupware in Supporting Shared Requirements Information : : : : : 19

6.1 State correspondence in an artifact chain : : : : : : : : : : : : : : : : 70

6.2 Win condition life cycle: hierarchical view : : : : : : : : : : : : : : : 75

viii

List Of Figures

1.1 Relative Cost Decreases If Error Is Detected Early in the Software

Life Cycle : 4

1.2 The WinWin requirements negotiation system overview : : : : : : : : 5

3.1 The WinWin Spiral Process Model : : : : : : : : : : : : : : : : : : : 21

3.2 The WinWin Operational Concept : : : : : : : : : : : : : : : : : : : 23

3.3 Needs versus capability comparison : : : : : : : : : : : : : : : : : : : 24

3.4 Term : 28

3.5 Taxonomy : 29

3.6 Win Condition : 30

3.7 Issue : 33

3.8 Option : 34

3.9 Agreement : 35

4.1 Requirements Space : 39

ix

4.2 Requirements Space Divided by a Win Condition : : : : : : : : : : : 40

4.3 The Win Area for Stakeholder H1 : 41

4.4 The inter-win-condition relationships (example) : : : : : : : : : : : : 44

4.5 The inter-win-condition relationships : : : : : : : : : : : : : : : : : : 45

4.6 The generalized inter-win-condition relationships : : : : : : : : : : : : 46

5.1 WinWin artifact relationships : 49

5.2 Examples of artifact chain : 57

5.3 Examples of complete artifact chains : : : : : : : : : : : : : : : : : : 61

5.4 An artifact set example : 62

6.1 Agreement life cycle : 64

6.2 Option life cycle : 65

6.3 Issue life cycle : 67

6.4 Basic states in a particular artifact chain : : : : : : : : : : : : : : : : 69

6.5 Win condition life cycle: within an artifact chain starting with a win

condition involved in an issue : 71

6.6 Win condition life cycle: within an artifact chain starting with win

condition covered by an agreement : : : : : : : : : : : : : : : : : : : 72

6.7 Win condition life cycle: merged view : : : : : : : : : : : : : : : : : : 73

6.8 The UPV state : 74

6.9 An example of an artifact chain in the set MP : : : : : : : : : : : : : 81

x

6.10 Top level of the hierarchical win condition life cycle model : : : : : : 100

7.1 Top level model : 140

7.2 Hierarchical state model notation : 141

7.3 No outstanding issue : 143

7.4 Resolve single issue : 151

7.5 Resolve multiple issue : 155

8.1 Artifact Life Cycle v.s. Artifact Relationships : : : : : : : : : : : : : 166

8.2 An integrated model of the many views : : : : : : : : : : : : : : : : : 169

9.1 Student WinWin Artifact Structure #13 : : : : : : : : : : : : : : : : 171

9.2 Role of the formal modeling : 172

9.3 WinWin-1 artifact window: Win Condition : : : : : : : : : : : : : : : 173

9.4 First Inter-artifact relationship model : : : : : : : : : : : : : : : : : : 174

9.5 WinWin-95 issue state summary : 177

9.6 WinWin-95 win condition summary : : : : : : : : : : : : : : : : : : : 178

9.7 Suggested issue summary : 179

9.8 Suggested win condition summary : 180

9.9 Locking problem detected by the model : : : : : : : : : : : : : : : : : 182

xi

Part I

Overview

1

This part provides an overview on motives and background for this dissertation.

It previews how this research tackles the challenges that other approaches were not

able to address before. Chapter 1 outlines the problem and the objective of this

dissertation. This dissertation focuses on formally modeling the WinWin system.

WinWin is a requirements negotiation system driven by the WinWin spiral pro-

cess model. It enables multiple stakeholders to collaborate and negotiate system

objectives in an incremental and evolutionary way. Initial use of WinWin uncov-

ered several anomalous usage situations. These made it feasible and important to

formally model these artifacts and operations to provide solid foundations of the

system as presented. Chapter 2 shows the evolution of requirements engineering

and highlights related approaches aiming at collaborative requirements engineering.

Chapter 3 describes the WinWin requirements negotiation system and how it ad-

dresses the collaborative requirements engineering issues with the WinWin spiral

process model and the support system.

2

Chapter 1

Introduction

1.1 Problem Statement

Requirements Engineering (RE), which provides a systematic framework for repre-

senting and acquiring software requirements, constitutes an important part of Soft-

ware Engineering. A prime motive for requirements engineering is early error detec-

tion, which saves development e�ort as illustrated in Figure 1.1[Boe81]. Research

[NKF94, BR89, Dav90, T+96, EGR91] indicates that the following issues are critical

to requirements engineering.

Multi-stakeholder considerations: In a collaborative software development en-

vironment, perspectives of all stakeholders should be integrated and reconciled.

Past requirements engineering approaches focusing on user requirements failed

in that users' perspectives may not match other stakeholders' perspectives and

3

relative cost to fix error

Requirements Design Coding Testing Operations

Phase in which error was detected and corrected

X

10X

100X

Figure 1.1: Relative Cost Decreases If Error Is Detected Early in the Software Life
Cycle

thus result in a win-lose situation. In addition, other stakeholders' require-

ments are often misinterpreted because their representatives are not involved

in the requirements engineering activity.

Change management: Very often, critical criteria are changed in the midst of

requirements formulation. For example, a budget cut would invalidate some

previous agreements. Therefore, change management is necessary to accom-

modate changes in objectives, constraints, or alternatives. In addition, the

rationale for previous requirements needs to be incorporated to help deter-

mine how to change requirements.

Groupware support: To facilitate requirements negotiation across organizations,

groupware that institutionalizes computer supported cooperative work (CSCW)

4

Individual Stakeholder
Requirements
(Win Conditions)

Reconciled Stakeholder
Requirements
(Agreements)

WinWin

Stakeholders

Negotiation Support

(Process & Support System)

Figure 1.2: The WinWin requirements negotiation system overview

is needed to bridge the geographical and time gap as well as to achieve group

decisions.

The USC-CSE (Center for Software Engineering at the University of Southern

California) WinWin requirements negotiation system[BBHL94b, BBHL95] takes in

individual stakeholder requirements (win conditions) and helps produce reconciled

stakeholder requirements (agreements), as illustrated in Figure 1.2. In order to

achieve this goal, \issues" are provided to capture sets of con
icting requirements and

\options" are possible resolutions to \issues." The system, on the top level, is driven

by the WinWin Spiral Process[BBHL95], to accommodate change of requirements.

In addition, the supported WinWin artifacts keep track of status, and a WinWin

equilibrium model facilitates convergence toward a win-win solution. As groupware,

the system provides negotiation support, message passing and multi-media document

navigation.

5

The development approach for the USC WinWin System to date has primarily

involved exploratory prototyping. Several experiments[BBHL94a, Buc94] demon-

strated that the WinWin System facilitates requirements negotiation. The system

is now converging on a relatively stable set of artifacts and relationships. This makes

it feasible and important to elaborate the underlying process model and to formalize

these artifacts and relationships to provide solid scienti�c foundations for the Win-

Win system. This is the focused problem addressed by the research presented in

this thesis.

1.2 Research Objective

The research objective of this thesis is to elaborate and formalize the WinWin re-

quirements negotiation process and artifacts, to provide solid foundations for the

WinWin system. This thesis presents several formal and semi-formal models of the

WinWin system and its operations. The �rst part, including this chapter, provides

an overview on the motives and background for this thesis. It previews how the re-

search tackles the challenges that other approaches were not able to address before.

Chapter 2 summarizes the evolution of requirements engineering, and highlights

related approaches aiming at collaborative requirements engineering. Chapter 3 de-

scribes the WinWin Spiral Model, its operational concepts and the support system

6

to show how the WinWin system addresses the collaborative requirements engineer-

ing issues. The second part summarizes the results of my research e�orts on applying

several formal modeling capabilities to the WinWin system, and identi�es the sys-

tem improvements resulting from the analysis. Chapter 4 o�ers a problem space

view that models the inter-win-condition relationships. Chapter 5 describes major

WinWin artifacts and their inter-relationships for supporting the requirements ne-

gotiation infrastructure. Chapter 6 illustrates how WinWin artifact evolves in the

negotiation process. Chapter 7 proposes the WinWin equilibriummodel to guide the

WinWin users to resolve issues and reach agreements in the negotiation. Chapter 8

provides a framework for determining the relationships among the various models or

views presented in the previous chapters. Chapter 10 summarizes the contributions

made with this research and discusses future works.

7

Chapter 2

Background

2.1 Evolution of Requirements Engineering

2.1.1 Classical Requirements Engineering

Requirements engineering is a relatively recently-established practice. Occasional

early software projects such as SAGE had good requirements engineering approaches

[Ben56], but their signi�cance was not generally appreciated. In the 1960's, re-

searchers started to recognize the signi�cance of requirements de�nition and review

in the software development process. Experience showed that the traditional \build

and �x" approaches turned out to be extremely costly and ine�cient. Without spec-

ifying and analyzing system and software requirements,one is very likely to obtain

an undesired system. In 1970, Royce published a classic paper[Roy70] characterizing

the waterfall model. It incorporated requirements acquisition and analysis as key

steps in the software development life cycle. Several requirements de�nition and

8

traceability tools emerged in the early 1970's. The 1976 International Conference

on Software Engineering (ICSE-2) marked requirements engineering a full-
edged

sub�eld in the software engineering discipline. The subsequent dedicated issue of

IEEE Transactions on Software Engineering (IEEE-TSE January 1977) exhibited

representative requirements approaches of that time including SADT TM (Structure

Analysis and Design Technique)[RKS77] by SofTech, PSL/PSA (Problem State-

ment Language/Analyzer)[TV77] by University of Michigan and SREM (Software

Requirements Engineering Methodology)[Alf77] by TRW.

SADT was motivated by the belief that \a problem unstated is a problem un-

solved." Ross and colleagues contended that major di�culties in software devel-

opment were caused by lack of an adequate approach to requirements de�nition.

SADT provides a graphical notation to model the hierarchic structure of a system.

It documents the problem to be solved by the software system and the solutions

proposed by the stakeholders. It guides the stakeholders to think about the problem

and convey their understanding to others in the team via context analysis, functional

speci�cation and design constraints. For certain classes of problems, SADT helped

encompass all aspects of a task in advance and resulted in a more productive team

and more e�ective management.

Teichroew and Vicena wrote a notable paper[TV77] presenting the primary goals

and functions of PSL/PSA. PSL/PSA is a computer-aided technique for structured

requirements speci�cation, documentation and analysis of information processing

9

systems. They designed the Problem Statement Language (PSL) to de�ne the ob-

jects and relationships involved in the proposed system. These objects and relation-

ship are entered into in a database using the Problem Statement Analyzer (PSA).

Various reports on the results of the PSA can be generated upon request. In several

cases, the showed that by making use of computers, the quality of the documentation

was improved and the cost of design, implementation and maintenance was reduced.

SREM was developed by TRW to address the problems of correctly specify-

ing the requirements for large software systems such as real-time weapon systems.

TRW analyzed problems encountered in its software requirements, and proposed

the Requirements Speci�cation Language (RSL) and Requirements Engineering and

Validation Systems (REVS) to address those problems, and to produce testable

functional and performance requirements. RSL is a formalized language to reduce

ambiguity and serve as input to the support software|REVS. REVS incorporate

tools to check completeness and consistency of the requirements, maintain traceabil-

ity to originating requirements and simulations, and generate simulations to validate

the correctness of the requirements. The key contributions were that the project:

1) identi�ed activities and their required inputs and expected outputs necessary for

generating real-time software requirements 2) drew a clear distinction between re-

quirements and design and 3) developed a methodology, a formal language and a

support system and demonstrated their adequacies to address realistic problems.

10

2.1.2 Transitional Requirements Engineering

The previous section reviews requirements engineering as it emerged to be a recog-

nized sub-discipline in software engineering. The early approaches were generally

con�ned by the sequential concerns of the Waterfall Model, which contended that re-

quirements speci�cation should be completed before implementation. Swartout and

Balzer, however, provided evidence of the inevitable intertwining between require-

ments speci�cation and implementation[SB82]. First, speci�cation is con�ned by the

available implementation technology. For example, a particular data structure con-

strains the size of data it can handle. Second, implementation choices expand the

speci�cation. An instance is that use of an existing pattern-matching package will

add to the speci�cation the inclusion of a wildcard character. Swartout and Balzer

argued that attempting to construct an aid keeping complete speci�cations and im-

plementation separate would have trouble capturing speci�cation changes that are

forced by implementation decisions. They concluded that interleaving speci�cation

and implementation into a single development structure will result in a more coher-

ent and realistic structure.

Boehm and colleagues conducted an experiment on prototyping versus specifying

[BGS84]. In their experiment, seven teams developed versions of the same small-

size applications. Four teams used the specifying approach and 3 others used the

prototyping one. They demonstrated the following main results.

11

1. The prototyped products were with roughly equivalent performance but less

than half the code size and e�ort,

2. The prototyped products were rated lower on functionality and robustness but

higher on ease of use and ease of learning,

3. Specifying resulted in more coherent design and software for future integration.

The above agreed with Swartout and Balzer's argument that the model of com-

plete speci�cations before implementation should be reconsidered. Software develop-

ment depending solely on speci�cations encounters di�culties in application areas

where it is hard to specify requirements in advance such as user-interface. The

users really cannot tell what they want until they see it. However, the speci�cation-

oriented approach should not be completely thrown away, especially on large projects

since it does render robustness, functionality, coherent design and ease of integra-

tion. It just needs to reorient to accommodating prototyping. [BGS84] concluded

that the selection of the speci�c mix of prototyping and specifying should be driven

by risk-management.

2.2 Collaborative Requirements Engineering

The following sections discuss research approaches according to the three issues

recognized before as critical to today's requirements engineering. The category of

12

each work does not necessarily suggest that it will not support other issues but just

accents its specialized area.

2.2.1 Multi-stakeholder Consideration

IBIS(Issue-Based Information System) addresses multi-stakeholder consideration by

supporting relations among system objectives. It was �rstly developed by Horst Rit-

tel and colleagues [CY91, KR70]. The central structure is called \issue." Issues can

be viewed as requirements that impact on design decisions. Each issue is linked with

its supporting arguments and opposing arguments. It helps capture planning dia-

logue for design rationale that is important in group decision-making. gIBIS [CY91]

and REMAP[RD92] are both graphical tools for supporting the IBIS structure with

some extension. Although IBIS structures support analysis of requirements inter-

actions, no tools are provided for analyzing trade-o�s, so the design decision may

overlook optimal solutions. There is also no negotiation strategy embedded to rec-

oncile di�erent perspectives.

The Nature (Novel Approaches to Theories Underlying Requirements Engineer-

ing) project[P+94] is a joint e�ort among institutes in Europe. They aim at applying

AI and related techniques to requirements engineering. The underlying framework

proposed by Klaus Pohl[Poh93] presents three important dimensions of requirements

engineering addressed in NATURE: 1) the speci�cation dimension, 2) the represen-

tation dimension, and 3) the agreement dimension.

13

The third dimension \agreement" of NATURE best maps to the multi-

stakeholder consideration domain. Two related NATURE works will be discussed

here. Viewpoint[NKF94] presents a framework similar to WinWin on requirements

engineering for composite systems based on use of multiple viewpoints. Its focus

is more on reconciling the heterogeneous categories of requirements than the con-

tents (semantics of requirements). It does not provide a formal process model like

the WinWin Spiral model or the elaborated WinWin Equilibrium to drive the rec-

onciliation. [JK94] is another work in NATURE adopting the Quality Function

Deployment (QFD) approach and IBIS structure to address multi-stakeholder con-

sideration. In addition, it adopts \House of Quality (HoQ) Items" that serve as

Domain Taxonomy to localize possible con
icting requirements. It embeds HoQ

and QFD as negotiation strategies to converge di�erent perspectives. One of the

major problems with this approach is that the limited scope focusing on customers

brings potential con
icts when other stakeholders join the work later in the soft-

ware life cycle. Another limitation lies on the di�culty of automating the original

pencil-paper approach. A great percentage of negotiation is still done o�-line. Using

customers' common sense instead of a well-founded trade-o� analysis tool as the

quality driver is very likely to produce unsatisfactory outputs.

Two additional software engineering arenas also address multi-stakeholder con-

sideration. One is Participatory Design (PD) that encourages users (and maybe

other stakeholders) to participate in the design of social computer systems[MK93].

14

CISP[MA93] falls into this category to facilitate cooperative and interactive story-

board prototyping. Fischer[F+92, Ret93] and colleagues have experimented with a

domain-oriented environment consisting of (1) a human-centered CATALOGEX-

PLORER, (2) an EXPLAINER utilizing users' and programmers' strength and

(3) a MODIFIER that integrates construction kit, argumentive hypermedia com-

ponent, catalog component, and simulation component. Class[AC93] stresses co-

development with joint meetings and remote prototype systems. Another arena

drawing great attention is Joint Application Design (JAD) that enables people

across organizations to incorporate their design ideas. It is exempli�ed by FASE

2000[Boz92] that o�ers common data model and rapid prototyping. The major

de�ciency of PD and JAD is that current works focus primarily on the interac-

tions between users and designers. Other stakeholders' concern such as budget and

schedule constraints set by customers are not well incorporated. There are also no

trade-o� analysis tools provided.

2.2.2 Incremental and Evolutionary Acquisition

ARIES (Acquisition of Requirements Incremental Evolution of Speci�cations) is co-

developed by USC/ISI and Lockheed Sanders to provide a knowledge-based assistant

in the front end of system life cycle [H+92]. In ARIES, \folder" and \workspace"

structures are provided to capture representation of multiple models. Folders and

workspaces are related to the domain taxonomy in the WinWin approach that will

15

be discussed in details in the following chapter. ARIES facilitates incremental ac-

quisition but does not address risk items that may potentially cause problems.

Tuiqiao[PTA94], an inquiry-based system, is developed by Potts and colleagues

in Georgia Institute of Technology. It performs requirements analysis using the

Inquiry Cycle Model. This model produces requirements documentation consisting

of requirements, scenarios and other information via a Q-A session attended by

stakeholders. This Q-A session may result in changes that demand requirements

evolution and re-documentation. Requirements are expected to be negotiated and

re�ned by cycling through this model. This model, however, may have breakdowns

if system engineers overlook some important risk items in the Q-A session.

2.2.3 Groupware

This section discusses groupware tools that focus on providing a cooperative working

environment. The groupware tools can be categorized into the following types:

Communication tools: facilitate the communication of project participants

(such as electronic message system), bridge the time and space gap (such

as video conferences), and provide a common working environment (such as

computer white-board).

Common terminology and mediator: de�ne common terms or provide map-

ping between systems so di�erent components can communicate with the same

16

language; this category also includes integration work of heterogeneous envi-

ronment.

Shared data: provides concurrency control, data linking, or cooperative editing

system[KBH+92] for multiple users working on the same data.

COLAB(WYSIWIS)[S+87] exempli�es computer-aided meetings and on-line

whiteboard facilities. Project Nick[C+88] claims that one of the reasons for meeting

failure is that e�ects of a meeting are diverse due to inadequate documentation and

lack of focus. It attempts to facilitate meeting progression by characterizing meet-

ings and corresponding information. On the dimension of common terminology and

mediator to enhance interoperability, Diplans[Hol88] proposes a coordination lan-

guage for interoperable terminology. The Coordinator[FGHW88] drives actions with

a semi-structure message system. On the facet of shared data, CES was designed

to tackle this problem with a distributed Collaborative Editing System[KBH+92].

Lotus Notes facilitates shared document manager, replication algorithm, and cus-

tomer contact tracking. Object Lens[LYM88] uses semi-structured objects com-

bining object-oriented databases, hypertext, electronic messaging, and rule-based

intelligent agents to provide a \spreadsheet" for cooperative work.

All these tools have had major di�culties in providing scalable information struc-

tures, where within which relations among system objectives can be established,

examined and reasoned to reach a qualitative consensus. Even the most popular

17

tools like the Coordinator and Lotus Notes o�er only semi-structured messages with

limited navigation support. As these tools Thus, they lack any systematic approach

to address cooperation between cross functional teams, as noted in [JK94].

2.3 Collaborative Requirements Engineering

System Objectives

For addressing multi-stakeholder consideration as well as incremental and evolution-

ary acquisition, it is important to

� provide collaborative goals,

� address risks,

� support relations among system objectives,

� support trade-o� analysis tools,

� embed negotiation theory,

� facilitate incremental and evolutionary development, and

� provide design rationale.

