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Abstract — Side channel analysis can be used to derive se-
cret/private keys used in näıve implementations of cryptographic
algorithms. Such attacks typically involve demonstrating the rela-
tionship between the data being manipulated by a microprocessor
or FPGA, and the instantaneous power consumption of the device.
When statistical power attacks are applied to software implementa-
tions of block ciphers, the secret key can be derived in stages dictated
by the size of the substitution tables (S-boxes) used. When statis-
tical power attacks are applied to other algorithms that make use
of 32-bit, or larger, variables, the complexity of a statistical power
attack is dictated by the size of the machine word used by a micro-
processor. This paper provides a method of reducing the complexity
of statistical power analysis when attacking algorithms implemented
on 32-bit microprocessors. It is also demonstrated that this method
can be applied to hardware implementations, as found in coproces-
sors used in smart cards.
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I Introduction

Side Channel Analysis (SCA) is a type of cryptana-
lytic attack, which focuses on exploiting the imple-
mentation or some measurable non-mathematical
property of a cryptographic system, such as the
power consumption [1] or electromagnetic emana-
tions [2]. SCA has advanced immeasurably since
its breakthrough into the security community al-
most a decade ago. SCA attacks, such as Differ-
ential Power Analysis (DPA) [1], which exploits
the instantaneous power consumption of a device,
have proved to be very powerful and very difficult
to defend against.

In particular, SCA has been associated with
smart cards, where implementation characteristics
are easy to monitor, measure and exploit. Two
models have been proposed to describe the power
consumption of such devices, namely the Hamming
weight and Hamming distance models [3]. The
information derived from these models is subse-
quently used in combination with statistical tech-
niques to attack a target cryptographic device.
These models are ultimately based on the word
size of the underlying microprocessor, where the
word size of the microprocessor is one of the main
contributory factors to the efficiency and feasibil-
ity of the attack. In older technologies, where 8

or 16-bit processors were prevalent, the Hamming
weight/distance and associated attacks could be
executed relatively efficiently. However, the cur-
rent trend in smart card technology is towards the
use of 32-bit processors, making such attacks prob-
lematic due to a high computational intensity and
the amount of acquisitions required.

The idea of statistically treating power analy-
sis traces was first presented to the cryptographic
community in [1], and is referred to as Differential
Power Analysis (DPA). This involved predicting
one bit of the output of a substitution table (S-
box) used in block ciphers, in order to determine
the bits of the secret key that were used to gener-
ate the predicted bit. Power consumption traces
are divided into two sets based on the value of
this bit and two average power consumption traces
are created. A DPA trace is then formed by com-
puting the pointwise difference between the two
traces. Where the analysed bit is guessed correctly
there will be a significant difference between the
two average traces, and these differences are often
referred to as DPA peaks.

The typical example used to illustrate an attack
based on DPA is that of forming hypotheses on
one bit of the output of an S-box in the first round
of DES [4], this is then used to derive six bits of



the secret key. Attacking a 32-bit word using DPA
is problematic because of the amount of noise in-
duced by the other 31 ignored bits in the register
at the time of attack. This can mean a great deal
of acquisitions are required in order to produce a
significant peak. Also, small desynchronisation ef-
fects are, typically, amplified by taking numerous
acquisitions, which can mean that acquiring more
data does not always provide an efficient means of
overcoming this noise. DPA is also subject to the
“ghost peak” problem [3], which can lead to false
positives on the key hypotheses.

An alternative to DPA was published in [3],
called Correlation Power Analysis (CPA), where
hypotheses on key bits are confirmed in a simi-
lar manner to DPA. However, an attacker verifies
hypotheses by calculating the correlation between
the instantaneous power consumption and the pre-
dicted output of an S-box. This provides a method
of deriving information on a certain number of bits
of a secret key used in a block cipher, that is less
prone to validate false key hypotheses. The best
results are achieved when the entire contents of the
machine word being manipulated by a micropro-
cessor are predicted. In this scenario the predicted
power consumption matches the power consump-
tion of the entire register. For example, if CPA
is applied to an implementation of DES on an 8-
bit chip, an attacker will be required to predict
all eight bits of the register used to contain the
output of each S-box. This is relevant as, in em-
bedded software, S-boxes are typically stored in a
compressed format (i.e. two S-box entries per byte
in memory). However, for large word sizes, such
as 32 bits, the amount of CPA traces required is
likely to be computationally infeasible.