Table 2.1 summarizes representative requirements engineering approaches in Sec-

tion 2.2.1 and Section 2.2.2 according to these terms.

18

 Approach
Issues

ARIES gIBIS NATURE Tuiqiao

provides collaborative goals some some good some

addresses risks none none none none

supports relations among system
objectives

some strong good good

supports trade-off anlysis tools some none none none

embeds negotiation theory none none good none

facilitates incremental and evolu-
tionary development

strong some some strong

provides design rationale good strong good good

Table 2.1: Issues Addressed in Requirements Engineering Approaches

2.4 Current Capabilities v.s. Objectives

As noted in Section 2.2.3, it is very important to provide a scalable information

structure where relations among system objectives can be established, examined and

reasoned to reach a qualitative consensus. Table 2.2 compares selected groupware

tools based on how well each work facilitates requirements information.

System
Features

Coordinator Object
Lens

Project
Nick

Notes

information structure good good some some

organizational interaction good good good some

hypermedia representa-
tion

none none good good

formal model underlying
information structure

some some good none

information dependency
links

some good good some

information database none strong some none

navigation support none good none none

Table 2.2: Groupware in Supporting Shared Requirements Information

19

Chapter 3

The WinWin Requirements Negotiation System

3.1 The WinWin Spiral Model

The WinWin Spiral Process Model is a Theory-W[BR89] extension to the Spiral

Model[Boe88]. Theory-W is developed on the principle of making everyone a winner.

Theory-W consists of nine steps which can be divided into three phases:

1. Establish a set of win-win preconditions.

(a) Understand how people want to win;

(b) Establish reasonable expectations;

(c) Match people's tasks to their win conditions;

(d) Provide a supportive environment.

2. Structure a win-win software process.

(a) Establish a realistic process plan;

20

2. Identify Stakeholders’
win conditions

1. Identify next-level
Stakeholders

3. Reconcile win
conditions. Establish
next level objectives,
constraints,

4. Evaluate product and
process alternatives.
Resolve Risks

5. Define next level of product and
process - including partitions

6. Validate product
and process
definitions

7. Review, commitment

Figure 3.1: The WinWin Spiral Process Model

(b) Use the plan to control the project;

(c) Identify and manage your win-lose or lose-lose risks;

(d) Keep people involved.

3. Structure a win-win software product.

(a) Match product to users', maintainers' win conditions.

The nine steps of Theory-W process is then translated into the following Spiral

Model extension, which is illustrated in Figure 3.1[BBHL94b, BBHL94a]:

Determine Objectives. Identify the system life-cycle constituents and their win

conditions. Establish initial system boundaries, external interfaces.

21

Determine Constraints. Determine the conditions under which the system would

produce win-lose or lose-lose outcomes for some constituencies.

Identify and Evaluate Alternatives. Solicit suggestions from constituents.

Evaluate them with respect to constituents' win conditions. Synthesize and

negotiate candidate win-win alternatives. Analyze, assess, and resolve win-lose

or lose-lose risks.

Record Commitments. Record commitments and areas to be left
exible in the

project's design record and life cycle plans.

Cycle Through the Spiral. Elaborate win conditions, screen alternatives, resolve

risks, accumulate appropriate commitments, and develop and execute down-

stream plans.

The ideal goal of the WinWin Spiral Process Model is to satisfy all stakeholders'

initial win conditions. A more practical goal is to satisfy all stakeholders reconciled

win conditions to make every one a winner.

3.2 The Operational Concept

The operational concept for the WinWin system maps to the �rst 3 sectors, the

shaded part of Figure 3.1, in the WinWin Spiral Model. The �rst group of arrows

pointing from stakeholders to the WinWin system illustrate that stakeholders are

22

WinWin

Stakeholders (users, customers, developers, etc.)

next-cycle

win conditions

negotiation,

Object

Base

next-cycle
objectives,
constraints,

conflict
detection

issues,
options

candidate

agreements

current
objectives,
constraints
alternativesalternatives

voting
support

analysis
support

passed
agreements=

filtered
win conditions

Figure 3.2: The WinWin Operational Concept

identi�ed �rst. Their win conditions then are entered into the WinWin system. With

the navigation support provided by the system, stakeholders are then able to �lter

win conditions according to their domain taxonomy groups in order to detect con-

icts and identify possible Issues, and Options for resolving them. These candidate

Issues and Options are then prompted to the stakeholders to start the reconciliation,

the third sector in Figure 3.1. Negotiation is supported by summarizing options for

resolving Issues as well as querying stakeholder's high-prioritized win conditions to

drop options that are not acceptable. Trade-o� analysis tools such as COCOMO

support evaluating the many candidate options, to �nd out what combination of

them will meet the established constraints and maximize the WinWin aspect. If

such a combination is found and chosen, an agreement will be proposed to adopt the

23

Lotus Notes

WINWIN

NATURE

Coordinator

Object Lens

gIBIS, REMAP

QFD

HighGroupware SupportLow

Low

High

Collaboration

Guidance

Figure 3.3: Needs versus capability comparison

chosen combination of options and stakeholders will vote on the agreement. If the

vote is passed, the passed agreement will become a next cycle objective, constraint

or alternative. If the vote is failed, the negotiation will continue until a win-win

solution is found.

Figure 3.3 compares WinWin to selected related works discussed in the previous

chapter in terms of groupware support and collaboration guidance. In summary,

the WinWin requirements negotiation system is distinguished from most traditional

requirements engineering approaches in the following aspects:

24

1. Traditional requirements engineering approaches emphasize on user require-

ments. There is insu�cient support to acquire requirements from stakeholders

like customers, maintainers, and interoperator. Nor is there negotiation the-

ory embedded to reconcile multiple views. Collaborative goals are therefore

incompletely supported in the traditional paradigm. The WinWin Spiral Pro-

cess Model uses Theory-W to converge on system objectives and achieve view

integration. In addition, trade-o� analysis tool is provided to facilitate quali-

tative group consensus.

2. Traditional requirements are mostly rigid whereas win conditions in WinWin

are negotiable. Design rationale is documented in the WinWin artifact to

provide a corporate memory. Risks are explicitly addressed in WinWin to

pinpoint possible breakdowns and propose early �xes. This makes it easier to

increment and evolve requirements in the spiral model.

3. Past groupware tools do not connect with requirements engineering approaches

very well because of the lack of scalable information structures for dealing with

the requirements. The WinWin artifact structure can be easily exported to hy-

pertext format and be viewed using web browsers with important information

highlighted.

25

3.3 The WinWin Support System

A lot of insight for the WinWin support system resulted from our boot-strap ex-

periments using Theory-W. In Summer 1993, a set of hypotheses on what kind

of system functions best support the WinWin spiral process model was formu-

lated. WinWin-0 was prototyped and used in a bootstrap exercise by Dr. Boehm,

Dr. Horowitz, Dr. Bose, and Mingjune Lee to determine the requirements for

WinWin-1[BBHL94a]. The outputs identi�ed in the experiment converged on im-

portant features for WinWin-1, the �rst USC-CSE in-house version. WinWin-1 was

designed and developed by Dr. Boehm, Dr. Horowitz, Dr Bose, Yimin Bao, Hoh In,

June Sup Lee and Mingjune Lee. In WinWin-1, the following artifacts are supported:

� \Term": terminology de�nition that will be used in the negotiation.

� \Domain Taxonomy": a structure for modeling the domain and categorizing

the following artifacts.

� \Win Condition": a system objective, constraint, or alternative that a stake-

holder considers important or bene�cial.

� \Con
ict/Risk/Uncertainty(CRU)": an aggregate to capture the con
icts be-

tween win conditions/POA or the risk/uncertainty implied by any win condi-

tion; it is renamed \issue" in WinWin-95.

� \Option": an alternative for resolving a CRU.

26

� \Point of Agreement(POA)": an aggregate to cover reconciled win condi-

tions/POA.

In addition to the basic artifacts, WinWin-1 provided functions like query-by-

example for �nding a particular set of artifacts that satis�es the input criteria. It

also incorporated tools like COCOMO (COnstructive COst MOdel)[Boe81] to do

trade-o� analysis on the impact of an artifact, an audio tool to record a verbal

explanation, and Mosaic to export the WinWin data to the web site.

WinWin-1 had several problems such as references were value-based rather than

object-based. Value-based reference did not support referential integrity. Stake-

holders could get dangling pointers if an artifact was deleted whereas its references

were not. Any typing error could also result in a dangling pointer. If a stakeholder

wanted to look at the contents of a particular reference, he/she had to either com-

pose a query or exhaustively search through the artifact menu which was extremely

inconvenient and error-prone. Another problem was that relationships in an artifact

were combined and confusing.

WinWin-95[Hor96] was built by Dr. Horowitz, Dr. Curran, Yimin Bao,

Eul Gyu Im, Hoh In, and June Sup Lee to upgrade the functions, stability, robust-

ness, performance, user-interface and many other important features of WinWin-

1. Several supplementary artifacts like \comment" and \vote" were added to en-

hance the communication between stakeholders. Relationships between artifacts

were speci�cally identi�ed and separated. The references were object-based to allow

27

Figure 3.4: Term

navigation. In addition to \COCOMO," more tools could be easily incorporated

using the \attachment" artifact. WinWin-95 also had the capability to export Win-

Win data to a major Unix word-processor \Framemaker" to generate hyper-linked

requirements documentation.

The following sections work through screen dumps from a given scenario [UC94]

to characterize this WinWin-95 support system. The example project is to develop a

specialized SEE (Software Engineering Environment) in support of a SGS (Satellite

Ground Station) product line.

3.3.1 Term

The WinWin-0 bootstrap experiment results showed that it was crucial to have

consensus on the terminology used in the negotiation. It was di�cult to �gure out

28

Figure 3.5: Taxonomy

that A's tool interoperability was in fact B's tool integration. The term list provides

a common ground for the many stakeholders to communicate. It also serves as a

data dictionary for a project.

3.3.2 Taxonomy

In the bootstrap experiment, it was also realized that a domain taxonomy would help

organize the domain and categorize artifacts. When the number of win conditions

scaled up, it was particularly critical to break them into groups to localize candidate

con
icts or consensus. In WinWin-1, the domain taxonomy was designed as a hier-

archical structure and entered through a graphical user-interface. The links in the

29

Figure 3.6: Win Condition

hierarchical structure were confusing since they represented many di�erent mean-

ings including IS-A, HAS-A, and INSTANCE-OF. In WinWin-95, it was re-designed

to be a table of contents that was constructed via a list menu. Stakeholders could

easily enter a taxonomy element as a chapter or a section in the table of contents

and
exibly change the order and the hierarchy with the buttons provided.

3.3.3 Win Condition

A win condition is a stakeholder's objective, alternative, or constraint that he/she

considers important and bene�cial to the system. A win condition contains the

following �elds:

30

1. Name: name of this artifact

2. Role: owner of this artifact

3. ID: unique identi�er generated by the WinWin system.

4. Creation Date: the date this data was created

5. Revision Date: last revision date

6. Status :

� active: still under consideration

� inactive: dropped

7. State :

� covered: involved in only resolved issues and/or covered by only passed

agreements

� uncovered: otherwise

8. Priority: ranging from Very High, High, Medium, Low, Very Low to address

the relative importance of a stakeholder's win conditions

9. Options: a screen area for entering and viewing various aspects of the artifact.

(a) Body: a statement describing the nature of this artifact Stakeholders can

switch from \body" to see other �elds of this artifact

31

(b) Comment: used as a communication channel for the other stakeholders

to express their opinion about this win condition

(c) Taxonomy Elements: identi�ers relating the artifact to appropriate items

in the taxonomy list

(d) Attachment: a �le from any tool that helps explain, analyze, or specify

this artifact such as COCOMO

(e) Refers to: artifacts that it refers to through the relates to and replaces

relationships

(f) Referenced by: the inverse relationship of \Refers to" that allows trace-

ability of any artifact that refers to this win condition; the following are

references speci�c to win condition:

� involved in: any issue that has an \involves" reference to it

� covered by: any agreement that has a \covers" reference to it

Figure 3.6 demonstrates that the customer proposes a \Multimission SEE" win

condition upon the request of the Congress.

3.3.4 Issue

The other artifacts (Issue, Option, Agreement) have the same 9-�eld structure as

the Win Condition artifact. An issue is an aggregate that involves con
icting win

conditions. In Figure 3.7, this issue is created because the previous win condition

32

Figure 3.7: Issue

\Multimission SEE" was added and caused a schedule and cost overrun. Its �elds

di�er from Win condition as follows:

1. State:

� resolved: addressed by a used option

� unresolved: otherwise

2. Refers to: the following is speci�c to an issue

� involves: reference to any win condition it involves

3. Referenced by: the inverse relationship that allows traceability of any artifact

that refers to this issue; the following are references speci�c to issue:

� addressed by: any option that has an \addresses" reference to it

33

Figure 3.8: Option

3.3.5 Option

An option is an alternative that is proposed to resolve an issue. In this particu-

lar example, several possible options are provided as potential resolutions to the

development cost and schedule overrun. The �elds di�er from Win condition as

follows:

1. State:

� used: addressed by a passed option

� unused: otherwise

2. Refers to: the following is speci�c to an option

� addresses: pointer to the issue that it addresses

34

Figure 3.9: Agreement

3. Referenced by:

� adopted by: any agreement that has an \adopts" reference to it

3.3.6 Agreement

Agreement is an aggregate that captures reconciled win conditions. An agreement

is achieved either by directly covering a set of non-controversial win conditions or

by adopting an option that resolves an issue in order to cover the win conditions

involved in that issue. In this scenario, it adopts the \reduce/defer functionality"

option. The user o�ered to defer 75% of the testing module and 40% of the DR&R

35

module till later to meet the cost and schedule constraints. Its �elds di�er fromWin

condition as follows:

1. State:

� -: default value when it is created

� vote-in-progress: when a vote is conducted on this agreement

� passed: when the vote is passed

� failed: when the vote is failed

2. Refers to: the following is speci�c to an agreement

� adopts: pointer to any option that it adopts

3. Vote: a supplementary artifact to conduct a vote on this agreement; after the

owner of the agreement has entered a voting policy to o�cially start the vote,

every stakeholder can express whether they \concur (pass)" to, \don't concur

(fail)" to, or \abstain (neither pass nor fail)" from the vote. The owner changes

the state of this agreement to \passed" or \failed" depending on the result of

the vote.

4. Artifact set: artifacts that this agreement directly or indirectly refers to; that

is, all win conditions this agreement covers and all options this agreement

adopts, all issues those options address, together with all win conditions those

issues involve.

36

Part II

The Proposed Models

37

Part II presents the research results of this dissertation. It de�nes the require-

ments negotiation infrastructure and the requirements negotiation dynamics by con-

structing several formal and semi-formal models of the system and its operations.

A big challenge here is to maintain consistency across the many views. Part II

also de�nes the relationships among the various views in order to reconcile them

to prevent inconsistency. Chapter 4 o�ers a problem space view that models the

inter-win-condition relationships. Chapter 5 de�nes major WinWin artifacts and

their inter-relationships. Chapter 6 de�nes how WinWin artifacts evolve in the ne-

gotiation process. Chapter 7 develops the WinWin equilibrium model to guide the

WinWin users to recover the WinWin equilibrium state in the negotiation. Chap-

ter 8 develops the framework of relationships among the various models or views

in order to reconcile them. Chapter 9 discusses the implications of the research

results in terms of improvements to the WinWin system. Chapter 10 summarizes

the contributions made with this research.

38

Chapter 4

Inter-Win-Condition Relationship

R

r1 r2

Figure 4.1: Requirements Space

Consider the space R of all requirements speci�cations r (see Figure 4.1). Each

point r 2 R consists of a set of functional, performance, interface, and attribute

speci�cations. For example, the only di�erence between r1 and r2 in Figure 4.1 may

be that r1's required response time is 1 second and r2's is 2 seconds.

A Win Condition can then be de�ned as a constraint on R, dividing R into mu-

tually exclusive subsets of requirements speci�cations which do or do not satisfy the

Win Condition. Speci�cally, for stakeholderHi, his/her jth win condition wi;j de�nes

the following subset of R (see Figure 4.2):

39

w1,1

reject

accept

R(w1,1)

R

Figure 4.2: Requirements Space Divided by a Win Condition

R(wi;j) = fr : r satisfies wi;jg.

For example, if w1;1 expressed stakeholder H1's desire that the software cost be

less than $7 million,R(w1;1) would be the set of all requirements speci�cations which

could be implemented for less than $7M.

If stakeholder H1 has n1 win conditions, his/her win region W1 can be expressed

as the intersection of all of the individual win condition regions (see Figure 4.3):

W1 =
n1\
j=1

R(w1;j):

By de�nition, any win conditions of stakeholder H1 belongs to his/her win region

W1.

This framework can also be used to de�ne the WinWin Issue, Option, and Agree-

ment artifacts.

40

w1,1 w1,2

w1,3

R

W1 R w1 j, 
 

j
∩=

Figure 4.3: The Win Area for Stakeholder H1

An agreement Ak covers a set of non-controversial win conditions whose win

regions have a non-empty intersection.

De�nition 4.1

\
wi;j2Ak

R(wi;j) 6= �:

An Issue Ik de�nes a set of win conditions whose win regions have an empty

intersection.

De�nition 4.2

\
wi;j2Ik

R(wi;j) = �:

41

It can be shown that the win conditions in Ik must fall in the area outside of

some other stakeholder's win region Wi:

8w 2 Ik;9Wi s:t: w 62 Wi:

An example would be that a customer H1 has a win condition w11 that the soft-

ware cost be less than $7M. And the user H2 has win conditions fw21; w22; w23g spec-

ifying functions fSimulation,Reporting,Testingg whose costs are f$4M,$3M,$5Mg,

respectively. If the user wants all the functions to be implemented, it will cost $12M.

It is then identi�ed by the customer as an issue containing fw11; w21; w22; w23g since

the total cost for implementing the user functions is beyond the customer's budget.

For an Issue Ik , an Option Ol proposes a relaxation f4wi;jgl to every win

condition wi;j involved in that Issue. f4wi;jgl relaxes wi;j to fw0
i;jgl whose win

region is enlarged and has a better chance to intersect with win regions of other win

conditions involved in Issue Ik . 4wi;j is de�ned as the combination of all possible

options applicable to wi;j .

De�ne fw0
i;jg as the relaxed form of wi;j after applying all possible options to

enlarge the win region of wi;j , whose win region is the union of the win regions of

wi;j and 4wi;j:

R(w0
i;j) = R(wi;j) [R(4wi;j)

42

The requirements space expanded for stakeholder H1 by acceptable options is

called the satisfactory region S1:

S1 =
Tn1
j=1R(w

0
1;j)�

Tn1
j=1R(w1;j)

=
Tn1
j=1R(w

0
1;j)�W1

The lose region L1 of stakeholder H1 is

L1 = R� (W1 [S1):

or

L1 = R� (W1 [(
Tn1
j=1R(w

0
1;j)�W1)

=

R�
Tn1
j=1R(w

0
1;j)

And it can be proved that an unresolvable Issue Ik must fall in at least one

stakeholder's lose region:

8issue Ik; Ik is unresolvable , 9Lm s:t: Ik � Lm:

With respect to the example, some candidate options would be to increase the

budget limit by f4w(1; 1)g1 = $1M; to defer the simulation function f4w(2; 1)g2;

or various combinations of these.

43

An agreement Ak is then a resolution to resolve Issue Ik by adopting a feasible

combination of options, which is passed by all the stakeholders.

De�nition 4.3

\
fw0

i;jgl2Ak

R(fw0
i;jgl) 6= �:

De�nition 4.1 is a special case of De�nition 4.3, where no relaxation is needed

and thus fw0
i;jgl = wi;j . It can be shown that an agreement is contained by the

acceptable regions, namely, fSS, WS, WW, SWg in the 2-stakeholder case.

$7M budget

25 months

DR&R 40KDSI
TEST 50KDSI

W2W1

Total: 225KDSI
including

a. win-win situation b. win-lose situation
c. non-lose situation
(win-satisfactory)

$9.4M budget

28 months

DR&R 55KDSI
TEST 70KDSI

Total: 300KDSI
including

$7M budget

25 months

DR&R

TEST

Total: 300KDSI

including

 now 225.5KDSI
 later 74.5KDSI

 now 33 KDSI
 later 22 KDSI

 now 17.5KDSI
 later 52.5KDSI

W1 W1
W2

W1 W2

W1 : Customer’s win region W2 : User’s win region

S2

S2 : User’s satisfactory region

Figure 4.4: The inter-win-condition relationships (example)

The set de�nitions can be illustrated using set diagrams exempli�ed by Figure 4.4.