This paper proposes an optimisation for the
computation of CPA traces for 32-bit platforms to
derive information on the secret/private key used.
It follows an extend and prune process somewhat
similar to that explained in [5]. This optimisa-
tion allows the rapid calculation of CPA traces
compared to conventional methods and also allows
verification of hypotheses after linear functions, or
non-linear functions calculated in parallel.

This paper is organised as follows. In Section II
the power consumption models that have been
used to derive statistical attacks are introduced.
CPA is described in Section III, and Section IV
describes how our proposed method makes use of
the partial correlation in a similar manner. In Sec-
tion V a case study is presented were the proposed
method is applied to a DES coprocessor on a smart
card. Finally conclusions are drawn in Section VI.

II Power Consumption Models

There are two main models for relating the in-
stantaneous power consumption and the data be-

ing manipulated. These are the Hamming weight
model and the Hamming distance model. These
models are described below.

a) The Hamming Weight Model

The simplest model, initially proposed in [1, 6],
involves an affine relationship between the power
consumption and the Hamming weight of the data
being manipulated at a given point in time. This
is largely caused by the bus on the microprocessor,
that consumes a large amount of power compared
to any other single feature on the chip. This can
be expressed as,

Y = aH(X) + b (1)

where Y is the power consumption, X is the value
of the data being manipulated, and H is a function
that calculates the Hamming weight. The variable
b includes the acquisition noise and the variation
from one clock cycle to another, as the commands
being executed by the CPU change.

This can be justified by observing that the tracks
of the bus will either be zero (and consume no
power) or one (and will therefore consume power).
As each track will consume the same amount of
power, the power is therefore proportional to the
number of tracks with current flowing in them. As
all the information being processed by the chip is
carried across the bus, this relationship can be ex-
ploited when secret information is sent across the
bus.

b) The Hamming Distance Model

Another model was proposed in [3] that generalises
the Hamming weight model. This model is a simi-
lar model to the Hamming weight model but with
an addition of another variable, P . This model is:

Y = aH(P ⊕ X) + b (2)

The notation is the same as described in the pre-
vious model, and the value P represents some pre-
vious state. The justification for this model is that
the Hamming weight model is only valid if the bus
is set to zero between each value sent. If this value
is not set to zero then there is a transition from
state P to state X, so the change in value of the
bus can be modelled by an XOR between the two
values.

In embedded software a command fetched by the
CPU will often consist of several opcodes: usually
an instruction followed by the data being manip-
ulated. In this case, X is the data being manipu-
lated and P is the instruction opcode. If the data
is being sent over a separate data bus, P will ei-
ther be previous data or zero, depending on how
the chip manages values on the data bus, i.e. if



the bus is set to zero when it is not in use or if it
maintains its previous state.

When attacking a hardware implementation P

needs to be predicted taking into account the de-
sign under attack. The previous state may be vari-
able or constant depending on the design. This
can be problematic if the design is not known, but
can also provide a means of verifying hypotheses
concerning the design of a given implementation.

III Correlation Power Analysis

An attacker using CPA will acquire a set of N

power consumption traces while a given algorithm
is being computed (wi for 1 ≤ i ≤ N), and at-
tempt to predict the Hamming weight of the com-
puter word being manipulated at a chosen point
in time for each acquired trace (hi for 1 ≤ i ≤ N).
The correlation between these predictions H and
the instantaneous power consumption of the set of
acquired traces W , i.e.

ρWH =
cov (W,H)

σW σH

, (3)

can be calculated to deduce where in the traces the
chosen point in time appears. This involves gener-
ating a CPA trace that represents the correlation
between H and W at each point in the acquired
power traces.

The series of data hi for 1 ≤ i ≤ N is pre-
dicted using one of the models proposed in Sec-
tion II. When the Hamming distance model is
used, it is also necessary to calculate the corre-
lation coefficient for every possible value for the
unknown previous state P , and the largest corre-
lation coefficient should give the value of P . This
will involve generating a CPA trace for each of the
possible values for P . On an architecture with a
small word size, e.g. 8-bit, this is straightforward.
However, on an architecture that uses a relatively
large word size, e.g. 32-bit, this is computationally
prohibitive.

When CPA is used to attack a block cipher, an
attacker forms a hypothesis about the result of a
given function, e.g. an S-box, for each of N acqui-
sitions where the following structure exists:

I = S(M ⊕ K) (4)

i.e. a part of the message block M is XORed with
part of the key K, and then passed through an S-
box (the function S) to produce an intermediate
state I. An attacker will try and predict the series
hi for 1 ≤ i ≤ N for each possible value of K

(or the fraction being manipulated at the chosen
point in time). An attacker is therefore obliged to
generate a CPA trace for each value of K. This
subject is given a more rigorous treatment in [3].

In the case of secret key cryptographic algo-
rithms that are designed to run quickly on 32-

bit platforms this could pose a problem due to
the amount of computation required. For exam-
ple, RC6 [7] uses 32-bit modular multiplication in
its round function. An attacker would be obliged
to generate 232 CPA traces to derive a portion of
the secret key. If the Hamming distance model
is used a further 232 CPA traces are required per
hypothesis, for a total of 264 CPA traces. The
same problem presents itself if an attacker tries to
attack a HMAC based around SHA or MD5 [8]
as these also use 32-bit functions. This problem
is amplified on FPGA and ASIC implementations
of block ciphers, as designers will attempt paral-
lelise as much as possible. An attacker is obliged to
model the design to be able to predict everything
that is occurring at a given point in time in order
to produce an efficient attack. The method pro-
posed in this paper seeks to reduce the amount of
computation required to make attacking hardware
designs and 32-bit chips feasible.

IV Using the Partial Correlation

In [3] it is pointed out that if the correlation co-
efficient of l independent bits amongst m is cal-
culated, a partial correlation still exists and can
be predicted as a function of the coefficient that
would be generated if all the bits of m were in-
cluded. This is given as:

ρWHl/m
= ρWH

√

l

m
(5)

where l bits from an m-bit word are known.
This can be used to provide a method to attack

implementations on processors with large word
sizes. An attacker can correlate with a certain
number of bits in the word being manipulated by a
processor; the largest correlation coefficient should
correspond to the correct hypothesis for these bits.
A further selection of bits can then be analysed,
taking into account the bits that have already been
derived. The largest correlation coefficient will be
greater than the previous stage, as more bits are
known. This allows the second selection of bits
to be deduced, and also validates the bits derived
during the first stage of the attack.

For example, if we consider the multiplication
of two 32-bit values (A, B) in a 32-bit ALU, i.e.
the multiplication takes place modulo 232, where
A is known and B is unknown and it is known
that the Hamming weight model applies. Let the
32-bit word output be written as four bytes MSB,
MMSB, MLSB, and LSB. An attacker can attempt to
derive the value of each byte of B in succession.

CPA traces can be generated using just the val-
ues for LSB, as LSB can be predicted for the 28 pos-
sibilities for the 8 least significant bits of B. This
will produce a set of CPA traces where the trace
corresponding to the correct hypothesis of B will



contain a correlation coefficient of
√

8

32
= 0.5 the

correlation produced if all the bits were predicted.