W1 andW2 are Customer's and User's win regions, respectively. User at �rst presents

win conditions for functionalities that require 225KDSI (thousand delivered source

44

instructions), including 40KDSI for Data Reduction and Reporting (DR&R) and

50KDSI for TEST. This can be done within $7M (million) budget and 25 months.

As it is in Customer's win region, it is a win-win situation. Due to change of

requirements, User is asking for more functionalities that increase the code size to

300KDSI. The budget and the schedule are thus raised beyond what Customer can

supply. And now, it results in a win-lose situation.

One way to resolve this win-lose situation is to explore both stakeholders' sat-

isfactory regions Si's as options. In this example, User agrees to defer part of the

DR&R and the TEST modules until more money becomes available. This implies

that 225.5KDSI be implemented at this moment which again can be done within 25

months and $7M budget. It now settles in a non-lose (or win-satisfactory) situation.

WW SW LW LSWSWLSL

LL

SS

SS S
S

W
W

L
L

W: Win; S: Satisfactory; L: Lose

Figure 4.5: The inter-win-condition relationships

A complete enumeration of relationships between fWin,Lose,Satisfactoryg re-

gions of two stakeholders is illustrated in Figure 4.5. Figure 4.6 is a projection of

45

H1

W

S

L

H2

W

S

L

Hn

W

S

L

acceptable regions2n

acceptable region (agreement)

-2n unacceptable regions3n

3n

unacceptable region (issue)

For n stakeholders

H1

W

S

L

H2

W

S

L

9

4

For 2 stakeholders

WW
WS
SW
SS

WL
SL
LW
LS
LL

agreement line

(any path above the agreement line)

(any path across/below the agreement line)

5

Hn-1

W

S

L

Figure 4.6: The generalized inter-win-condition relationships

Figure 4.5, generalizing the 2-stakeholder case into the n-stakeholder one. The to-

tal number of regions is 3n as it is equivalent to the number of a 3-letter fW,S,Lg

permutations in n-digits where repeated letters are allowed. These regions are di-

chotomized into the following types:

� Acceptable region:

This type of region contains requirements that do not fall in any stakeholder's

lose region. By de�nition, it has a non-empty intersection among its require-

ments or win regions, and contains passed agreements. Any path above the

agreement line satis�es this criterion as it contains only stakeholders' win or

satisfactory regions. The number of quali�ed regions is 2n as it is equivalent to

the number of 2-letter fS,Wg permutations in n-digit where repeated letters

are allowed.

46

� Unacceptable region:

This type of region contains requirements that do fall in some stakeholder's

lose region and results in unresolvable issues. The number of such regions is

3n(total)� 2n(acceptable).

47

Chapter 5

The WinWin Artifact Types and Their

Relationships

As described previously, WinWin provides four major types of artifacts to support

the negotiation infrastructure:

Win Condition: a stakeholder's objective constraint, or alternative that (s)he con-

siders important and bene�cial.

Issue: an aggregate that involves a controversial combination of win conditions.

Option: an alternative that is proposed to resolve an issue.

Agreement: an aggregate that adopts options to resolve issues and cover reconciled

win conditions.

In this chapter, set de�nitions will be given to these artifact types and the rela-

tionships between di�erent types will be presented.

48

Option

Agreement

Issue

Win Conditions (involved_in)
 involves

(addressed_by)
addresses

(adopted_by)
adopts

(covered_by)
covers

m:11:m

m:m

m:m

m:1(transitive closure)

Figure 5.1: WinWin artifact relationships

5.1 Artifact Set and Relationship De�nitions

The following are set de�nitions for the four major artifact types.

W: set of win conditions

I: set of issues

O: set of options

A: set of agreements

In chapter 4, the membership criteria for these sets are developed and analyzed.

This chapter addresses the cardinality of relationships and chains of relationships

among the artifact types.

The valid relationships between di�erent WinWin artifact types are portrayed in

Figure 5.1. An issue involves many con
icting win conditions. An option addresses

an identi�ed issue. An agreement adopts the best option to resolve the corresponding

issue and covers all the win conditions involved in that issue.

49

These relationships between di�erent artifact types are denoted by the following

functions:

involves(x) : I ! W

addresses(x) : O ! I

adopts(x) : A ! O

covers(x) : A ! W

Each function listed above has a corresponding inverse relationship1:

involved in(x) : W ! I

addressed by(x) : I ! O

adopted by(x) : O ! A

covered by(x) : W ! A

5.2 Rules and Assumptions of Relationship

A problem concerning developing realistic model is that the real-world cases are

hard to be exhaustively enumerated, and even if it can be done, the resulting model

is usually very complicated and hard to understand. The strategy is thus to start

from an easy-to-understand model that is a reasonable approximation of the real

world with rules and assumptions. This section outlines the rules and assumptions

1These inverse relationships are automatically derived by the system from the relationships
established by the users.

50

on inter-artifact relationships. Their limitations and possible extensions will also be

discussed.

5.2.1 Existence Rule

WinWin helps stakeholders to negotiate requirements by acquiring their win condi-

tions as the input, capturing con
icts between win conditions using issues, proposing

alternatives to resolve issues using options, and composing agreements to adopt the

best option and to cover reconciled win conditions. Given this process, the following

rules assure that:

� an issue will not be created unless it involves some controversial win condition.

� an option will not be created unless it addresses some issue.

� an agreement will not be created unless either it covers some non-controversial

win condition or it adopts some option which resolves an issue.

Rule 5.2.1 For every issue, there must be at least one win condition that this issue

involves.

(8i 2 Ij9w 2 W; s:t: w 2 involves(i))

51

Rule 5.2.2 For every option, there must be at least one issue that this option ad-

dresses.

(8o 2 Oj9i 2 I; s:t: i 2 addresses(o))

Rule 5.2.3 For every agreement, there must be at least one option that this agree-

ment adopts or at least one win condition that the agreement covers.

(8a 2 Aj(9o 2 O; s:t: o 2 adopts(a)) _ (9w 2 W; s:t: w 2 covers(a)))

This �rst rule assumes that stakeholders will not �nd con
icts out of nothing (no

win conditions). It prevents a stakeholder from recording vague, general concerns

on risk, uncertainty or any breakdown regarding the system-to-build, which are not

related to at least win condition. The second rule assumes that an option must be

connected with some issue. It eliminates the possibility that stakeholders may want

to propose options that are not related to any current issue and store them in the

repository for later use. (If they feel the option is su�ciently necessary, they can

enter it as a win condition). The third rule insists that an agreement has to cover

some win condition. Even if there is already consensus among stakeholders on cre-

ating an agreement, they have to compose a win condition before they create that

agreement. These rules were not implemented in the initial version of WinWin-95.

52

They were considered worth adding after several users caused the system com confu-

sion by entering untraceable issues, options, and agreements. The formal modeling

e�ort here was extended to de�ne and analyze appropriate rules for the system.

5.2.2 Cardinality Rule

The following rules de�ne the cardinalities on inter-artifact relationships as illus-

trated in Figure 5.1. The principle here is for each issue to allow as many options

to address it but only one agreement to resolve it. Only rules which set constraints

on the cardinalities of the relationships will be given predicate calculus de�nitions.

Rule 5.2.4 An issue can involve many win conditions.

Rule 5.2.5 An option can address only one issue.

(8o 2 Oj (8i1; i2 2 I;

(((i1 2 addresses(o)) ^ (i2 2 addresses(o)))! (i1 = i2))))

Rule 5.2.6 An agreement can only adopt options that are not adopted by any other

agreements.

(8a 2 Aj 8o 2 O;

((o 2 adopts(a)) ^ (9a1 2 A s:t: (o 2 adopts(a1))))

! (a1 = a))

53

For the following rule, a supplementary relationship \resolves" between an agree-

ment and an issue is de�ned as the transitive closure of \adopts" and \addresses."

An agreement a resolves an issue i if a adopts an option that addresses i.

8a 2 A; resolves(a) = fiji 2 I ^ (9o 2 O s:t: (o 2 adopts(a) ^ i 2 addresses(o)))g

Rule 5.2.7 An issue can be resolved by only one agreement2.

(8a 2 Aj 8i 2 resolves(a);

((9a1 2 A s:t: (i 2 resolves(a1)))! (a1 = a))

Rule 5.2.8 an agreement can cover many non-controversial win conditions

The only rules setting constraints on the cardinalities of the inter-artifact rela-

tionships are Rules 5.2.5, 5.2.6 and 5.2.7. These constraints are added to simplify

the artifact life cycle model that will be discussed later. In short, the life cycle of

an issue is determined by the states of its addressing options. The states of these

options again are determined by the states of their adopting agreements. If more

than one agreement is allowed to adopt the same option or to potentially resolve

the same issue, how to determine the state of that option or that issue will involve

expensive computation in enumerating the many possible state combinations of the

2Without de�ning \resolves," this rule would result in a longer version: an agreement can adopt
options that address di�erent issues as long as these issues are not addressed by options that are
adopted by other agreements.

54

many agreements. The limitation for Rule 5.2.5 is that if a stakeholder wants to

reuse an option to address another issue, he/she will have to duplicate that option

and versions of the same option may create inconsistency. It also generates many

overlapping agreements if these agreements adopt duplicated options. Rules 5.2.6

and 5.2.7 deter stakeholders from combining agreements to resolve the same issue.

The idea is to push forward the combination of solutions to the option level. If

he/she wants to re�ne the resolution to an issue, he/she must replace the old agree-

ment with a new one that consolidates the added options with options in the old

agreement.

5.2.3 Artifact Dropping Rule

One of the goals for WinWin is to deal with changes to requirements. A very

common change to requirements is deletion/dropping. This section contains rules

for dropping (i.e. inactivating/deleting)3 an artifact.

An agreement can be dropped at any time. If it is dropped, all artifacts referenced

by it directly (like the options adopted by it) or indirectly (like the issues that are

addressed by its adopted options) will be reset to the states as they were before that

agreement is proposed.

3\inactivate" means this dropped artifact still can be viewed, whereas \delete" means this
artifact is dropped from the data base permanently

55

An option can only be dropped if there is no agreement adopting it. If there is an

agreement adopting it, stakeholders must �rst remove the \adopts" reference from

that agreement. If the dropped option is the only option that the agreement adopts,

the agreement ought to be dropped �rst since every agreement must point to at least

one option. If the adopting agreement has a vote in progress or is already passed, no

references can be removed until the vote fails or the agreement gets dropped. Once

an option is dropped, all artifacts referenced by it directly or indirectly restore their

states back to what they were before that option is proposed.

An issue can only be dropped if there is no option addressing it. Otherwise, the

references must be removed from its addressing options. As each option can only

address one issue and an option cannot exist if it does not point to any issue, this

implies that all the options addressing this issue must be inactivated or redirected

to other issues before this issue can be dropped.

A win condition can be dropped if

� it is not the only one covered by an agreement.

Otherwise, the agreement needs to be dropped �rst.

� it is not the only one involved in an issue.

Otherwise, the issue needs to be dropped �rst.

56

� it is not (directly or indirectly) covered by an agreement that has a vote in

progress.

Otherwise, it requires the vote to fail or the agreement to be dropped �rst.

� it is not (directly or indirectly) covered by an agreement whose vote has passed.

Otherwise, the agreement needs to be dropped �rst.

5.3 Artifact Chain and Artifact Set

A1 O1 I1 W1

W2A2

adopts addresses involves

covers

covers

O3 I3

involvesaddresses

W3

Figure 5.2: Examples of artifact chain

Given the artifact types and relationships, the artifact chains and artifact sets can

be composed to portray graphs that capture possible connections between artifact

nodes. An artifact chain is a graph of artifact nodes connected by valid relationship

links. An artifact set of a win condition w is the union of all artifact chains starting

with w. The following sections de�ne and illustrate artifact chains and artifact sets.

57

5.3.1 Artifact Chain

An artifact chain is a graph of artifact nodes connected by valid relationship links.

The valid relationship links are de�ned according to the previous section:

De�nition 5.3.1

involves
�! : involves

addresses
�! : addresses

adopts
�! : adopts

covers
�! : covers

De�ne an artifact chain to be:

De�nition 5.3.2

chain ::= [I � chainjAc � chain] < Win Condition >

I � chain ::= [O � chain] < Issue >
involves
�!

O � chain ::= [Aa � chain] < Option >
addresses
�!

Aa � chain ::=< Agreement >
adopts
�!

Ac � chain ::=< Agreement >
covers
�!

In an artifact chain, it is important to know what nodes are participating in

that chain. The following de�nitions are formulated to help project di�erent artifact

nodes of an artifact chain.

58

De�nition 5.3.3 De�ne H to be the set of all chains.

De�nition 5.3.4 De�ne SHI to be the set of all I-chains.

De�nition 5.3.5 De�ne SHO to be the set of all O-chains

De�nition 5.3.6 De�ne SHA
a to be the set of all Aa-chains

De�nition 5.3.7 De�ne SHA
c to be the set of all Ac-chains

The function \head" returns the starting win condition w of an artifact chain h.

De�nition 5.3.8

9w 2 W; 9h 2 H;

head(h) = w, (h = w)_

(9hi 2 SH
I s:t: h = hi w)_

(9ha 2 SHA
c s:t: h = ha w)

The function \involver" returns the involving issue i of an artifact chain h.

De�nition 5.3.9

9i 2 I; 9h 2 H;

involver(h) = i,

(9w 2 W s:t: h = i
involves
�! w)_

(9w 2 W ^ 9ho 2 SHO s:t: h = hoi
involves
�! w)

59

The function \addresser" returns the addressing option o of an artifact chain h.

De�nition 5.3.10

9o 2 O; 9h 2 H;

addresser(h) = o,

(9w 2 W;9i 2 I s:t: h = o
addresses
�! i

involves
�! w)_

(9w 2 W;9i 2 I;9ha 2 SH
A
c s:t: h = hao

addresses
�! i

involves
�! w)

The function \coverer" returns the covering agreement a of an artifact chain h.

De�nition 5.3.11

9a 2 A; 9h 2 H;

coverer(h) = a,

(9w 2 W;9i 2 I;9o 2 O s:t: h = a
adopts
�! o

addresses
�! i

involves
�! w)_

(9w 2 W s:t: h = a
covers
�! w)

Any chain containing an issue indicates there is con
ict that requires resolution.

HI is de�ned to mark this kind of chain.

De�nition 5.3.12

HI = fhjh 2 H;9w 2 W;9hi 2 SH
I s:t: h = hi wg

60

A1 O1 I1 W1

W2A2

adopts addresses involves

covers

covers

Figure 5.3: Examples of complete artifact chains

The following de�nitions de�ne what is a complete artifact chain and what is a

degraded artifact chain.

De�nition 5.3.13 A complete artifact chain is an artifact chain starting with a

win condition and ending with an agreement.

9h 2 H;

h is complete ,

9w 2 W;9i 2 I;9o 2 O;9a 2 A; s:t:

(h = a
covers
�! w) _ (h = a

adopts
�! o

addresses
�! i

involves
�! w)

De�nition 5.3.14 A degraded chain is a chain containing only a win condition.

9h 2 H;

h is degraded , 9w 2 W; s:t: h = w

61

A1 O1 I1 W1

A2

adopts addresses involves

covers

covers

O3

I3

involves

addresses

Figure 5.4: An artifact set example

5.3.2 Artifact Set

De�nition 5.3.15 An artifact set of a win condition is the union of all artifact

chains starting with this win condition.

9w 2 W;

Artifact set(w) = fhjh 2 H;9hs 2 (SHA
c [SH

I) s:t: (h = hs w)g

62

Chapter 6

The WinWin Artifact Life Cycle

TheWinWin Artifact Life Cycle is de�ned by two attributes of an artifact: status and

state. The attribute \status"is to show whether an artifact is \active" or \inactive."

A functional de�nition for the attribute \status" is as follows:

De�ning the domain and range of the function status(x):

De�nition 6.1 status(x): (W [I [O [A)! factive; inactiveg

The attribute \state," on the one hand, re
ects the inter-relationship between

artifacts. On the other hand, it helps de�ne the state in the equilibrium model

that tells the stakeholders how far away from equilibrium it is and what potential

operations there are to approach a desired state in the equilibrium model. In this

chapter, a detailed State model will be elaborated to portray how it supports the

two purposes mentioned above.

63

-(open)

passed

failed

Stakeholder drafts
an agreement

Stakeholders
achieve consensus

Stakeholders fail the vote on this agreement

vote-in-
progress

Stakeholders
start a vote
on this agreement

Figure 6.1: Agreement life cycle

6.1 Agreement

For any agreement a, it is associated with a state determined by the progress of the

voting process as follows:

� open: when a is proposed.

� vote-in-progress: when a is being voted.

� passed: when stakeholders pass the vote.

� failed: when stakeholders fail the vote.

These states are exhaustive and mutually exclusive.

The functional de�nition for the attribute \state" of an agreement is as follows:

De�nition 6.2 state(a) : A! fopen; vote� in� progress; passed; failedg

64

unused

used

Stakeholders
pass the vote on

Stakeholders propose
option to an issue

pre-used
Option is
adopted by
an open
agreement

the adopting agreement

Adopting agreement
is dropped

Adopting agreement
is dropped or failed

vote-in-progress

Adopting agreement
is dropped or failed

Stakeholders
start a vote on
the adopting
agreement

Figure 6.2: Option life cycle

6.2 Option

For any option o, it is associated with a state determined by its adopting agreement

as follows:

� unused

{ English description: o is not adopted by any agreement.

{ Description in predicate calculus:

(8(a 2 A)j(o 62 adopts(a)) _ (state(a) = failed))

� pre-used

{ English description: o is adopted by an open agreement.

{ Description in predicate calculus:

(9(a 2 A)j(o 2 adopts(a)) ^ (state(a) = open))

65

� vote-in-progress

{ English description: o is adopted by a vote-in-progress agreement.

{ Description in predicate calculus:

(9(a 2 A)j(o 2 adopts(a)) ^ (state(a) = vote� in� progress))

� used

{ English description: o is adopted by a passed agreement.

{ Description in predicate calculus:

(9(a 2 A)j(o 2 adopts(a)) ^ (state(a) = passed))

The functional de�nition for the attribute \state" of an option is as follows:

De�nition 6.3 state(o) : O ! funused; pre� used; vote� in� progress; usedg

6.3 Issue

For any issue i, it is associated with a state determined by its addressing options as

follows:

66

open

Stakeholders propose
options

pre-resolved
resolved

Stakeholders
cite an issue

Stakeholders pass the vote on
the resolving agreement

addressed

Stakeholders choose
the best option(s)
and propose
agreement

The resolving agreement
is dropped

All addressed
options

vote-in-
progress

The resolving agreement
is dropped

The resolving agreement
is dropped

Stakeholders start a
vote on
the resolving agreement

are dropped

Figure 6.3: Issue life cycle

� open

{ English description: i is not addressed by any options.

{ Description in predicate calculus:

(8(o 2 O)j(i 62 addresses(a)))

� addressed

{ English description: i is addressed by only unused options.

{ Description in predicate calculus:

(9(o 2 O)j(i 2 addresses(a)) ^ (state(o) = unused))

� pre-resolved

{ English description: i is addressed by a pre-used option.

{ Description in predicate calculus:

(9(o 2 O)j(i 2 addresses(a)) ^ (state(o) = pre � used))

67

� vote-in-progress

{ English description: i is addressed by a vote-in-progress option.

{ Description in predicate calculus:

(9(o 2 O)j(i 2 addresses(a)) ^ (state(o) = vote� in� progress))

� resolved

{ English description: i is addressed by a used option.

{ Description in predicate calculus:

(9(o 2 O)j(i 2 addresses(a)) ^ (state(o) = used))

The functional de�nition for the attribute \state" of an issue is as follows:

De�nition 6.3.1

state(i) : I ! fopen; addressed; pre� resolved; vote� in� progress; resolvedg

6.4 Win Condition

A win condition can be referred to by both an issue (via the relationship \involves"),

and an agreement (via the relationship \covers") to result in various negotiation

states.

68

A O I W

adopts addresses involves

covers

I

involves

WO I

involvesaddresses

W

W

A O I W

adopts addresses involves

covers

A O I W

adopts addresses involves

covers

free

uncovered (u)

pre-covered (p)

vote-in-progress (v)

covered (c)

open pre-used pre-resolved

unused addressed

or

unresolved

vote-in-progress vote-in-progress vote-in-progress

passed used resolved

free

uncovered

pre-covered

covered

vote-in-progress

Figure 6.4: Basic states in a particular artifact chain

6.4.1 Basic States

The basic state of a win condition is determined by either the issue that involves this

win condition and or the agreement that covers it within a particular artifact chain

as shown in Figure 6.4. The grey shading indicates that an agreement can also indi-

rectly cover a win condition by adopting an option that addresses an issue involving

that win condition. Table 6.1 provides a view that dichotomizes Figure 6.4 into

artifact chains including or excluding issues. Figures 6.5 and 6.6 show the life cycle

of a win condition within a chain including an issue or excluding an issue respec-

tively. Figure 6.7 provides a merged view of the previous two �gures to enumerate

69

 Artifact Type Win Condtion Issue Option Agreement

State (for an artifact
chain with an issue)

free - - -

uncovered open - -

uncovered addressed unused -

pre-covered pre-resolved pre-used open

vote-in-progress vote-in-progress vote-in-progress vote-in-progress

covered resolved used passed

uncovered addressed unused failed

State (for an artifact
chain without an
issue)

pre-covered - - open

voted - - in-progress

covered - - passed

free - - failed

 Artifact Type Win Condtion Issue Option Agreement

State (for an artifact
chain with an issue)

free - - -

uncovered open - -

uncovered addressed unused -

pre-covered pre-resolved pre-used open

vote-in-progress vote-in-progress vote-in-progress vote-in-progress

covered resolved used passed

uncovered addressed unused failed

State (for an artifact
chain without an
issue)

pre-covered - - open

voted - - in-progress

covered - - passed

free - - failed

Table 6.1: State correspondence in an artifact chain

all the possible basic states and transitions for the life cycle of a win condition in

the context of a speci�c artifact chain.

The following give de�nitions to the basic states for a win condition w as illus-

trated in Figure 6.7.

� free

{ English description: w is neither involved in any issues nor covered by

any agreements.

{ Description in predicate calculus:

(8(i 2 I); 8(a 2 A)j(w 62 involves(i))^ (w 62 covers(a)g))

� uncovered

{ English description: w is involved in an open/addressed issue.

70

uncovered

WinC is
involved

pre-covered

in an issue

covered

WinC is
indirectly covered by
an open agreement
via its involving
issues

Stakeholders passed
covering agreement

agreement
resolving involving
issue dropped

passed agreement
resolving involving
issue dropped

vote-in-
progress

agreement
resolving involving
issue dropped/failed

issue dropped
and this artifact chain
no longer exists

Stakeholders start
a vote on
covering agreement

Figure 6.5: Win condition life cycle: within an artifact chain starting with a win
condition involved in an issue

{ Description in predicate calculus:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))

� pre-covered

{ English description: w is covered by an open agreement.

{ Description in predicate calculus:

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))

� vote-in-progress

{ English description: w is covered by a vote-in-progress agreement.

{ Description in predicate calculus:

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))

71

pre-covered covered

WinC is
directly covered by
an open agreement

Stakeholders passed
covering agreement

agreement
covering
win condition

passed agreement
covering
win condition

vote-in-
progress

agreement
covering
win condition

This artifact chain
no longer exists

Stakeholders start
a vote on
covering agreement

dropped/failed droppeddropped

Figure 6.6: Win condition life cycle: within an artifact chain starting with win
condition covered by an agreement

� covered

{ English description: w is covered by a passed agreement.

{ Description in predicate calculus:

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

The functional de�nition for the attribute \basic-state" of a win condition is as

follows:

De�nition 6.4

basic state(w) : W ! ffree; uncovered; vote� in� progress; coveredg

72

agreement
covering
win condition

passed agreement
covering
win condition

agreement covering
win condition
dropped/failed

droppeddropped

uncovered

win condition is
involved

pre-covered

in an issue

covered

Stakeholders
passed

agreement
resolving involving
issue dropped

passed agreement
resolving involving
issue dropped

vote-in-
progress

agreement
resolving involving
issue dropped/failed

a new win condition
is entered

Stakeholders start
a vote on
covering
agreement

free

covering
agreement

WinC is indirectly
covered by
an open agreement
via its involving
issues

new win condition
is directly covered
by an open agreement

Figure 6.7: Win condition life cycle: merged view

The following notation is used to project the basic state for a win condition w

in a particular artifact chain h.

basic state(w):h

6.4.2 State Transition Operators

As described in 5.3.2, a win condition w has an artifact set that is composed of

all artifact chains starting with w. While each artifact chain can have only one

basic state|uncovered(U), pre-covered(P), vote-in-progress (V), and covered(C),

the many artifact chains can result in many possible combinations of the basic states.

Figure 6.8 shows an example of the UPV combination|a win condition that has

three basic states: uncovered(U), pre-covered(P), and vote-in-progress(V) in the

three artifact chains originating from it.

73

A1O1I1W1

A2

O3

I3

unused

addressed

Uncovered

open

vote-in-progressvote-in-progressvote-in-progress

Vote-in-progress

Pre-covered

UPV

U P

V

Figure 6.8: The UPV state

The following set describes this augmented state space.

De�nition 6.4.1

S = L((U + �)(P + �)(V + �)(C + �))

= f�;U; P; V;C;UP;UV;UC;PV; PC; V C;UPV;UPC;UV C;PV C;UPV Cg

These states are classi�ed into 6 super states as shown in Table 6.2. This classi-

�cation characterizes:

1. Free: w is neither involved in an issue nor covered by an agreement.

2. Bound: w is involved in some open/addressed issue(s) and/or covered only

by some open agreement(s).

3. Bound-Frozen: w is covered by no passed but at least one vote-in-progress

agreement that causes its content to be frozen for that vote.

74

Augmented State

uncovered(u) pre-covered(p) voted(v) covered(c)

free 0 0 0 0

Uncovered (U) 1 0 0 0

Pre-covered(P) 0 1 0 0

uncovered &pre-covered(up) 1 1 0 0

Voted(V) 0 0 1 0

uncovered&voted (uv) 1 0 1 0

Pre-covered&voted(pv) 0 1 1 0

uncovered &pre-covered&voted(upv) 1 1 1 0

uncovered &covered(uc) 1 0 0 1

pre-resolved& covered(pc) 0 1 0 1

uncovered &pre-covered& covered(upc) 1 1 0 1

voted&covered(vc) 0 0 1 1

uncovered &voted&covered(uvc) 1 0 1 1

pre-resolved&voted&covered(pvc) 0 1 1 1

uncovered &pre-covered&voted&covered(upvc) 1 1 1 1

Covered(C) 0 0 0 1

Table 6.2: Win condition life cycle: hierarchical view

4. Partially-Covered: w is covered by some agreement(s); and among the agree-

ments that cover it, at least one (but not all) is passed and there is no vote-

in-progress agreement.

5. Partially-Covered-Frozen: w is covered by at least one passed agreement

and one vote-in-progress agreement.

6. Fully-Covered: w is only covered by passed agreements.

De�nition 6.4.2

Sa = f free; bound; bound � frozen; partially� covered;

partially � covered� frozen; fully � covered g

75

De�ne the function sub for the states in Sa as follows:

De�nition 6.4.3

sub(free) = f�g

sub(bound) = fP;U; PUg

sub(bound� frozen) = fV; PV;UV; PUV g

sub(partially� covered) = fUC;PC;PUCg

sub(partially� covered� frozen) = fV C;UV C;PV C;PUV Cg

sub(covered) = fCg

De�nition 6.4.4 8s 2 S; super(s) = fxjx 2 Sa ^ s 2 sub(x)g

States in S will be called the sub states. States in Sa will be called the super

states. The sub states together with the super states formulate a hierarchical state

model that will be explained in details in section 6.4.4.

The following operators are possible transitions among these many possible states

in the lower level.

6.4.2.1 Basic Operators

+U: The win condition is involved in a new issue (of state \open/addressed").

+P: The win condition is covered by an open agreement.

!U: One of the involving \open/addressed" issues is dropped.

76

-U: The only involving \open/addressed" issue is dropped.

!P: One of the covering open agreements is dropped or failed.

-P: The only covering open agreement is dropped or failed.

!V: One of the covering vote-in-progress agreements is dropped or failed.

-V: The only covering vote-in-progress agreement is dropped or failed.

!C: One of the covering passed agreements is dropped.

-C: The only covering passed agreement is dropped.

!U+P: An open agreement is proposed to resolve some (but not all) issues that

involve the win condition.

-U+P: An open agreement is proposed to resolve all issues that involve the win

condition.

!P+V: A vote is conducted on one of the open agreements that cover the win

condition.

-P+V: A vote is conducted on the only open agreement that covers the win condi-

tion.

!V+C: The vote on one of the vote-in-progress agreements that cover the win con-

dition is passed.

77

-V+C: The vote on the only vote-in-progress agreement that covers the win con-

dition is passed.

!P+U: Dropping one of the open agreements that indirectly cover this win condition

by issues causes the corresponding issues to back o� from \pre-resolved" to

\addressed".

-P+U: Dropping the only open agreement that covers this win condition by issues

causes the corresponding issues to back o� from \pre-resolved" to \addressed".

!V+U: Dropping one of the vote-in-progress agreements that cover this win condi-

tion by issues causes the corresponding issues to back o� from \vote-in-progress

to \addressed".

-V+U: Dropping the only vote-in-progress agreement that covers this win condition

by issues causes the corresponding issues to back o� from \vote-in-progress"

to \addressed".

!C+U: Dropping one of the passed agreements that indirectly cover this win con-

dition by issues causes the corresponding issues to back o� from \resolved" to

\addressed".

-C+U: Dropping the only passed agreement that indirectly covers this win condi-

tion by issues causes the corresponding issues to back o� from \resolved" to

\addressed".

78

De�ne a set T (Transition Operator) to be the set of the above operators.

De�nition 6.4.5

T = f +U; +P; �U; !U; �P; !P; �V; !V; �C; !C;

�U + P; !U + P; �P + V; !P + V; �V + C; !V + C;

�P + U; !P + U; �V + U; !V + U; �C + U; !C + U g

6.4.2.2 Rules

1. +U can be applied at any state. That is, a win condition can be involved in

an open/addressed issue at any state.

2. +P can be applied at any state. That is, a win condition can be covered by

an open agreement at any state.

3. !U, -U, !U+P, and -U+P can only be applied when the current state contains

a U.

4. !P, -P, !P+V, -P+V, !P+U, and -P+U can only be applied when the

current state contains a P.

5. !V, -V, !V+C, -V+C, !V+U, and -V+U can only be applied when the

current state contains a V.

6. !C, -C, !C+U, and -C+U can only be applied when the current state contains

a C.

79

7. !P+U, -P+U, !V+U, -V+U, !C+U, and -C+U can only be applied when

the corresponding artifact chain has an issue.

8. Operator !X can only be applied when there are multiple X's; where X can be

U, P, V or C.

6.4.2.3 State Set De�nitions

De�nition 6.4.6 LU = (U + �)

De�nition 6.4.7 LP = (P + �)

De�nition 6.4.8 LV = (V + �)

De�nition 6.4.9 LC = (C + �)

De�nition 6.4.10 SU = L(ULPLVLC) � S

De�nition 6.4.11 SU = S � SU

De�nition 6.4.12 SP = L(LUPLV LC) � S

De�nition 6.4.13 SP = S � SP

De�nition 6.4.14 SV = L(LULPV LC) � S

De�nition 6.4.15 SV = S � SV

De�nition 6.4.16 SC = L(LULPLVC) � S

80

A1 O1 I1 W1

A2

O3

I3

unused

addressed

Uncovered

open

open

pre-used pre-resolved
Pre-covered

Pre-covered

P+V

Figure 6.9: An example of an artifact chain in the set MP

De�nition 6.4.17 SC = S � SC

The following sets de�ne the situations when a win condition has the same basic

state in two of the artifact chains that it originates as exempli�ed by �gure 6.9.

De�nition 6.4.18 MU = fsjs 2 SU ;9w 2 W;9h1; h2 2 H; s:t: (head(h1) = w) ^

(head(h2) = w) ^ (state(w) : h1 = uncovered) ^ (state(w) : h2 = uncovered)g

De�nition 6.4.19 MP = fsjs 2 SP ;9w 2 W;9h1; h2 2 H; s:t: (head(h1) = w) ^

(head(h2) = w)^ (state(w) : h1 = pre� covered)^ (state(w) : h2 = pre� covered)g

De�nition 6.4.20 MV = fsjs 2 SV ;9w 2 W;9h1; h2 2 H; s:t: (head(h1) = w) ^

(head(h2) = w) ^ (state(w) : h1 = vote� in� progress) ^ (state(w) : h2 = vote�

in� progress)g

81

De�nition 6.4.21 MC = fsjs 2 SC;9w 2 W;9h1; h2 2 H; s:t: (head(h1) = w) ^

(head(h2) = w) ^ (state(w) : h1 = passed) ^ (state(w) : h2 = passed)g

De�nition 6.4.22 MU = SU �MU

De�nition 6.4.23 MP = SP �MP

De�nition 6.4.24 MV = SV �MV

De�nition 6.4.25 MC = SC �MC

6.4.2.4 Axioms

In this section, the pre-condition and post-condition of each operator de�ned in

6.4.2.1 will be given. That is, for each operator, the axiom will show in what state

an operator is applicable, and after the transition operator has been applied, how

the next state is determined.

De�nition 6.4.26 8x 2 X; a transition operator t 2 T is applicable , t(x) 2 S

1. +U

� pre-condition: +U can be applied at any state. That is, a win condi-

tion can be involved in an open/addressed issue at any state.

+U(x) 2 S , x 2 S

82

Axiom 6.4.1

+U(x) =

8>>><
>>>:

x 8x 2 SU

Ux 8x 2 SU

2. +P

� pre-condition: +P can be applied at any state. That is, a win condi-

tion can be covered by an open agreement at any state.

+P(x) 2 S , x 2 S

Axiom 6.4.2

+P(x) =

8>>><
>>>:

x 8x 2 SP

x1Px2 8x1 2 L(LU) 8x2 2 L(LVLC) s:t: x = x1x2 2 SP

3. !U

� pre-condition: !U can be only be applied when in the current state,

there are multiple open/addressed issues (U) involving this win condition.

And when one involving open/addressed issue is dropped, there is still

another open/addressed issue to keep U.

x 2MU , !U(x) 2 S

83

Axiom 6.4.3

!U(x) = x; 8x 2MU

4. -U

� pre-condition: -U can be only be applied when the current state

contains only one U. That is, there is only one open/addressed issue (U)

involving this win condition. When the only open/addressed issue is

dropped, U is therefore eliminated.

x 2MU ,�U(x) 2 S

Axiom 6.4.4

�U(x) = x1 8x = Ux1 s:t: x 2MU

5. !P

� pre-condition: !P can be only be applied when in the current state,

there are multiple open agreements (P) covering this win condition. And

when one open agreement is dropped, there is still another open agree-

ment to keep P.

84

x 2MP , !P(x) 2 S

Axiom 6.4.5

!P(x) = x 8x 2MP

6. -P

� pre-condition: -P can only be be applied when the current state

contains only one P. That is, there is only one open agreement covering

this win condition. When the only open agreement is dropped, P is

therefore eliminated.

x 2MP , �P(x) 2 S

Axiom 6.4.6

�P(x) = x1x2 8x = x1Px2 s:t: x 2MP

85

7. !V

� pre-condition: !V can only be be applied when in the current state,

there are multiple vote-in-progress agreements (V) covering this win con-

dition. When one vote-in-progress agreement is dropped, there is still

another vote-in-progress agreement to keep V.

x 2MV , !V(x) 2 S

Axiom 6.4.7

!V(x) = x 8x 2MV

8. -V

� pre-condition: -V can only be be applied when the current state

contains only one V. That is, there is only one vote-in-progress agreement

covering this win condition. When the only vote-in-progress agreement is

dropped, V is therefore eliminated.

x 2MV , �V(x) 2 S

86

Axiom 6.4.8

�V(x) = x1x2 8x = x1V x2 s:t: x 2MV

9. !C

� pre-condition: !C can only be be applied when in the current state,

there are multiple passed agreements (C) covering this win condition.

When one passed agreement is dropped, there is still another passed

agreement to keep C.

x 2MC , !C(x) 2 S

Axiom 6.4.9

!C(x) = x 8x 2MC

10. -C

� pre-condition: -C can only be applied when the current state contains

onlye one C. That is, there is only one passed agreement covering this win

condition. When the only passed agreement is dropped, C is therefore

eliminated.

87

x 2MC , �C(x) 2 S

Axiom 6.4.10

�C(x) = x1 8x = x1C s:t: x 2MC

11. !U+P

� pre-condition: !U+P can only be applied when the current state has

multiple open/addressed issues (U); where some become pre-resolved (P

is added), but others do not (U remains).

x 2MU , !U+P(x) 2 S

Axiom 6.4.11

!U+P(x) = +P(!U(x)) 8x 2MU

88

12. -U+P

� pre-condition: -U+P can only be applied when the current state

has only one open/addressed issue (U), which is pre-resolved by a new

agreement so U is eliminated and P is added if it was not there.

x 2MU , �U+P(x) 2 S

Axiom 6.4.12

�U+P(x) = +P(�U(x)) 8x 2MU

13. !P+V

� pre-condition: !P+V can only be applied when the current state has

multiple open agreements (P); where some move to vote-in-progress (V

added), but others are not (P remains).

x 2MP , !P+V(x) 2 S

Axiom 6.4.13

!P+V(x) = +V(!P(x)) 8x 2MP

89

14. -P+V

� pre-condition: -P+V can only be applied when the current state

has only one open agreement (P) and it moves to vote-in-progress. P is

therefore eliminated and V is added if it was not there.

x 2MP , �P+V(x) 2 S

Axiom 6.4.14

�P+V(x) = +V(�P(x)) 8x 2 MP

15. !V+C

� pre-condition: !V+C can only be applied when the current state has

multiple vote-in-progress agreements (V); where some become passed (C

added), but others are not (C remains).

x 2MV , !V +C(x) 2 S

Axiom 6.4.15

!V +C(x) = +C(!V(x)) 8x 2MV

90

16. -V+C

� pre-condition: -V+C can only be applied when the current state

has only one vote-in-progress agreement (V) whose vote is passed. V is

therefore eliminated and C is added if it was not there.

x 2MV , �V+C(x) 2 S

Axiom 6.4.16

�V +C(x) = +C(�V(x)) 8x 2MV

17. !P+U

� pre-condition: !P+U can only be applied when the current state has

multiple open agreements (P) that used to resolve some issues; where

some are dropped to cause the corresponding issues to become uncovered

(U is added), but others still remain (P remains).

91

x 2 fsj s 2MP ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = pre� covered)g

,

!P+U(x) 2 S

Axiom 6.4.17

!P+U(x) = +U(!P(x))

8x 2 fsj s 2MP ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = pre � covered)g

18. -P+U

� pre-condition: -P+U can only be applied when the current state has

only one open agreement (P) that used to resolve some issues and is now

dropped. P is therefore eliminated and U is added if it was not there.

92

x 2 fsj s 2MP ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = pre� covered)g

,

�P+U(x) 2 S

Axiom 6.4.18

�P+U(x) = +U(�P(x))

8x 2 fsj s 2MP ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = pre� covered)g

19. !V+U

� pre-condition: !V+U can only be applied when the current state has

multiple vote-in-progress agreements (V) that used to resolve some issues;

where some are dropped (U) added), but others are not (V remains).

93

x 2 fsj s 2MV ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = vote� in� progress)g

,

!V +U(x) 2 S

Axiom 6.4.19

!V+U(x) = +U(!V(x))

8x 2 fsj s 2MV ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = vote� in� progress)g

20. -V+U

� pre-condition: -V+U can only be applied when the current state has

only one vote-in-progress agreement (V) that used to resolve some issues

and is now dropped. V is therefore eliminated and U is added if it was

not there.

94

x 2 fsj s 2MV ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = vote� in� progress)g

,

�V +U(x) 2 S

Axiom 6.4.20

�V +U(x) = +U(�V(x))

8x 2 fsj s 2MV ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = vote� in� progress)g

21. !C+U

� pre-condition: !C+U can only be applied when the current state has

multiple passed agreements (C) that used to resolve some issues; where

some are dropped (U is added), but others are not (C remains).

95

x 2 fsj s 2MC ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = passed)g

,

!C+U(x) 2 S

Axiom 6.4.21

!C+U(x) = +U(!C(x))

8x 2 fsj s 2MC ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = passed)g

22. -C+U

� pre-condition: -C+U can only be applied when the current state has

only one passed agreement (C) that used to resolve some issues and is

now dropped. C is therefore eliminated and U is added if it was not there.