An attacker can then generate CPA traces to de-
termine the 16 least significant bits of B with the
same amount of computation, as the 8 least signifi-
cant bits of B will have been determined. This will

produce a correlation coefficient of
√

16

32
= 0.707

the correlation produced if all the bits were pre-
dicted. This provides a further 8 bits of B, and
validates the 8 bits of B derived in the first stage
of the attack.

This can be continued for MMSB and MSB to derive
the value of B, and requires the generation of 4 ×
28 = 210 CPA traces. This is considerably more
efficient than forming hypotheses directly on B,
which would require the generation of 232 CPA
traces.

In practice, it may be advantageous to take a
certain number of hypotheses from each stage of
the analysis rather than just the most likely hy-
pothesis. A partial correlation does not have the
same distinction between a correct hypothesis and
an incorrect hypotheses that one would expect
when calculating the correlation using all m bits.
This makes the optimisation more robust as it al-
lows for errors in interpreting results (e.g. possibly
caused by noise during the acquisition process). In
the above example, if four hypotheses from each
stage of the attack are retained, rather than one,
then this would raise the number of CPA traces
that would need to be generated, in the above ex-
ample, to 28 + 3(4 × 28) ≈ 212.

In the case of the Hamming distance model
the same optimisation applies, although it is more
practical to consider the word in sections of 4 bits.
Otherwise, generating the number of CPA traces
that are required to validate hypotheses at each
stage of the attack can become prohibitively time
consuming. In the example given above, there
would be 64 unknown bits (B and some previous
state) that would normally require the generation
of 264 CPA traces.

This optimisation will work for functions where
the operation being attacked can be broken down
into smaller units, as in the above example. This
will not be possible in functions where each bit of
the output is dependent on every bit of the input.

V Case Study: DES Coprocessor

Hardware implementations of block ciphers, such
as DES, are often included in smart card chips
to improve performance. Hardware implementa-
tions of block ciphers are able to compute an al-
gorithm significantly faster than embedded soft-
ware. Such hardware implementations of block
ciphers have typically been viewed as difficult to
attack using side channel analysis. This section

describes how the method described above can be
applied to power consumption traces acquired dur-
ing the computation of a hardware implementation
of DES [4].

The computation of DES can be considered as
a transformation of two 32-bit variables (L0, R0),
i.e. the message block, through sixteen iterations
of a round function to produce a ciphertext block
(L16, R16). The round function can be written as:

Rn = S(Rn−1 ⊕ Kn) ⊕ Ln−1

Ln = Rn−1

(6)

where S is the S-box function. There are some
bitwise permutations but these are not relevant to
this description, i.e. they render an implementa-
tion more complex but principle of the attack is
unaffected. The eight different S-boxes are applied
in each round to sets of six bits, where each S-box
reduces a 6-bit input to a 4-bit output. The sub-
keys Kn, for 1 ≤ n ≤ 16, are each 48 bits generated
from the 56-bit key, by permuting the bits of the
initial key.

The power consumption during the computation of DES.

A CPA trace with a correct key guess.

Fig. 1: Power consumption during the computation of a
DES in hardware (upper), and a CPA trace computed

using the correct hypothesis for the first subkey (lower).

When designing hardware implementations of
block ciphers it is natural to try and do as much
as possible in parallel, i.e. to calculate all eight
S-boxes in parallel each round. This is especially
true in smart cards since the standard clock ap-
plied is typically quite slow (usually 3.57 MHz).
Some smart cards do include internal clocks, but
these rarely exceed 10 MHz. This has traditionally
been viewed as a means of preventing side channel



The correlation at each stage of the attack process.
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Fig. 2: The evolution of the partial correlation as bits of the key are determined. Note that this is a magnification of the
peak shown in Figure 1.

analysis as an attacker needs to be able to predict
the 32-bit output of all the S-boxes. An applica-
tion of the attack method proposed in Section IV
to a DES coprocessor is described below.