96

x 2 fsj s 2MC ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = passed)g

,

�C +U(x) 2 S

Axiom 6.4.22

�C+U(x) = +U(�C(x))

8x 2 fsj s 2MC ;9w 2 W;9h 2 HI ; s:t:

(state(w) = s) ^ (head(h) = w)^

(basic state(w) : h = passed)g

6.4.3 State Transition Computation

In this section, theories and algorithms are developed to compute the next states by

applying feasible operators to the current state.

6.4.3.1 Next State: Sub States

A sub state sj is the next state of another sub state si if and only if there exists an

state transition operator t and by applying t to si, the result is sj.

97

De�nition 6.4.27 8si 2 S; next(si) = fsjjsj 2 S ^ (9t 2 T ^ t(si) = sj)g

Theorem 6.4.1

9si; sj 2 S; sj 2 next(si), 9t 2 T ^ t(si) = sj

Algorithm 6.1 Next-State-Sub(S,T)

For each state CurrentState in S

� Print CurrentState

� next(CurrentState) �.

� For each operator OP in T

{ NextState OP(s)

{ If NextState in S,

� Print (CurrentState , OP, NextState)

� next(CurrentState) fNextState g [next(CurrentState)

� Print next(CurrentState)

6.4.3.2 Next State: Super States

A super state sn is the next state of another super state sm if and only if sn has a

sub state snj that is the next state of smi, whose super state is sm.

98

De�nition 6.4.28

8 sm 2 Sa;

next(sm) = fsnj(sn 2 Sa);^

(9smi 2 sub(sm); snj 2 sub(sn) ^ snj 2 next(smi))g

Theorem 6.4.2

9sm; sn 2 Sa; sn 2 next(sm),

9smi 2 sub(sm); snj 2 sub(sn) ^ snj 2 next(smi)

Algorithm 6.2 Next-State-Super(Sa)

For each state CurrentState in Sa

� Print CurrentState

� next(CurrentState) �.

� For each sub state SubState in sub(CurrentState),

{ For each sub state NextSub in next(SubState)

� next(CurrentState) next(CurrentState) [super(NextSub)

� Print next(CurrentState)

99

free

(fully) covered

All agreements

Stakeholder
enters a win condition

WinC is either involved
in an issue or covered

covering

bound
(frozen)

by an open/in-progress

partially-
covered
(frozen)

agreement

All agreements covering
WinC passed

At least one agreement covering
WinC passed; but not all

WinC passedall covering agreements
and
involving
issues
dropped

all covering agreements
dropped

all passed agreements
dropped

partially-
covered

bound

Figure 6.10: Top level of the hierarchical win condition life cycle model

6.4.4 Augmented Hierarchical State Model

For any win condition w, it is associated with only one of the following states at a

given layer of the augmented win condition hierarchical state model.

6.4.4.1 free(�)

� English description: w is neither involved in any issue nor covered by any

agreement.

� De�nition using basic states: :((U) _ (P) _ (V) _ (C)

� De�nition in predicate logic:

(8(a 2 A)j(w 62 covers(a)) ^ (w 62 involves(i)))

100

� Next states:

On the top level: bound

On the second level: pre-covered(P), and uncovered(U).

6.4.4.2 bound

� English description: w is involved in some open/addressed issue(s) and/or

covered only by some open agreement(s).

� De�nition using basic states: ((U) _ (P)) ^ (:(V)) ^ (:(C))

� De�nition in predicate logic:

(9(a 2 A) j (w 2 covers(a))) _ (9(i 2 I)j(w 2 involves(i)))^

(8(a 2 A) j (w 2 covers(a))! (state(a) 2 fopen; failedg))

� Next states: free, bound and bound-frozen.

� Substates:

1. uncovered(U)1

{ English description: w is only involved in some open/addressed

issue(s) but not covered by any agreement.

1The augmented \uncovered" di�ers from the basic \uncovered" in that the basic one does not
exclude the existence of the other two basic states \pre-covered" and \covered"

101

{ De�nition using basic states: (U) ^ (:(P)) ^ (:(V)) ^ (:(C))

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(8(a 2 A)j(w 62 covers(a)) _ (state(a) = failed))

{ Next states: free(�), pre-covered(P), uncovered+pre-covered(UP),

and uncovered(U).

2. pre-covered(P)2

{ English description: w is only covered by some open agreement(s)

(which implies if w is involved in any issue, the state of its involving

issue must be pre-resolved).

{ De�nition using basic states: (:(U)) ^ (P) ^ (:(V)) ^ (:(C))

{ De�nition in predicate logic:

(8(i 2 I)j(w 2 involves(i)) 2 (state(i) = pre � resolved))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(8(a 2 A)j

(w 2 covers(a))! (state(a) 62 fvote� in� progress; passedg))

2Like the augmented \uncovered," the augmented \pre-covered" di�ers from the basic \pre-
covered" in that the basic one does not exclude the existence of the other two basic states \uncov-
ered" and \covered".

102

{ Next states: uncovered(U), free(�),

pre-covered+vote-in-progress(PV), vote-in-progress(V),

pre-covered(P), and uncovered+pre-covered(UP).

3. uncovered+pre-covered(UP)

{ English description: w is involved in some open/addressed is-

sue(s) and covered by some open agreement(s) but not covered by

any passed agreements.

{ De�nition using basic states: ((U) ^ (P)) ^ (:(V)) ^ (:(C))

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(8(a 2 A)j

(w 2 covers(a))! (state(a) 62 fvote� in� progress; passedg))

{ Next states: uncovered(U),

uncovered+pre-covered+vote-in-progress(UPV),

uncovered+vote-in-progress(UV), pre-covered(P),

uncovered+pre-covered(UP).

103

6.4.4.3 bound(frozen)

� English description: w is involved in some open/addressed issue(s) and

covered by some vote-in-progress but no passed agreement(s).

� De�nition using basic states: (V) ^ (:(C))

� De�nition in predicate logic:

(9(a 2 A)j(w 2 covers(a))) _ (9(i 2 I)j(w 2 involves(i)))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= passed))

� Next states: partially-covered, covered, partially-covered-frozen, free, bound-

frozen and bound.

� Substates:

1. vote-in-progress(V)

{ English description: w is only covered by some vote-in-progress

agreement(s).

{ De�nition using basic states: (:(U)) ^ (:(P)) ^ (V) ^ (:(C))

104

{ De�nition in predicate logic:

(8(i 2 I)j(w 2 involves(i))! (state(i) 62 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(w)) ^ (state(a) = vote� in� progress))^

(8(a 2 A)j

(w 2 covers(w))! (state(a) 62 fopen; passedg))

{ Next states: uncovered (U), vote-in-progress (V), free(�),

vote-in-progress+covered (VC), covered(C),

pre-covered+vote-in-progress (PV), and

uncovered+vote-in-progress (UV).

2. uncovered+vote-in-progress(UV)

{ English description: w is only involved in some open/addressed

issue(s) and covered by only some vote-in-progress agreement(s).

{ De�nition using basic states: (U) ^ (:(P)) ^ (V) ^ (:(C))

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(w)) ^ (state(a) = vote� in� progress))^

(8(a 2 A)j(w 2 covers(w))! (state(a) 62 fopen; passedg))

105

{ Next states: uncovered (U), vote-in-progress (V),

uncovered+vote-in-progress+covered (UVC),

uncovered+covered (UC), pre-covered+vote-in-progress (PV),

uncovered+pre-covered+vote-in-progress (UPV), and

uncovered+vote-in-progress (UV).

3. pre-covered+vote-in-progress(PV)

{ English description: w is not involved in any open/addressed is-

sues and covered only by some open and some vote-in-progress agree-

ments.

{ De�nition using basic states: (:(U)) ^ (P) ^ (V) ^ (:(C))

{ De�nition in predicate logic:

(8(i 2 I)j(w 2 involves(i))! (state(i) 62 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= passed))

{ Next states: uncovered+pre-covered (UP),

uncovered+vote-in-progress (UV), pre-covered (P),

pre-covered+vote-in-progress (PVC),

pre-covered+covered (PC), vote-in-progress (V),

106

pre-covered+vote-in-progress (PV), and

uncovered+pre-covered+vote-in-progress (UPV).

4. uncovered+pre-covered+vote-in-progress(UPV)

{ English description: w is involved in some open/addressed issue(s)

and covered by some open and some vote-in-progress agreements but

not any passed agreements.

{ De�nition using basic states: (U) ^ (P) ^ (V) ^ (:(C))

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a))! (state(a) = open))^

(9(a 2 A)j(w 2 covers(a))! (state(a) = vote� in� progress))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= passed))

{ Next states: uncovered+pre-covered (UP),

uncovered+pre-covered+vote-in-progress+covered (UPVC),

uncovered+vote-in-progress+covered (UVC),

uncovered+vote-in-progress (UV),

pre-covered+vote-in-progress (PV), and

uncovered+pre-covered+vote-in-progress (UPV).

107

6.4.4.4 partially covered

� English description: among the agreements that cover w, at least one (but

not all) is passed and there is no vote-in-progress agreement.

� De�nition using basic states: ((U) _ (P)) ^ (:(V)) ^ (C)

� De�nition in predicate logic:

((9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))_

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open)))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

� Next states: partially-covered-frozen, partially-covered, covered, and bound.

� Substates:

1. uncovered+covered(UC)

{ English description: w is involved in some open/addressed issue(s)

and covered by some passed agreement(s) but not covered by any

open or vote-in-progress agreements.

{ De�nition using basic states: (U) ^ (:(P)) ^ (:(V)) ^ (C)

108

{ De�nition in predicate logic:

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))^

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(8(a 2 A)j

(w 2 covers(a)) ^ (state(a) 62 fopen; vote� in� progressg))

{ Next states: uncovered (U), covered (C),

pre-covered+covered (PC), uncovered+pre-covered+covered (UPC),

and uncovered+covered (UC).

2. uncovered+pre-covered+covered(UPC)

{ English description: w is involved in some open/addressed issue(s)

and covered by some open and some passed but no vote-in-progress

agreements.

{ De�nition using basic states: (U) ^ (P) ^ (:(V)) ^ (C)

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

109

{ Next states: uncovered+pre-covered (UP),

uncovered+covered (UC),

uncovered+pre-covered+vote-in-progress+covered (UPVC),

uncovered+vote-in-progress+covered (UVC),

pre-covered+covered(PC), and

uncovered+pre-covered+covered(UPC).

3. pre-covered+covered(PC)

{ English description: w is not involved in any open/addressed issue

and covered by some open and some passed but no vote-in-progress

agreements.

{ De�nition using basic states: (:(U)) ^ (P) ^ (:(V)) ^ (C)

{ De�nition in predicate logic:

(8(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(8(a 2 A)j(w 2 covers(a))! (state(a) 6= vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

{ Next states: uncovered+pre-covered (UP),

uncovered+covered (UC), pre-covered (P), covered (C),

pre-covered+vote-in-progress+covered (PVC),

110

vote-in-progress+covered (VC), pre-covered+covered (PC), and

uncovered+pre-covered+covered (UPC).

6.4.4.5 partially covered(frozen)

� English description: among the agreements that cover w, at least one is

vote-in-progress and another is passed.

� De�nition using basic states: (V) ^ (C)

� De�nition in predicate logic:

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

� Next states: covered, partially-covered-frozen, partially-covered and bound-

frozen.

� Substates:

1. uncovered+vote-in-progress+covered(UVC)

{ English description: w is involved in some open/addressed issue(s)

and covered by some vote-in-progress and some passed but no open

agreements.

{ De�nition using basic states: (U) ^ (:(P)) ^ (V) ^ (C)

111

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(8(a 2 A)j(w 2 covers(a)) ^ (state(a) 6= open))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

{ Next states: uncovered+vote-in-progress (UV),

vote-in-progress+covered (VC), uncovered+covered (UC),

pre-covered+vote-in-progress+covered (PVC),

uncovered+pre-covered+vote-in-progress+covered (UPVC),

and uncovered+vote-in-progress+covered (UVC).

2. uncovered+pre-covered+vote-in-progress+covered(UPVC)

{ English description: w is involved in some open/addressed issue(s)

and covered by some open, some vote-in-progress and some passed

agreements.

{ De�nition using basic states: (U) ^ (P) ^ (V) ^ (C)

112

{ De�nition in predicate logic:

(9(i 2 I)j(w 2 involves(i))^ (state(i) 2 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

{ Next states: uncovered+pre-covered+vote-in-progress (UPV),

uncovered+pre-covered+covered (UPC),

uncovered+vote-in-progress+covered (UVC),

pre-covered+vote-in-progress+covered (PVC), and

uncovered+pre-covered+vote-in-progress+covered (UPVC).

3. pre-covered+vote-in-progress+covered(PVC)

{ English description: w is not involved in any open/addressed issue

and covered by some vote-in-progress and some passed but no open

agreements.

{ De�nition using basic states: (:(U)) ^ (P) ^ (V) ^ (C)

113

{ De�nition in predicate logic:

(8(i 2 I)j(w 2 involves(i))! (state(i) 62 fopen; addressedg))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = open))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = vote� in� progress))^

(9(a 2 A)j(w 2 covers(a)) ^ (state(a) = passed))

{ Next states: uncovered+vote-in-progress+covered (UVC),

pre-covered+vote-in-progress (PV), pre-covered+covered (PC),

vote-in-progress (VC), pre-covered+vote-in-progress (PVC), and

uncovered+pre-covered+vote-in-progress (UPVC).

4. vote-in-progress+covered(VC)

{ English description: w is covered by some vote-in-progress and

some passed but no open agreements.

{ De�nition using basic states: (:(U)) ^ (:(P)) ^ (V) ^ (C)

{ De�nition in predicate logic:

(8(i 2 I)j((w 2 involves(i))! (state(i) 62 fopen; addressedg)))^

(9(a 2 A)j((w 2 covers(a)) ^ (state(a) = vote� in� progress)))^

(8(a 2 A)j((w 2 covers(a)) ^ (state(a) 6= open)))^

(9(a 2 A)j((w 2 covers(a)) ^ (state(a) = passed)))

114

{ Next states: uncovered+vote-in-progress (UV),

uncovered+covered (UC), vote-in-progress (V),

vote-in-progress+covered (VC), covered (C),

pre-covered+vote-in-progress+covered (PVC), and

uncovered+vote-in-progress+covered (UVC).

6.4.4.6 (fully) covered

� English description: all issues involving w are resolved and all agreements

covering w are passed.

� De�nition using basic states: (:(U)) ^ (:(P)) ^ (C)

� De�nition in predicate logic:

(8(a 2 A)j(w 2 covers(a))! (state(a) = passed))^

(8(i 2 I)j(w 2 involves(i))! (state(i) = resolved))

{ On the top level: partially-covered, free, covered and bound.

{ On the second level: uncovered (U), covered (C), free (�), pre-

covered+covered (PC), and uncovered+covered (UC).

115

6.4.5 Functional description of the states for the win

condition

Figure 6.2 summarizes the augmented hierarchical state model of the win condition

life cycle. The functional de�nition for the states on the top level of this model is

as follows:

state(x) : W ! ffree; bound; bound(frozen); partially � covered;

partially� covered(frozen); coveredg

The functional de�nition for the states in the full expansion of this hierarchical

model is as follows:

W ! f�;U; P; V;C;UP;UV;UC;PV; PC; V C;UPV;UPC;UV C;PV C;UPV Cg

� : free

U : uncovered

P : pre� covered

V : vote� in� progress

C : covered

UP : uncovered&pre� covered

UV : uncovered&vote� in� progress

116

UC : uncovered & covered

PV : pre � covered & vote� in� progress

PC : pre � covered & covered

V C : vote� in� progress & covered

UPV : uncovered & pre � covered & vote� in� progress

UPC : uncovered & pre � covered & covered

UV C : uncovered & vote� in� progress & covered

PV C : pre � covered & vote� in� progress & covered

UPV C : uncovered & pre � covered & vote� in� progress & covered

The following shows the output generated by the algorithms de�ned in Sec-

tion 6.4.3.

Current state is FREE:

Current state is �:

(� +P P)

(� +U U)

Next States of �: P U

Next States of FREE: BOUND

117

||||||||||||||||||||

Current state is BOUND:

Current state is U:

(U !U U)

(U -U �)

(U !U+P UP)

(U -U+P P)

(U +P UP)

(U +U U)

Next States of U: � P UP U

Current state is P:

(P !P+U UP)

(P -P+U U)

(P !P P)

(P -P �)

(P !P+V PV)

(P -P+V V)

(P +P P)

118

(P +U UP)

Next States of P: U � PV V P UP

Current state is UP:

(UP !P+U UP)

(UP -P+U U)

(UP !P UP)

(UP -P U)

(UP !U UP)

(UP -U P)

(UP !P+V UPV)

(UP -P+V UV)

(UP !U+P UP)

(UP -U+P P)

(UP +P UP)

(UP +U UP)

Next States of UP: U UPV UV P UP

Next States of BOUND: BOUND-FROZEN BOUND FREE

||||||||||||||||||||

119

Current state is BOUND-FROZEN:

Current state is V:

(V !V+U UV)

(V -V+U U)

(V !V V)

(V -V �)

(V !V+C VC)

(V -V+C C)

(V +P PV)

(V +U UV)

Next States of V: U V � VC C PV UV

Current state is UV:

(UV !V+U UV)

(UV -V+U U)

(UV !V UV)

(UV -V U)

(UV !U UV)

(UV -U V)

120

(UV !V+C UVC)

(UV -V+C UC)

(UV !U+P UPV)

(UV -U+P PV)

(UV +P UPV)

(UV +U UV)

Next States of UV: U V UVC UC PV UPV UV

Current state is PV:

(PV !V+U UPV)

(PV -V+U UP)

(PV !P+U UPV)

(PV -P+U UV)

(PV !V PV)

(PV -V P)

(PV !P PV)

(PV -P V)

(PV !V+C PVC)

(PV -V+C PC)

(PV !P+V PV)

(PV -P+V V)

121

(PV +P PV)

(PV +U UPV)

Next States of PV: UP UV P PVC PC V PV UPV

Current state is UPV:

(UPV !V+U UPV)

(UPV -V+U UP)

(UPV !P+U UPV)

(UPV -P+U UV)

(UPV !V UPV)

(UPV -V UP)

(UPV !P UPV)

(UPV -P UV)

(UPV !U UPV)

(UPV -U PV)

(UPV !V+C UPVC)

(UPV -V+C UPC)

(UPV !P+V UPV)

(UPV -P+V UV)

(UPV !U+P UPV)

(UPV -U+P PV)

122

(UPV +P UPV)

(UPV +U UPV)

Next States of UPV: UP UPVC UPC UV PV UPV

Next States of BOUND-FROZEN: PARTIALLY-COVERED COVERED

PARTIALLY-COVERED-FROZEN FREE BOUND-FROZEN BOUND

||||||||||||||||||||

Current state is PARTIALLY-COVERED:

Current state is UC:

(UC !U UC)

(UC !C+U UC)

(UC -C+U U)

(UC !C UC)

(UC -C U)

(UC -U C)

(UC !U+P UPC)

(UC -U+P PC)

(UC +P UPC)

123

(UC +U UC)

Next States of UC: U C PC UPC UC

Current state is PC:

(PC !C+U UPC)

(PC -C+U UP)

(PC !P+U UPC)

(PC -P+U UC)

(PC !C PC)

(PC -C P)

(PC !P PC)

(PC -P C)

(PC !P+V PVC)

(PC -P+V VC)

(PC +P PC)

(PC +U UPC)

Next States of PC: UP UC P C PVC VC PC UPC

Current state is UPC:

(UPC !C+U UPC)

(UPC -C+U UP)

124

(UPC !P+U UPC)

(UPC -P+U UC)

(UPC !C UPC)

(UPC -C UP)

(UPC !P UPC)

(UPC -P UC)

(UPC !U UPC)

(UPC -U PC)

(UPC !P+V UPVC)

(UPC -P+V UVC)

(UPC !U+P UPC)

(UPC -U+P PC)

(UPC +P UPC)

(UPC +U UPC)

Next States of UPC: UP UC UPVC UVC PC UPC

Next States of PARTIALLY-COVERED: PARTIALLY-COVERED-FROZEN

PARTIALLY-COVERED COVERED BOUND

||||||||||||||||||||

125

Current state is PARTIALLY-COVERED-FROZEN:

Current state is VC:

(VC !C+U UVC)

(VC -C+U UV)

(VC !V+U UVC)

(VC -V+U UC)

(VC !C VC)

(VC -C V)

(VC !V VC)

(VC -V C)

(VC !V+C VC)

(VC -V+C C)

(VC +P PVC)

(VC +U UVC)

Next States of VC: UV UC V VC C PVC UVC

Current state is UVC:

(UVC !C+U UVC)

(UVC -C+U UV)

(UVC !V+U UVC)

126

(UVC -V+U UC)

(UVC !C UVC)

(UVC -C UV)

(UVC !V UVC)

(UVC -V UC)

(UVC !U UVC)

(UVC -U VC)

(UVC !V+C UVC)

(UVC -V+C UC)

(UVC !U+P UPVC)

(UVC -U+P PVC)

(UVC +P UPVC)

(UVC +U UVC)

Next States of UVC: UV VC UC PVC UPVC UVC

Current state is PVC:

(PVC !C+U UPVC)

(PVC -C+U UPV)

(PVC !V+U UPVC)

(PVC -V+U UVC)

(PVC !P+U UPVC)

127

(PVC -P+U UVC)

(PVC !C PVC)

(PVC -C PV)

(PVC !V PVC)

(PVC -V PC)

(PVC !P PVC)

(PVC -P VC)

(PVC !V+C PVC)

(PVC -V+C PC)

(PVC !P+V PVC)

(PVC -P+V VC)

(PVC +P PVC)

(PVC +U UPVC)

Next States of PVC: UVC PV PC VC PVC UPVC UPV

Current state is UPVC:

(UPVC !C+U UPVC)

(UPVC -C+U UVC)

(UPVC !V+U UPVC)

(UPVC -V+U UVC)

(UPVC !P+U UPVC)

128

(UPVC -P+U UVC)

(UPVC !C UPVC)

(UPVC -C UPV)

(UPVC !V UPVC)

(UPVC -V UPC)

(UPVC !P UPVC)

(UPVC -P UVC)

(UPVC !U UPVC)

(UPVC -U PVC)

(UPVC !V+C UPVC)

(UPVC -V+C UPC)

(UPVC !P+V UPVC)

(UPVC -P+V UVC)

(UPVC !U+P UPVC)

(UPVC -U+P PVC)

(UPVC +P UPVC)

(UPVC +U UPVC)

Next States of UPVC: UPV UPC UVC PVC UPVC

129

Next States of PARTIALLY-COVERED-FROZEN: COVERED

PARTIALLY-COVERED-FROZEN PARTIALLY-COVERED BOUND-FROZEN

||||||||||||||||||||

Current state is COVERED:

Current state is C:

(C !C+U UC)

(C -C+U U)

(C !C C)

(C -C �)

(C +P PC)

(C +U UC)

Next States of C: U C � PC UC

Next States of COVERED: PARTIALLY-COVERED FREE COVERED BOUND

130

6.5 The Exhaustiveness and Mutual

Exclusiveness of the Artifact States

As de�ned in Section 6.1, the states of an agreement are exhaustive and mutually

exclusive.

Rule 6.5.1 The states of an agreement are exhaustive.

8a 2 A;

state(a) 2 fopen; vote� in� progress; passed; failedg

or

8a 2 A;

(state(a) = open) _ (state(a) = vote� in� progress)

_(state(a) = passed) _ (state(a) = failed)

Rule 6.5.2 The states of an agreement are mutually exclusive.

8 a 2 A;

(state(a) = open)! (state(a) 62 fvote� in� progress; passed; failedg) (1)

(state(a) = vote� in� progress)! (state(a) 62 fopen; passed; failedg) (2)

(state(a) = passed)! (state(a) 62 fopen; vote� in� progress; failedg) (3)

(state(a) = failed)! (state(a) 62 fopen; vote� in� progress; passedg)) (4)

131

Given the above, the following rules can be proved.

Rule 6.5.3 The states of an option are exhaustive.

(8(o 2 O); (state(o) 2 funused; pre� used; vote� in� progress; usedg)

or

(8(o 2 O)

(state(o) = unused) _ (state(o) = pre� used)_

(state(o) = vote� in� progress) _ (state(o) = used)

Proof by contradiction:

Assume

9(o 2 O) s:t:

(state(o) 6= unused) ^ (state(o) 6= pre � used)^

(state(o) 6= vote� in� progress) ^ (state(o) 6= used)

) 9(a 2 A) s:t:

(o 2 adopts(a))

(state(a) 6= open) ^ (state(a) 6= vote� in� progress)^

(state(a) 6= passed) ^ (state(a) 6= failed)

(definitions of the option states)

132

) 9(a 2 A) s:t:

(state(a) 6= open) ^ (state(a) 6= vote� in� progress)^

(state(a) 6= passed) ^ (state(a) 6= failed)

((A ^ B)) B)

) :(8(a 2 A) s:t:

(state(a) = open) _ (state(a) = vote� in� progress)

_(state(a) = passed) _ (state(a) = failed))

(negation)

(Contradicting the exhaustiveness of the agreement states)

Rule 6.5.4 The states of an option are mutually exclusive.

8 o 2 O;

(state(o) = unused)!

(state(o) 62 fpre� used; vote� in� progress; usedg) (1)

(state(o) = pre� used)!

(state(o) 62 funused; vote� in� progress; usedg) (2)

(state(o) = vote� in� progress)!

(state(o) 62 funused; pre� used; usedg) (3)

(state(o) = used)!

(state(o) 62 funused; pre� used; vote� in� progressg)) (4)

133

Proof of (1) by contradiction:

Assume

9o 2 O s:t:

((state(o) = unused)^

(state(o) 2 fpre � used; vote� in� progress; usedg))

) ((8a 2 A; o 62 adopts(a))^

(9a 2 A; s:t:

(o 2 adopts(a))^

(state(a) 2 fopen; vote� in� progress; passed; failedg) (false)

((A ^ :A) = false)

_

(9a 2 A s:t: ((o 2 adopts(a)^

(state(a) = failed))^

(state(a) 2 fopen; vote� in� progress; passedg))))

(definitions of the option states)

) (9a 2 A s:t: ((o 2 adopts(a)^

(state(a) = failed))^

(state(a) 2 fopen; vote� in� progress; passedg))))

((false _A) = A)

134

) (9a 2 A

(state(a) = failed)^

(state(a) 2 fopen; vote� in� progress; passedg))))

((A ^ B)) B)

) :(8a 2 A

:((state(a) = failed)^

(state(a) 2 fopen; vote� in� progress; passedg)))

(:(9A s:t: B) = (8A s:t: :B))

) :(8a 2 A

:(state(a) = failed)_

:(state(a) 2 fopen; vote� in� progress; passedg))

(:(A ^ B) = (:A _ :B))

) :(8a 2 A

(state(a) = failed)!

:(state(a) 2 fopen; vote� in� progress; passedg))

(:A _B) = (A! B))

) :(8a 2 A

((state(a) = failed))!

(state(a) 62 fopen; vote� in� progress; passedg))))

(Contradicting the mutual exclusiveness of the agreement states)

135

Rule 6.5.5 The states of an issue are exhaustive.

8 (i 2 I);

(state(i) 2 fopen; addressed; pre � resolved; vote� in� progress; resolvedg)

Rule 6.5.6 The states of an issue are mutually exclusive.

8 i 2 I;

(state(i) = open)!

(state(i) 62 faddressed; pre � resolved; vote� in� progress; resolvedg)(1)

(state(i) = addressed)!

(state(i) 62 fopen; pre � resolved; vote� in� progress; resolvedg)(2)

(state(i) = pre� resolved)!

(state(i) 62 fopen; addressed; vote� in� progress; resolvedg)(3)

(state(i) = vote� in� progress)!

(state(i) 62 fopen; addressed; pre � resolved; resolvedg)(4)

(state(i) = resolved)!

(state(i) 62 fopen; addressed; pre � resolved; vote� in� progressg)(5)

136

Rule 6.5.7 The basic states of a win condition w in a chain h are exhaustive.

8 (w 2 W);

(9h 2 H s:t: head(h) = w)^

(basic state(w) : h 2

ffree; uncovered; pre� covered; vote� in� progress; coveredg)

Rule 6.5.8 The basic states of a win condition w in a speci�c artifact chain h are

mutually exclusive.

8 w 2 W;

(9h 2 H s:t: head(h) = w)^

(basic state(w) : h = free)!

(basic state(w) : h 62

funcovered; pre� covered; vote� in� progress; coveredg)(1)

(basic state(w) : h = uncovered)!

(basic state(w) : h 62

ffree; pre� covered; vote� in� progress; coveredg)(2)

(basic state(w) : h = pre � covered)!

(basic state(w) : h 62

ffree; uncovered; vote� in� progress; coveredg)(3)

137

(basic state(w) : h = vote� in� progress)!

(basic state(w) : h 62

ffree; uncovered; pre� covered; coveredg)(4)

(basic state(w) : h = covered)!

(basic state(w) : h 62

ffree; uncovered; pre� covered; vote� in� progressg)(5)

Rule 6.5.9 The augmented states of a win condition w are exhaustive.

8 (w 2 W);

(state(w) 2

f�;U; P; V;C;UP;UV;UC;PV; PC; V C;UPV;UPC;UV C;PV C;UPV Cg

Rule 6.5.10 The augmented states of a win condition w are mutually exclusive.

8 w 2 W;

8 s1; s2 2

f�;U; P; V;C;UP;UV;UC;PV; PC;

V C;UPV;UPC;UV C;PV C;UPV Cg s:t:

((state(w) = s1) ^ (state(w) = s2))! (s1 = s2)

138

Chapter 7

The WinWin Hierarchical Equilibrium Model

The WinWin Equilibrium Model is an elaboration of the WinWin Spiral Model

[BBHL95] to guide the stakeholders throughout the negotiation process. In the

WinWin requirements negotiation and renegotiation process, all stakeholders work

toward achieving the WinWin Equilibrium state, in which all1 issues are resolved

and all win conditions are fully covered by some passed agreements.

The WinWin Equilibrium state can be destabilized when a new win condition is

entered or when a \fully-covered" win condition is dropped. It is characterized by:

1. No issue

2. Resolve single issue

3. Resolve multiple issues

1all artifacts in this chapter are with status \active"

139

No Outstanding Issue Resolve Single Issue

Resolve Multiple
Issues

new/dropped win condition;
no issue

single issue resolved

new/dropped win condition;
multiple issues

new/dropped win condition;
new issue

new/dropped

all issues resolved;

issue resolved;
multiple issues remain

new/dropped win condition;
no issue

win condition

new/dropped win condition;
single issue

issue resolved;
single issue remain

Figure 7.1: Top level model

Figure 7.1 shows the top level of the WinWin Equilibrium Model; Figure 7.2

explains the notation used for the models in this chapter. In [BBHL95], a state

transition diagram (STD) for recovering the WinWin equilibrium from a single is-

sue was presented. However, in the real world, stakeholders are facing multiple and

inter-locking issues. The hierarchical equilibrium model proposed here is my sub-

sequent work to cover the more complex multiple issues case. The major di�culty

encountered here is how to deal with concurrency. Di�erent issues can be in di�er-

ent states simultaneously in the original equilibrium model since, at any given time,

a new win condition can be entered and cause a new issue to be raised. To solve

this, I divided the states into three mutually exclusive groups: no outstanding issue,

resolve single issue, and resolve multiple issues. In addition, I adopt an approach

140

entry state

composite state:

transition jump

atomic state

abstraction of
a detailed state model

concurrent state

Figure 7.2: Hierarchical state model notation

that accommodates concurrency. The notation used here is a modi�ed version of the

dynamic modeling presented in [RBP+91]. Figure 7.2 illustrates the major building

blocks. It is a descendant of state transition diagram (STD) that incorporates the

concept of concurrency and decomposition. The atomic state, the entry state and

the transition in Figure 7.2 are analogous to the state, the starting state and the

transition in STD. A composite state contains a group of states that share common

conditions. A jump is a special kind of transition. In any sub-state s1 of a compos-

ite state CS1, a jump causes a transition from s1 to the starting state of the next

composite CS2. For example, in Figure 7.1, a new win condition can be entered in

any sub-state of \No Outstanding Issue." When the new win condition is contro-

versial and raises a new issue, it causes a jump from the current sub-state of \No

Outstanding Issue" to the starting state of \Resolve Single Issue." The concurrent

state includes several states that can occur simultaneously.

141

By de�nitions given previously, an issue is not \resolved" until it is addressed by

a \used" option that is adopted by a \passed" agreement. If this condition is not

satis�ed, this issue is considered outstanding and requires negotiation of resolution.

When a new win condition comes in the \no outstanding issue" state and does not

generate any new issue, the system will stay in \No Outstanding Issue." Otherwise,

it will transit from \No Outstanding Issue" to \Resolve Single Issue." In like manner,

it can transit to \Resolve Multiple Issues" when this new condition generates more

than one issue. \Resolve Single Issue" and \Resolve Multiple Issues" need to be

discussed separately since the latter requires considering inter-locking issues.

The following sections show details of the top level states. Every state has a

corresponding artifact state combination. Some states in the equilibriummodel can

be de�ned using the corresponding artifact state combinations.

It needs to be noted that for every sub-state, the condition of its super-state

should always hold and therefore is not restated in the sub-state. For any state, all

conditions of its predecessor hold unless otherwise de�ned.

7.1 No outstanding issue

An outstanding issue is an issue that is not \resolved" by a \passed" agreement.

When the negotiation begins, and there are no artifacts created yet, the system

is in this \No Outstanding Issue" state. It can also reached if the single issue

142

Stakeholders assess
impact of the new
win condition

Stakeholders assess
the new agreement to cover
harmonious win conditions

Equilibrium State:

all win conditions
are fully-covered

new
agreement
proposed

win condition

all agreements failed
all agreements

new/dropped win condition;
single issue

new/dropped win condition;
no issue

No Outstanding Issue

passed

single issue

Stakeholders vote on
the agreement and as-
sess side effects on oth-
er agreements

resolved

new/dropped win condition;
multiple issues

all issues resolved

new agreement

new vote
conducted

new agreement
proposed

new vote

entered

issue
raised

proposed
dropped
win condition
raising no
issue

dropped
win condition
invalidating passed
agreement and

conducted

raising issue

vote failed/passed
for some
agreements

Figure 7.3: No outstanding issue

is resolved/dropped while in the \Resolve Single Issue" state, or if all issues are

resolved/dropped while in the \Resolve Multiple Issue" state.

The formal de�nition of this state is as follows:

(8(i 2 I)j(status(i) = active)! (state(i) = resolved))

Figure 7.3 shows the sub-states of \No Outstanding Issue." Their de�nitions will

be given in the following sections.

143

7.1.1 Equilibrium

The WinWin Equilibrium state is the desired goal state for the WinWin equilibrium

process in which all win conditions are reconciled and covered by some \passed"

agreements. Its de�nition is as follows:

De�nition 7.1.1 : WinWin Equilibrium State

(8(w 2 W)j(status(w) = active)! (state(w) = fully � covered))

It can be proved that the following are implied by De�nition 7.1.1.

(8(i 2 I)j(status(i) = active)! (state(w) = resolved)) �� (1)

(9(o 2 O)j(status(o) = active)^ (state(o) = used)) �� (2)

(8(a 2 A)j(status(a) = active)^ (state(a) = passed)) �� (3)

Proof by Contradiction: Assume

9(i 2 I) s:t: (status(i) = active)^ (state(i) 6= resolved)

) 9(i 2 I) s:t:

(status(i) = active)^

(state(i) 2 fopen; addressed; vote� in� progress; pre � resolvedg

(mutual exclusiveness of states)

144

) (9i 2 I) s:t:

(9w 2 W)^

((w
involves
�! i) = h) 2 CH

(state(i) 2 fopen; addressed; vote� in� progress; pre � resolvedg

(issue existence rule)

) (9w 2 W) s:t:

(9h 2 CH)^

(status(w) = active)^

(basic state(w) : h 2 funcovered; pre� covered; vote� in� progressg)

(definitions of the basic win condition state)

) (9w 2 W) s:t:

(status(w) = active)^

(state(w) 6= fully � covered) [contradicting Definition 7:1:1]

(definitions of the basic win condition state)

It is straight-forward to prove (2) and (3) using the result and the proving strat-

egy of (1).

As indicated before, the WinWin Equilibrium state can be destabilized either by

entering a new win condition or by dropping an existing fully-covered win condition.

In the former case, it will transit to the next state. In the latter case, if dropping

a win condition invalidates no passed agreements, it will go back to the equilibrium

145

state. If it does, this invalidated agreement will become inactive and it will transit to

\Resolve Single Issue" or \Resolve Multiple Issues" depending on how many issues

are raised as a result of the inactive agreement.

7.1.2 Enter win condition

When a new win condition is entered, it is \free" since no other artifacts have

references to it.

(9w 2 W j(status(w) = active)^ (state(w) = free))

Remember that in the equilibrium state, all win conditions are fully-covered.

This new win condition now becomes the only exception whose state is not fully-

covered. There is actually a stronger condition implied by this argument.

(9(w 2 W)j(state(w) = active)^ (state(w) 6= fully � covered))

All stakeholders now assess the impact of the new win condition. If no apparent

con
icts are found, stakeholders can propose this new win condition to be an open

agreement that awaits each stakeholders to commit to this agreement by voting

(and this commitment will turn the agreement into a passed one, and the new

win condition will become fully covered). Otherwise, some issues will be posted to

146

address con
icts and options will be proposed to resolve the corresponding issues. In

the latter case, it jumps out of the \No outstanding issue" state and goes to either

\Resolve Single Issue" or \Resolve Multiple Issues" depending on how many issues

are introduced by the new win condition.

7.1.3 Assess new agreement

If the newly entered win condition is not considered controversial, stakeholders can

propose one or more agreements to cover that win condition. Then it comes to the

\Assess new agreement" state. This state will transit to the next state if a new vote

is in progress for some agreement. In this state, there must be at least one new

agreement whose state is \open."

(9a 2 Aj (status(a) = active)^ (state(a) = open))

It can be proved that the following is implied by the previous condition and the

conditions that are invariant from its preceding state.

(8(w 2 W))j (status(w) = active)^

((state(w) 6= fully � covered)! (state(w) 2 fP;PV; PC; PV Cg))

147

7.1.4 Vote on agreement

When an owner of an \open" agreement �nishes his/her draft, he/she can solicit

votes on that agreement by entering the voting policy. This action will set the state

of the agreement to \vote-in-progress" and come to this \vote on agreement" state.

(9(a 2 A)j(status(a) = active)^ (state(a) = vote� in� progress))

It can be proved that the following is implied by the previous condition and the

conditions invariant from its preceding state.

((9w 2 W)j(status(w) = active)^ (state(w) 2 fV; PV; V C; PV Cg))

It will move to another state or stay in this state according to the following

criteria:

1. if a new vote is conducted, it stays in this state;

2. if all votes are passed, it recovers the \equilibrium" state;

3. if all votes are failed, it goes back to the \assess new win condition" state;

4. if a new agreement is proposed, it goes to the \assess new agreement" state.

148

7.2 Resolve Single Issue

This state is true when there is only one outstanding issue. It can be reached

either when in the \No Outstanding Issue" state, a new/dropped win condition

raises one issue, or when in the \Resolve Multiple Issues," all issues but one are

resolved/dropped.

In this state, if there is a new/dropped win condition that raises no issue, it will

stay in its original state. If the new/dropped win condition causes some new issues,

it will go to \Resolve Multiple Issues."

De�ne card(s) as a function that returns the cardinality of a set s.

The formal de�nition of this state is as follows to show that there can be only

one issue that is not resolved:

(Is = fij(status(i) = active)^ (state(i) 6= resolved)g) ^ (card(Is) = 1)

De�ne is to be the only element in Is.

Is = fisg

149

7.2.1 Assess the only issue

In this state, all stakeholders access the only issue to see whether any option can

be proposed as a potential resolution to it. Its corresponding artifact life cycle

combination is:

state(is) = open

It can be shown that the following is implied:

(9w 2 W jstate(w) 2 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)

When options are proposed, stakeholders can move to the next state to nego-

tiate the best feasible option. And if this issue is dropped, it will return to \No

Outstanding Issue."

7.2.2 Negotiate the best feasible option

In this state, there are some options proposed to the only issue in the system, waiting

to be negotiated. Once stakeholders reach consensus, an agreement will be proposed

to adopt the best feasible option(s). If all options are found inapplicable, they will

be dropped and the system goes back to the previous state to allow the stakeholders

to reassess the issue and repropose options. In this state, no issue can be dropped

without dropping all options.