To conduct this case study a series of 200 traces,
with the corresponding message and ciphertext
blocks, were provided by Gemalto. These traces
were average traces produced from an initial set of
2000 traces, i.e. the same message block was ap-
plied ten times and an average trace was formed
from the ten separate acquisitions. An example
trace is shown in Figure 1, where the 16 rounds of
DES are clearly visible in the power consumption.
The secret key and the details of the design were
not provided.

The output T of a given S-box was modelled
using the formula,

T = S(K1, R0) ⊕ L0 ⊕ R0

= R1 ⊕ R0 .
(7)

This corresponds to the Hamming distance model
described in Section II but with P being the pre-
vious state of the register used to store Ri for
0 ≤ i ≤ 16.

The partial correlation for the 4-bit output of
the first S-box was calculated using CPA for each
of the possible 6 key bits that affect these bits. The
four key hypotheses with the largest correlation
were then included in the next calculation, which
attempted to correlate the 8-bit output of the first
two S-boxes. This would normally involve gener-
ating 212 CPA traces, but, as four hypotheses were
included from the first partial correlation, this in-
volved the generation of 26 × 4 = 28 CPA traces.

The four hypotheses corresponding to the largest
partial correlations were then included in an at-
tempt to correlate with the first three S-boxes.
This process was continued until CPA traces could
be generated on all 32 bits, which gave informa-
tion of the 48-bit subkey used in the first round of
DES. The whole process required the generation
of 26 +7(26 ×4) = 211 CPA traces, which is signif-
icantly fewer than the 248 traces that would be re-
quired to test every possible hypothesis for the first
subkey. The correlation coefficient at each stage in
this process is shown in Figure 2, which only shows
the peak in the correlation. It is interesting to note
that the increase in correlation at each stage is not
constant. We are currently unable to explain why
this should occur, and this is left as an open ques-
tion. The correlation with all 32 bits is shown in
Figure 1 and shows the CPA trace for the whole
computation of DES. The peak in the correlation
corresponds to the peak in the power consumption
at the end of the computation of the first round
of DES, the CPA trace demonstrates that this is
where the result of the first round is written back
to the register containing R0.

An attempt was made to generate DPA traces
based on Equation 7 for comparative purposes, but
it was not possible to derive any bits of the secret
key used in the DES implementation. We assume
that this is because of the noise introduced by the
ignored bits in the hardware DES.

VI Conclusion

This paper proposes a method of applying CPA
to implementations of cryptographic algorithms on



architectures that use large word sizes. The ex-
ample given in Section IV discusses applying the
proposed method to a 32-bit architecture, but the
same method should apply to architectures that
use a larger word size.

As can be seen in Figure 1, CPA can be applied
to a 32-bit register to retrieve a DES key from
power traces whilst only calculating 26+7(26×4) =
211 CPA traces. This represents a significant com-
putational saving when compared to the classical
method of applying CPA. Generating CPA curves
to produce an equivalent result without using the
method proposed in this paper would require gen-
erating 248 CPA traces, which is computationally
infeasible. An alternative attack strategy would
be to use the partial correlation to generate hy-
potheses independently on groups of bits. This
reduces the number of CPA traces required to at-
tack a hardware implementation of a secret key
algorithm. However, the distinction between the
correct hypothesis and the incorrect hypotheses is
very small. The advantage of the proposed method
is that each stage validates all the information that
has already been acquired.

The method proposed in this paper should also
apply to multiplication algorithms, such as Mont-
gomery or Quisquater multiplication [9, 10]. This
would allow CPA to be applied to public key cryp-
tographic algorithms by calculating hypotheses on
the intermediate states of the multiplication algo-
rithms. This provides an attack method that al-
lows CPA to be applied to a wider range of algo-
rithms than the attack methods suggested for pub-
lic key cryptographic algorithms, such as RSA [11].
CPA can be applied to a näıve implementation of
RSA, as the intermediate states can take a limited
number of values [12] and can therefore be exhaus-
tively tested. The method proposed in this paper
is also likely to be more efficient than previously
published experiments applying DPA to RSA [13].
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