150

Stakeholders negotiate
the best feasible option(s)

agreement failed/dropped

option proposed
Stakeholders assess
the only issue that is
not resolved

agreement passed

Resolve single issue

issue resolved

new/dropped win condition,
single issue

new/dropped win condition

no issue*

issue resolved,
single issue
remains

new/dropped win condition,
new issue

Stakeholders vote on
the agreement and
assess side effects on
other agreements

all options dropped

Stakeholders assess the
new agreement

vote conducted

agreement
dropped

the best feasible
option chosen,
agreement
proposed

option proposed

issue dropped

Figure 7.4: Resolve single issue

Its corresponding artifact life cycle combination is:

(9(o 2 O)j (status(o) = active)^

(state(o) = unused) ^ (is 2 addresses(o)))

It can be shown the following is implied

state(is) = addressed

151

7.2.3 Assess agreement

When an agreement is proposed to adopt the best feasible option(s), stakeholders

assess the new agreement to see whether it can resolve the only issue. The owner of

the agreement can start a vote to solicit stakeholders' consensus and it will move to

the next state. If the agreement is not considered viable, it can be dropped and the

system will return to the previous state.

Its corresponding artifact life cycle combination is:

(9(o 2 O); 9(a 2 A)j

(status(a) = active)^ (state(a) = open)^

(status(o) = active)^ (o 2 adopts(a))^

(is 2 addresses(o)))

It can be shown that the following are implied:

state(is) = pre� resolved��(1)

(9o 2 Ojstate(o) = pre � used)��(2)

(9w 2 W jstate(w) 2 fP;PV; PC; PV Cg)��(3)

(8w 2 W jstate(w) 62 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(4)

152

7.2.4 Vote on agreement

When an owner of an \open" agreement �nishes his/her draft, he/she can solicit

votes on that agreement by entering the voting policy. This action will set the state

of the agreement to \vote-in-progress" and come to this \vote on agreement" state.

If the vote fails or the agreement dropped, the system will return to the previous

state. If the vote passes, the only issue is thus resolved and the system will return

to the \No Outstanding Issue" state.

Its corresponding artifact life cycle combination is:

(9(o 2 O); 9(a 2 A)j

(status(a) = active)^ (state(a) = vote� in� progress)^

(status(o) = active)^ (o 2 adopts(a))^

(is 2 addresses(o)))

It can be shown that the following are implied:

state(is) = vote� in� progress ��(1)

(9o 2 Ojstate(o) = vote� in� progress) ��(2)

(9w 2 W jstate(w) 2 fV; PV; V C; PV Cg)��(3)

(8w 2 W jstate(w) 62 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(4)

153

7.3 Resolve Multiple Issues

This state is true when there are multiple outstanding issues. It can be reached from

the \No Outstanding Issue" state when a new/dropped win condition raises multiple

issues. It can also be reached from the \Resolve Single Issue" state. when one more

issue is caused by a new/dropped win condition. After stakeholders negotiate to

resolve the many outstanding issues, if no issue remains, the system will return to

\No Outstanding Issue." If one issue remains, it will return to \Resolve Single Issue."

If multiple issues remain, the system will stay in the \Resolve Multiple Issues."

In this state, if any new/dropped win condition comes in and raises no issue,

it does not cause any transition. If any new/dropped win condition causes one or

more new issues, it will cause a jump back to the starting state of \Resolve Multiple

Issue."

The formal de�nition of this state is as follows, to show that there must be two

distinct issues that are not resolved:

(9i1 2 I; 9i2 2 Ij

((status(i1) = active)^ (state(i1) 6= resolved))^

((status(i2) = active)^ (state(i2) 6= resolved))^

(i1 6= i2)

154

Stakeholders assess
agreement

Stakeholders vote
on agreement

options proposed

feasible combinations

new vote

Stakeholders
assess the
many issue

Resolve multiple issues

issue resolved,

conducted

feasible
combination

single issue

new win condition
new issue

new win condition*

issue resolved;
multiple issues remain

Stakeholders assess
agreements to some
unresolved issues

of options found

agreement
passed

agreement passed

for all issues

Stakeholders vote on
agreements

vote
conducted

all issues

 remains

new win condition
multiple issues

agreement
failed/dropped

issue
dropped

determine option
feasibility with
respect to other
issues or agree-
ments

select feasible
options that
can resolve
each individ-
ual issue

resolved

of options
 not found

agreement
dropped

agreement
dropped

feasible
combination
of options
found for
some issues

agreement
failed/dropped

 not found

found for
some

Figure 7.5: Resolve multiple issue

7.3.1 Assess the many issues

This state can be reached by one of the following:

1. in the \No Outstanding Issue," when a new/dropped win condition raises

multiple new issues;

2. in the \Resolve Single Issue," when a new/dropped win condition raises some

new issue(s);

3. in the \Resolve Multiple Issues," when some agreements are found and passed

but they can resolve only part of the issues; and there are still issues that do

not have a feasible combination of options which can be used to prepare an

agreement;

155

4. in the \Resolve Multiple Issues," when a new/dropped win condition causes

some new issues.

In (1), all the issues must be newly created and of state \open." In (2), the new

issue is newly created and \open." In (3), all the remaining outstanding issues must

be \open" or \addressed" since they do not have any resolving agreement yet. In (4),

the new issue(s) are \open." The following is thus true combining the possibilities

discussed above.

(9i 2 Ijstate(i) 2 fopen; addressedg)

It can be shown that the following is implied:

(9w 2 W jstate(w) 2 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)

In (1), (2) and (4), stakeholders need to address options to the \open" new

issue(s). In (3), stakeholders also need to propose new options since the options

composed previously do not provide any feasible combination to resolve these issues.

7.3.2 Select feasible options resolving each individual issue

This state can be reached when new option(s) is proposed to an issue. The stake-

holders then work on selecting feasible options that can resolve each individual issue.

156

Another situation is that stakeholders cannot �nd any feasible combination of op-

tions out of the ones selected for each individual one. They thus move back to this

state to reselect options for individual issues as alternative candidates. If applica-

ble options are found for some outstanding issues, stakeholders move to \determine

option feasibility with respect to other issues and passed agreements." If no options

can be applied to any of the issues, the system goes back to the previous state and

repropose new options.

As there must be some options addressing each individual issue in discussion,

the following is true in this state:

(9i 2 I;9o 2 Oj

(status(o) = active)^ (state(o) = unused) ^ (i 2 addresses(o)))

It can be shown the following is implied:

(9i 2 Ijstate(i) = addressed)

7.3.3 Determine option feasibility with respect to other

issues or agreements

This state can be reached when stakeholders �nish determining feasible options for

each individual issue or some previous agreement(s) is/are failed/dropped. Here,

157

stakeholders need to consider the inter-dependence between artifacts to explore a

feasible combination of options that can accommodate the many issues. They do so

by comparing the feasible options for di�erent issues. They also need to compare

these options with respect to other agreements, especially \passed" agreements. As it

is extremely di�cult to �nd a global solution that guarantees all issues to be resolved

without violating any previous agreements, a practical way is to try to divide the

artifacts into inter-dependent groups and �nd a partial solution as a stairway to the

global solution.

We can use the following hints to help �nd inter-dependent groups 2

1. they share common references (for example, two issues involve the same win

condition or an issue involve a win condition that is covered by another agree-

ment);

2. one has a reference that is a duplication of the other artifact's reference;

3. stakeholders comments imply their dependency;

4. stakeholders explicitly establish the \related to";

5. they share taxonomy elements;

6. they share keywords.

2The theory in [BI96] of deciding whether two win conditions are in con
ict according to their
quality attributes can be extended to decide whether two artifacts are inter-dependent

158

If some feasible combination of options is found to resolve all issues, stakeholders

will move to \vote on agreement resolving all issues." If options are only good

at resolving some issues, stakeholders will work on \vote on agreement resolving

issues." If no feasible combination of options are found, the system will go back to

the previous state.

7.3.4 Assess agreements resolving some issue(s)

In the previous state, when a feasible combination of options are found to resolve

only some issues, stakeholders can propose agreement(s) to adopt these options.

There will be a mix of issues whose options are adopted by some \open" agreements

and issues whose options are not adopted by any agreements. Some agreement(s)

is(are) then proposed to adopt them.

(9i 2 I;9a 2 A;9o 2 Oj

(status(a) = active)^ (state(a) = open)^

(status(o) = active)^ (o 2 adopts(a)) ^ (i 2 addresses(o)))^

(9i 2 Ij8a 2 A;8o 2 O;

(i 2 addresses(o))! (o 62 adopts(a)))

159

It can be shown that the following are implied:

(9i1 2 Ijstate(i1) = pre � resolved)��(1)

(9o 2 Ojstate(o) = pre � used)��(2)

(9w 2 W jstate(w) 2 fP;PV; PC; PV Cg)��(3)

(9i2 2 Ijstate(i2) 2 fopen; addressedg) ��(4)

(9w 2 W jstate(w) 2 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(5)

The stakeholders assess the new agreement(s) to see if it is likely to be a partial

solution. Stakeholder(s), when �nishing composing the agreement(s), can start a

vote to solicit consensus on this partial solution. If the agreement is dropped for

some reason, the system will go back to \Determine option feasibility with respect

to other issues and agreements" to explore other possible combinations.

7.3.5 Vote on agreements resolving some issues

When vote(s) on \open" agreement(s) resolving some issues is(are) conducted, the

agreement(s) is(are) turned to \vote-in-progress." Following the previous state, there

are still issues whose options are not adopted by any agreements.

160

(9i 2 I;9a1 2 A;9o1 2 Oj

(status(a1) = active)^ (state(a1) = vote� in� progress)^

(status(o1) = active)^ (o1 2 adopts(a1)) ^ (i 2 addresses(o1)))^

(9i 2 Ij8a 2 A;8o 2 O;

(i 2 addresses(o))! (o 62 adopts(a)))

It can be shown that the following are implied:

(9i1 2 Ijstate(i1) = vote� in� progress) ��(1)

(9o 2 Ojstate(o) = vote� in� progress) ��(2)

(9w 2 W jstate(w) 2 fV; PV; V C; PV Cg)��(3)

(9i2 2 Ijstate(i2) 2 fopen; addressedg) ��(4)

(9w 2 W jstate(w) 2 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(5)

If the vote passes and multiple issues remain, the system will go back to the

starting state of \Resolve Multiple Issues." If the vote passes and only single issue

remains, the system will to \Resolve Single Issue." If the vote fails, stakeholders

return to \Determine option feasibility with respect to other agreements and issues"

to seek other possible solutions.

161

7.3.6 Propose agreements resolving all issues

In the previous state, when a feasible combination of options are found to resolve all

issues, stakeholders can propose agreement(s) to adopt these options. In this case,

all outstanding issues are addressed by options that are adopted by some \open"

agreements.

(8i 2 Ij9o 2 O;9a 2 A s:t:

(status(o) = active)^ (status(a) = active)^

(i 2 addresses(i)) ^ (o 2 adopts(a))^

(state(a) 2 infopen; passedg))

It can be shown that the following are implied:

(8i 2 Ijstate(i) 2 fresolved; pre� resolvedg)��(1)

(9o 2 Ojstate(o) = pre � used)��(2)

(9w 2 W jstate(w) 2 fP;PV; PC; PV Cg)��(3)

(8w 2 W jstate(w) 62 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(4)

The stakeholders assess the new agreement(s) to see if it is likely to be a global

solution. Stakeholder(s), when �nishing composing the agreement(s), can start a

vote to solicit consensus on this global solution. If the agreement is dropped for

162

some reason, the system will go back to \Determine option feasibility with respect

to other issues and agreements" to explore other possible combinations.

7.3.7 Vote on agreements resolving all issues

When vote(s) on \open" agreement(s) resolving all issues is(are) conducted, the

agreement(s) is(are) turned to \vote-in-progress." Following the previous state, all

issues are addressed by some options that are adopted by some agreements.

(8i 2 Ij9a 2 A;9o 2 O s:t:

(status(a) = active)^ (status(o) = active)^

(o1 2 adopts(a)) ^ (i 2 addresses(o))^

(state(a) 2 fvote� in� progress; passedg))

It can be shown that the following are implied:

(8i 2 Ijstate(i) 2 fvote� in� progress; resolvedg) ��(1)

(9o 2 Ojstate(o) = vote� in� progress) ��(2)

(9w 2 W jstate(w) 2 fV; PV; V C; PV Cg)��(3)

(8w 2 W jstate(w) 62 fU;UP;UV;UC;UPV;UPC;UV C;UPV Cg)��(4)

163

If the vote passes, all issues should be resolved and the system will jump to \No

Outstanding Issue." If the vote fails, stakeholders will return to \Determine op-

tion feasibility with respect to other agreements and issues" to seek other possible

solutions.

164

Chapter 8

Integrated Formal Model

Chapters 4 to 7 present the many views of the WinWin requirements engineering

process including:

� Win Condition Interaction: a problem space view identifying the Win space

of a stakeholder and how it intersects with other stakeholders' Win regions,

� Artifacts and Relationships: schemata and entity-relationship model with

functional de�nitions to support the negotiation infrastructure,

� Artifact Life-Cycles: state diagrams and predicate calculus to demonstrate

how artifacts evolve in the negotiation process,

� System Equilibrium: a hierarchical state model and predicate calculus to guide

the WinWin users to recover the equilibrium (WinWin) state.

Potential problems with multiple views are inconsistency and confusion. It is

possible that the system will tell the user con
icting information in di�erent views.

165

If the system changes in one view, the changes may not propagate to other views and

will result in heterogeneity and cause confusion. Thus, �nding a way to integrate the

many views becomes a critical issue that should be addressed in the formal modeling.

The goal of this chapter is to describe the relationships between the multiple views

to establish an integrated model that is consistent and expressive.

WinC Issue Option
Open

involves
addresses adopts

Agreement

Vote-in-progress
Agreement

Passed
Agreement

Failed
Agreement

covers

adopts

adopts

Artifact Type State

Win Condition free uncovered uncovered pre-covered vote-in-progress covered uncovered

Issue unresolved addressed pre-resolved vote-in-progress resolved addressed

Option unused pre-used vote-in-progress used unused

Agreement open vote-in-progress passed failed

Figure 8.1: Artifact Life Cycle v.s. Artifact Relationships

As described previously, the problem space view models the inter-win-condition

relationship and suggests the 4 types of WinWin artifacts with their relationships,

which either cover non-controversial win conditions, or reconcile controversial win

conditions into passed agreements. Chapter 6 de�nes the states in the artifact life

166

cycles as functions of the current negotiation state indicated by the Equilibrium

model as well as the inter-artifact relationships. The Problem Space views are iden-

ti�ed and correlated to the WinWin Artifacts and their relationships. These Artifact

Life cycles, de�ned as functions re
ecting both the inter-artifact relationship and the

negotiation state, connect these relationships with the equilibrium model.

Chapter 7 shows that every state in the equilibrium state has a corresponding

artifact state combination. Figure 8.1 demonstrates an example of how the state of

a win condition evolves with respect to other artifacts that it relates to:

1. when it is just created,

2. when it is involved in an open issue,

3. when the involving issues are addressed by options,

4. when some addressing option is adopted by an open agreement,

5. when that adopting agreement is vote-in-progress (while a vote is being con-

ducted by the stakeholders)

6. when the adopting agreement is voted as passed

7. when the adopting agreement is voted as failed.

For clear illustration, this example intentionally assumes that the win condition

is involved in only one issue. A complete enumeration that covers cases when a win

167

condition is involved in multiple issues and/or covered by multiple agreements is

described in Chapter 6.

The state of an artifact shows for the user how far it is from contributing to

the equilibrium state. For example, if an agreement is in the state of open, it still

needs to be assessed and discussed in order to start a vote. Once it is passed, it

indicates that stakeholders have consensus on this agreement and all its covering

win conditions are closer to be reconciled.

Figure 8.2 demonstrates a subset of the consolidated model. For every state in

the EquilibriumModel, there is a corresponding artifact life cycle combination. This

life cycle combination re
ects a collection of artifacts connected by relationships (i.e.

artifact chains). These artifact chains again represent a speci�c blending of inter-

win-condition relationships. In the WinWin equilibrium state, all win conditions

are reconciled and covered by some passed agreements. Its corresponding artifact

life cycle combination is discussed in Chapter 7. To make sure that every single

win condition is covered and every single issue is resolved, every artifact chain must

contain a sub-chain of \Win Condition(covered)
involves
�! Issue (resolved)." By de�ni-

tion of \covered" and \resolved," there must exist a \used" option that is adopted

by a \passed" agreement. It can be proved that for all win conditions wi;j 's, the

intersection of their win regions must be non-empty. The \Resolve single issue"

and \Resolve multiple issues" states can be addressed using the same framework as

\Equilibrium state."

168

System Equilibrium Artifact Life Cycles Inter-Artifact Relationships Inter-Win-Condition Relationships

Equilibrium state

Resolve single
issue

Resolve multiple
issues

w∀ W∈

state w() =

C fully covered–()
covered resolved

Every artifact chain CH contains

IW

R Wi j,()
j 1=

Ni

∩
i 1=

K

∩ φ≠

∃ ! i I∈

state i() resolved≠
 ≠covered ≠resolved

There exists only one artifact chain CH,

IW

∃ ! Ik

i1 i2,∃ I i1 i2≠,∈

state i1() resolved≠

state i2() resolved≠

≠covered ≠resolved

There exist 2 distinct artifact chains

IW

∃ I1,I2 s.t. I1≠I2

≠covered ≠resolved

IW

CH1

CH2

a covered win condition:

A

O A

passedused

passed

CH1 and CH2 containing 2 distinct issues

Figure 8.2: An integrated model of the many views

169

Chapter 9

Model Implications

The USC-CSE WinWin requirements negotiation system to date has primarily in-

volved exploratory prototyping. It has evolved from WinWin-0, a version built on

top of a COTS(Commercial O�-The-Shelf) tool CACE=PMTM by Perceptronics;

through the WinWin-1 version; to the current version WinWin-95. WinWin-1 and

WinWin-95 were both developed by USC-CSE. The initial scenario for the WinWin

system is to assist stakeholders to achieve the WinWin equilibrium state in which all

win conditions are covered by only passed agreements and there are no unresolved is-

sues. A simple equilibrium model in [BBHL95] was developed to guide the WinWin

users toward the equilibrium state. In addition, simple artifact life cycles[Hor96]

were formulated to signal the current negotiation state.

When the formal modeling was initiated, it indicated that the original equilib-

rium model and artifact life cycles did not well address concerns such as concurrent

issue negotiation and artifact change management. The simple artifact life cycles

170

U2U1 U3 U4 U5 U6 U7 C2C1 C3 C4 C5 C6 C7 D2D1 D3 D4 D5 D6

U2U1 U3 U4 U5 C2C1 C3 C4 C5 C6 C7 D2D1 D3 D4 D5

U2U1 U3 U4 U5 U6 C2C1 C3 C4 C5 C6 D2D1 D3 D4

U1 C2C1 C3 C4 D2D1 D3

Agreement

Option

Issue

Win
Condition

M
:
M

M
:
M

M
:
M

Cardinality

User DeveloperCustomer

Figure 9.1: Student WinWin Artifact Structure #13

provided very little information about the negotiation state to the WinWin users.

This suggested that the WinWin system needed a stronger state summary that

highlights artifacts which require the most negotiation.

Moreover, when a WinWin usage analysis of 23 student teams negotiating the

requirements for a relatively small-scale library information system usingWinWin-95

was performed, it was recognized that many o�-nominal cases were over-looked and

poorly-managed in the system. An example is as illustrated in Figure 9.1. Consider

that the state of a win condition is determined by its involving issues and covering

agreement. If the system allows the stakeholders to set up a many-to-many relation

between two artifacts, it will result in many possible combinations of situations.

How should the state of a win condition under the many possible situations be

171

WinWin Spiral Process Model

WinWin Support System

WinWin
Formal
Modeling

WinWin
Usage
Analysis

artifacts,
relations,

closure
consistency
analysis

usage scenario
consistency analysis

good, bad
usage patternsschemas,

tools

process concepts

operations

Figure 9.2: Role of the formal modeling

properly determined? And if an option is adopted by two agreements, should its

state depend on one agreement being \passed" or both agreements being \passed?"

What semantics better models the reality? Answers to these questions are closely

connected with our understanding of the system behavior and require further formal

analysis. The analysis also demonstrated that users misused the system and became

confused about system behavior because some assumptions underlying the system

were not well understood.

Figure 9.2 illustrates the role of the formal modeling presented in this thesis.

First, it performs consistency closure analysis to the WinWin artifacts, relations,

and operations. Second, it stimulates testable hypotheses for the WinWin usage

analysis to gather upgrade insights. The following sections outline insights gained

172

Figure 9.3: WinWin-1 artifact window: Win Condition

from this formal modeling that have helped us upgrade the system and detect aber-

rant behavior of the system.

9.1 Upgrading insights

9.1.1 Explicit relationships and Referential integrity

Figure 9.3 is a screen dump of a WinWin-1 win condition window. It shows sev-

eral problems in WinWin-1 for supporting the WinWin process. The �rst one was

ambiguous inter-artifact relationships. In this window, the \contribute to" slot actu-

ally overloaded all possible relationships of a win condition. It confused stakeholders

when a win condition could contribute to both a \Point of Agreement (POA: now

173

Option
POA

CRUWin Condition

contribute_to

adapted_from

contribute_to

adapted_from

resolution_alternative

addressing

involved_in

conflicting_elements

involved_in

conflicting_elements

Figure 9.4: First Inter-artifact relationship model

renamed agreement)" and a \Con
ict/Risk/Uncertainty(CRU: now renamed issue)"

at the same time. Another problem was the value-based reference did not support

referential integrity. Stakeholders could get dangling pointers if an artifact was

deleted whereas its references were not. Any typing error could result in a dangling

pointer. If a stakeholder wanted to look at the content of a particular reference,

he/she had to either compose a query or exhaustively search through the artifact

menu which was extremely inconvenient and error-prone.

174

In the proposal of this thesis, the �rst artifact inter-relationships model was es-

tablished as shown in Figure 9.4. It provided a good basis for identifying what rela-

tionships ought to exist between which pairs of artifacts. It later was revised1 by the

WinWin development team to propose the model in Figure 5.1 that is currently used

in WinWin-95. The proposal also made suggestion to change value-based schemas

to object-based schemas to enforce referential integrity in the chapter of \Model

Implementation." The object-based schemas are now supported by WinWin-95 and

facilitate referential integrity and navigation convenience for stakeholders.

9.1.2 Suggesting stronger status summary

In WinWin-1, status and state were mixed in one �eld to provide a very simple

artifact life cycle model. For a win condition, it was in or out to indicate whether

the win condition was still active. For a CRU(issue), it was resolved if some option

was chosen and a closed POA was reached based on that option or unresolved. For an

option, it was open if it was still under consideration or dropped. For an agreement,

it was closed if stakeholders had reached consensus or open. All the above were set

by stakeholders manually. In WinWin-95, the original design included only the �eld

status of value \active" and \inactive" for most artifacts and \-," \vote-in-progress,"

\passed" together with\failed" for an agreement. The formal model advocated the

1The relationships were reworded to provide better understanding; and the relationships between
agreement(POA) and issue(CRU) were removed to reduce complexity.

175

necessity of an artifact life cycle model that can re
ect the inter-artifact relationships

and the negotiation states. Later, an additional attribute|state{for modeling simple

artifact life cycles was incorporated to WinWin-95 as follows:

� Agreement

{ |: when an agreement is just proposed

{ vote-in-progress: when an agreement is being conducted a vote

{ passed: when the vote is passed

{ failed: when the vote is failed

� Option

{ unused: when the option is not adopted by any \passed" agreement

{ used: when the option is adopted by a \passed" agreement

� Issue

{ unresolved: when the issue is not addressed by any \used" option

{ resolved: when the issue is addressed by a \used" option

� Win Condition:

{ uncovered: when the win condition is still involved in some unresolved

issue or covered by some agreement that has not been passed

176

Figure 9.5: WinWin-95 issue state summary

{ covered: when the win condition is not involved in any unresolved issue

or covered by only \passed" agreements

The formal analysis contends that this model still needs to be extended to sug-

gest a stronger state summary. For example, an issue can be unresolved in many

situations. It may be newly created and require proposing options to address this

issue. It may have already had options proposed and require stakeholders to negoti-

ate its options. It may be locked because a vote is conducted on the agreement that

adopts some option that addresses this issue.

Figures 9.5 and 9.6 show the current issue and win condition summary in

WinWin-95. All issues are dichotomized into \resolved" or \unresolved" and all

win conditions into \covered" and \uncovered." If a stakeholder wants to know

what is a candidate next step to resolve an issue, he/she has to go to that issue, and

open up its \referenced by" menu to see if it is addressed by any options. If there is

177

Figure 9.6: WinWin-95 win condition summary

some option addressing it, the stakeholder still needs to assess that option to know

if it is adopted by any agreement. And if an issue is locked, the stakeholder will not

know the fact until he/she tries to modify its content. If he/she wants to know why

this issue is locked, he/she again needs to visit the options and then the agreements

to check whether that agreement is \vote-in-progress" or \passed." Stakeholders

also cannot prioritize which issue among the many to assess �rst according to how

far it is from being \resolved" by some passed agreement since they do not know

what causes an issue to be \unresolved" until they visit the issues one by one and

trace the references.

The state summary proposed in Figure 9.7 o�ers more information to guide

stakeholders to recover equilibrium in a more e�cient way. It is clear to see

178

ID State Name

milee-ISSU-4 Unesolved Lack of interfacer

milee-ISSU-3 Pre-resolved Platform mismatch

milee-ISSU-2 Vote-in-progress Performance and Interoperability

milee-ISSU-1 Resolved Cost and schedule over run

Figure 9.7: Suggested issue summary

whether an issue is just newly created(open), has been addressed by an \unused"

option(addressed), has been preliminarily resolved by an \open" agreement(pre-

resolved), is locked because the resolving agreement is conducted a vote(vote-in-

progress) or is locked because the resolving agreement is \passed"(resolved). Stake-

holders can also sort the issues according to their states to decide which issue to

assess and resolve �rst.

Similar criteria can be applied to show the inadequacy of the current win condi-

tion state summary. The complexity involved in identifying why a win condition is

\uncovered" or locked in WinWin-95 is much greater than a single issue, since a win

condition can be directly covered by many agreements and involved in many issues,

all of di�erent states. Figure 9.8 proposes a win condition state summary that tells

stakeholders how many issues without resolving agreements it is involved in, and

how many agreements of di�erent states it is covered by, to allow stakeholders to

179

ID State Name

uncovered(u)

[involved in
an unresolved
issue]

pre-covered(p)

[covered by an
open
agreement]

vote-in-
progress(v)

[covered by a
vote-in-
progress
agreement]

covered(c)

[covered
by a passed
agreement

bose-WINC-7 2 Domain-specific-Tool-Extensions-2

bose-WINC-8 3 1 1 Tools for reengineering-1

bose-WINC-4 2 1 SGS workstation usage scenario gen-
eration

bose-WINC-2 1 1 Domain-specific Simulation capabil-
ity

bose-WINC-3 4 2 SGS domain test stimulators and
test/debug tools

bose-WINC-6 1 Domain-specific-Tool-Extensions-1

bose-WINC-5 1 SGS domain data reduction and
reporting

bose-WINC-1 1 Interoperable SEE functions

egim-WINC-1 test

Figure 9.8: Suggested win condition summary

better sort out which win condition should be visited �rst and what sequence of

actions should be taken to get it fully covered.

9.1.3 Process guidance

The WinWin equilibrium and artifact states suggest process agenda items to lead

the WinWin users toward the equilibrium state. Two simple equilibrium models

were developed in [BBHL95] and [Hor96]. However, neither one encompassed the

multiple-issue aspect. The equilibrium model and the artifact life cycles proposed

in this thesis deal with the multiple issue case and o�er situated reasoning based on

180

the current state of the artifacts for the users to determine what sequence of actions

to take in order to get to the equilibrium.

9.2 Identifying and preventing potential aberrant

behavior

Formalizing the WinWin artifacts and process helps us fully understand system

behavior. Analyzing the many possible artifact state combinations formulates a

meta-model for generating cases to test if the system responds correctly under dif-

ferent situations. The following are instances that the model was able to identify

where WinWin-95 failed to behave as expected:

� Erroneous conditions for locking and unlocking artifacts

WinWin-95 locked an artifact when it was in the artifact set of a \vote-

in-progress" or \passed" agreement and unlocked it when the \vote-in-

progress/passed" agreement was inactivated or when the vote was failed.

Therefore, when a win condition was covered by a \vote-in-progress" agree-

ment, it was locked. However, if a second agreement covered this win condition,

when the vote on the second agreement failed, the system would erroneously

unlock the win condition despite that fact that the �rst agreement still had

a vote-in-progress, as shown in Figure 9.9. Artifact life cycles presented in

181

Vote-in-
progress(V)
lock win
condition

Uncovered (U);
unlock
win conditions

Vote-in-
progress
 (V)

UV; do not unlock
win conditionsUV PV V

W1

A1
vote-in-progress

vote-in-progress (V) I2 W1

A1
vote-in-progress

UV

A2 O2 I2 W1

A1
open

vote-in-progress

PV

A2 O2 I2 W1

A2
vote-in-progress

vote-in-progress

V

A2 O2 I2 W1

A2
failed

vote-in-progress

UV

vote

Initial Implementation

Formal modeling

vote

vote fails

new
issue

new
agreement

vote on new
agreement

vote on new
agreement
fails

Figure 9.9: Locking problem detected by the model

this thesis o�ered an exhaustive analysis of all possible states and their corre-

sponding behavior. In this particular case, the resulting \UV(uncovered and

vote-in-progress)" state for the win condition indicated that the win condition

should remain locked.

� Undesirable state combinations

In designing WinWin-95, it was assumed every WinWin user would follow the

\Win Condition
involves
�! Issue

addresses
�! Option

adopts
�! Agreement" link. That is,

they should always create win conditions at �rst, analyze con
icts between

win conditions to suggest an issue involving these controversial win condi-

tions, compose some options to address this issue and propose an agreement

182

to adopt the best feasible options. However, the WinWin-95 version used for

the student project analysis allowed stakeholders to create an issue involving

no win conditions, or an option addressing no issue, or an agreement adopting

no option or covering no win conditions.

Also, a relationship called \relate to" was provided to link related artifacts

together. Some students used this relationship to replace all the desired rela-

tionships for negotiation such as \involves," \addresses," \adopts," and \cov-

ers." The system also mistakenly set a win condition to \covered" when all the

issues pointing to it by the \relates to" link were resolved. The rules and ar-

tifact state de�nitions presented before have provided guidance for preventing

such undesired state combinations.

183

Chapter 10

Conclusions

The research described in this thesis models the WinWin requirements negotiation

infrastructure and dynamics.

The research involves formal and semi-formal descriptions of multiple views for

the WinWin requirements negotiation system, including

� Win Condition Interaction: a problem space view identifying the Win space

of a stakeholder and how it intersects with other stakeholders' Win regions;

� Artifacts and Relationships: schemata and an entity-relationship model with

functional de�nitions to support the negotiation infrastructure;

� Artifact Life Cycles: state diagrams and predicate calculus to demonstrate

how artifacts evolve in the negotiation process;

� System Equilibrium: a hierarchical state model and predicate calculus to guide

the WinWin users to recover the equilibrium (WinWin) state.

184

As stressed previously, heterogeneous presentations for the same system can cause

inconsistency and confusion. Chapter 8 presents how the relationships among the

many views are determined to establish an integrated model. The WinWin artifacts

and their relationships are mapped onto the problem space view. The artifact life

cycles are de�ned by the WinWin artifact relationships. Each state in the equi-

librium model is characterized using the states in the artifact life cycles. Future

work can generalize the reconciliation methodology and apply it to other multi-view

frameworks.

The many views have also identi�ed initial incompleteness and inconsistency

aspects of the WinWin system, and have facilitated artifact change management.

The analysis has helped us fully understand the system behavior in the following

aspects:

� recognized need to recover equilibrium via the WinWin equilibrium model;

� recognized concurrency-control problems via the WinWin artifact life cycles

and the equilibrium model;

� covered o�-nominal cases by analyzing the problem space view, the artifact

relationships and the artifact life cycles.

In addition, the many possible states identi�ed in the equilibrium and artifact life

cycle analyses provided improved summaries for communicating the system status

to the WinWin users as follows:

185

� stronger state summary tables and graphs;

� signals when an artifact is locked.

However, when trying to model the many possible states that should be included

in the artifact life cycles and in the WinWin equilibrium model, there are still

problems of complexity. To the WinWin users, too many possible states may be

hard to understand and make use of. This suggests the need for future work on

formulating rules that can simplify the life cycles but still reasonably model the

real-world requirements negotiation.

186

Part III

Bibliography

187

Reference List

[AC93] W.L. Anderson and W.T. Crocca. Engineering Practice And Codevel-
opment of Product Prototypes. Communications of the ACM, 36(4):49{
56, June 1993.

[Alf77] M.W. Alford. A Requirements Engineering Methodology for Real-Time
Processing Requirements. IEEE Transactions on Software Engineering,
3(1):60{68, January 1977.

[BBHL94a] B.W. Boehm, P. Bose, E. Horowitz, and M.J. Lee. Experimental Re-
sults from a Prototype Next-Generation Process Support System. TRW
Systems Integration Group Technology Review, 2(1):4{27, Summer 1994.

[BBHL94b] B.W. Boehm, P. Bose, E. Horowitz, and M.J. Lee. Software Require-
ments As Negotiated Win Conditions. In Proceedings First Interna-
tional Conference on Requirements Engineering, pages 74{83. IEEE
Computer Society Press, April 1994.

[BBHL95] B.W. Boehm, P. Bose, E. Horowitz, and M.J. Lee. Software Require-
ments Negotiation and Renegotiation Aids: A Theory-W Based Spiral
Approach. In Proceedings 17th International Conference on Software
Engineering, pages 243{253. ACM Press, April 1995.

[Ben56] H.D. Benington. Production of Large Computer Programs. In Proceed-
ings ONR Symposium, June 1956.

[BGS84] B.W. Boehm, T.E. Gray, and T. Seewaldt. Prototyping Versus Specify-
ing: A Multiproject Experiment Database Systems. IEEE Transactions
on Software Engineering, 10(3):290{302, May 1984.

[BI96] B. Boehm and H. In. Aids for Identifying Con
icts Among Quality
Requirements. IEEE Software, 13(2):25{35, March 1996.

[Boe81] B.W. Boehm. Software Engineering Economics. Englewood Cli�s, NJ:
Prentice-Hall, 1981.

[Boe88] B.W. Boehm. A Spiral Model of Software Development and Enhance-
ment. IEEE Computer, 21(5):61{72, May 1988.

188

[Boz92] J.S. Bozman. Fidelity's Development Plan Leans on JAD and Proto-
typing. Computerworld, pages 73{74, September 21 1992.

[BR89] B.W. Boehm and R. Ross. Theory-W Software Project Management:
Principles And Examples. IEEE Transactions on Software Engineering,
15(7):902{916, July 1989.

[Buc94] R. Buchness. The WinWin Spiral Model: Rockwell Just in Time Train-
ing Course. The Los Angeles Software Process Improvement Network
(LA-SPIN) Meeting, November 1994.

[C+88] P. Cook et al. Project Nick: Meetings Augmentation and Analysis.
ACM Transactions on O�ce Information Systems, 5(2):132{146, April
1988.

[CY91] E.J. Conklin and K.C.B. Yakemovic. A Process-Oriented Approach to
Design Rationale. Human-Computer Interaction, 6:357{391, 1991.

[Dav90] A.M. Davis. Speci�cation In a World of Ever-Changing Requirements.
In S. Andriole, editor, Advanced Technologies for Command and Control
systems Engineering, pages 32{47. Fairfax, Va.: AFCEA International
Press, 1990.

[EGR91] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some Issues and
Experience. Communications of the ACM, 34(1):38{58, January 1991.

[F+92] G. Fischer et al. Supporting Software Designers with Integrated
Domain-Oriented Design Environment. IEEE Transactions on Software
Engineering, 18(6):511{522, June 1992.

[FGHW88] F. Flores, M. Graves, B. Hart�eld, and T. Winograd. Computer Sys-
tems and the Design of Organizational Interaction. ACM Transactions
on O�ce Information Systems, 6(2):153{172, April 1988.

[H+92] D. Harris et al. ARIES: The Requirements/Speci�cation Facet for
KBSA. Technical Report AL-TR-92-248, USC Information Sciences
Institute, Rome Laboratory; Air Force Materiel Command, Gri�s Air
Force Base, New York, October 1992.

[Hol88] A.W. Holt. Diplans: A New Language for the Study and Implemen-
tation of Coordination. ACM Transactions on O�ce Information Sys-
tems, 6(2):109{125, April 1988.

[Hor96] E. Horowitz. WinWin Reference Manual: A System for Collaboration
and Negotiation of Requirements. Center for Software Engineering, Uni-
versity of Southern California, 1.0 edition, March 1996.

[JK94] S. Jacobs and S. Kethers. Improving Communication Decision Mak-
ing within Quality Function Deployment. In 1st International Confer-
ence on Concurrent Engineering, Research and Application, Pittsburgh,
USA, August 1994.

189

[KBH+92] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Repli-
cated Document Management In A Group Communication System. In
D. Marca and G. Bock, editors, Groupware: Software for Computer-
Supported Cooperative Work, pages 226{235. IEEE Press, 1992.

[KR70] W. Kunz and H. Rittel. Issues as Elements of Information Systems.
Technical Report Working Paper No. 131, Institute of Urban and Re-
gional Development, Berkeley, University of California at Berkeley,
1970.

[LYM88] K. Lai, K. Yu, and T.W. Malone. Object Lens: A `Spreadsheet' for
Cooperative Work. ACM Transactions on O�ce Information Systems,
6(4):332{353, October 1988.

[MA93] K.H. Madsen and P.H. Aiken. Experiences Using Cooperative Interac-
tive Storyboard Prototyping. Communications of the ACM, 36(4):57{
64, June 1993.

[MK93] M.J. Muller and S. Kuhn. Participatory Design: Introduction. Com-
munications of the ACM, 36(4):24{28, June 1993.

[NKF94] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Express-
ing the Relationships between Multiple Views in Requirements Speci-
�cation. IEEE Transactions on Software Engineering, 20(10):760{773,
October 1994.

[P+94] K. Pohl et al. Applying AI Techniques to Requirements Engineering:
The NATURE Prototype. In Proceedings ICSE-Workshop on Research
Issues in the Intersection Between Software Engineering and Arti�cial
Intelligence, May 1994.

[Poh93] K. Pohl. The Three Dimension of Requirements Engineering. In 5th In-
ternational Conference on Advanced Information Systems engineering,
June 1993.

[PTA94] C. Potts, K. Takahashi, and A.I. Anton. Inquiry-Based Requirements
Analysis. IEEE Software, 11(2):21{32, March 1994.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Dynamic Modeling, pages 84{111. Prentice Hall, 1991.

[RD92] B. Ramesh and V. Dhar. Supporting Systems Development by Captur-
ing Deliberations during Requirements Engineering. IEEE Transactions
on Software Engineering, 18(6):498{510, June 1992.

[Ret93] M. Rettig. Cooperative Software. Communications of the ACM,
23(6):23{28, April 1993.

[RKS77] D.T. Ross and Jr. K.E. Schoman. Structured Analysis for Requirements
De�nition. IEEE Transactions on Software Engineering, 3(1):6{15, Jan-
uary 1977.

190

[Roy70] W. Royce. Managing the Development of Large Software Systems. In
IEEE WESCON, pages 1{9, August 1970. Reprinted in Ninth IEEE
International Conference on Software Engineering , Washington D.C.:
IEEE Computer Society Press, 1987. pages 328-38.

[S+87] M. Ste�k et al. Beyond the Chalkboard: Computer Support for Col-
laboration and Problem Solving in Meetings. Communications of the
ACM, 5(2):147{167, January 1987.

[SB82] W. Swartout and R. Balzer. On the Inevitable Intertwining of Speci�ca-
tion and Implementation. Communications of the ACM, 25(7):438{440,
July 1982.

[T+96] K. Takahashi et al. Hypermedia Support for Collaboration in Require-
ments Analysis. In Proceedings Second International Conference on Re-
quirements Engineering, pages 31{40. IEEE Computer Society Press,
April 1996.

[TV77] D. Teichroew and K. Vincena. PSL/PSA: A Computer-Aided Technique
for Structured Documentation and Analysis of Information Processing
Systems. IEEE Transactions on Software Engineering, 3(1):41{48, Jan-
uary 1977.

[UC94] USC-CSE. WinWin Spiral Model and Support System Demonstration.
USC-CSE Research Review, February 1994.

191

