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In relativistic quantum field theories, the traditional renormalization ap-
proach leads to Hamiltonians with infinite counterterms. The infinities cancel
when this Hamiltonian is used to calculate the renormalized finite S-matrix
and related observable properties in a good agreement with experiment. How-
ever, time evolution of state vectors and observables cannot be studied without
a well-defined finite Hamiltonian. Based on the “clothed particle” approach
(O. W. Greenberg and S. S. Schweber, 1958, Nuovo Cimento 8, 378), we re-
formulate the theory in such a way that ultraviolet infinities appear neither
in the S-matrix nor in the Hamiltonian. In this formulation the Hamiltonian
is finite and allows us to calculate the time evolution of wave functions, the
S-matrix, and other properties by a straightforward application of quantum
mechanical rules without renormalization. A rigorous approach to the bound
states in quantum field theory is also discussed using the hydrogen atom as an
example.

1. INTRODUCTION

Early quantum field theory (QFT) suffered from ultraviolet infinities in
higher order contributions to the S-matrix. The breakthrough came in the
late 1940s when it was understood how to calculate the S-matrix finite to all
orders by renormalizing masses of particles and coupling constants. Since
then renormalized theories, especially quantum electrodynamics (QED),
achieved an unprecedented accuracy in calculations of the S-matrix and
related observable quantities (scattering cross-sections, magnetic moments
of particles, energies of bound states, etc.). However, the renormalization
was achieved by the introduction of infinite counterterms in the Hamil-
tonian, and this approach just shifted the problem of infinities from one
place (the S-operator) to another (the Hamiltonian H and time evolution
operator exp(—iHt)).
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Although the S-operator calculated in QFT is sufficient to describe all
current experiments, and time-dependent effects are not easily observ-
able at the subatomic level, so that one can avoid a direct use of H and
exp(—iHt), the infinities in H are not acceptable from the point of view of
logical consistency and physical unity of the theory. Indeed, presently we
cannot use the same (infinite) Hamiltonian that allegedly describes sub-
atomic events to describe also particle interactions in low energy classical
physics where time evolution is easily observed. Moreover, future experi-
ments may be able to register radiative corrections to time-dependent pro-
cesses in the subatomic world (see section 5.2). Thus theoretical founda-
tions of QFT remain unsatisfactory.

In this paper we suggest a rigorous way to remove ultraviolet infinities
from QFT Hamiltonians and time evolution operators to all orders in per-
turbation theory. We will show that given a renormalizable relativistic
quantum field theory with arbitrary particle content and with minimal as-
sumptions about the form of interaction, a new finite Hamiltonian H" can
be found, while the S-operator and all related quantities remain unchanged
(finite).

To obtain H" we use the clothed particle representation first proposed
by Greenberg and Schweber [1]. They and other authors derived and ana-
lyzed clothed particle pictures for a number of model QFT theories such as
scalar-field [2], Lee [3], and Ruijgrok-Van Hove model [4]. A regular way
to construct the clothed particle Hamiltonian H" as a perturbation series
was independently suggested by Tani [5], Faddeev [6], and Sato [7]. Shi-
rokov and co-workers [8] further developed these ideas and, in particular,
demonstrated how the ultraviolet divergences can be removed from H" up
to the 4th order. However the ability of this approach to remedy QFT
divergences in all orders has not been established.

In section 2 we recall some well-known facts from scattering and quantum
field theories with the emphasis on the relationships between the Hamil-
tonian, time evolution and scattering operators. We also introduce the
terminology and notation to be used throughout the paper and illustrate
them using QED as an example in section 3. For further details the reader
may refer to excellent book [9]. In section 4, for a general renormalizable
QFT, we prove the existence of a clothed particle Hamiltonian H” which
is finite to all orders in perturbation theory. The bound state problem and
prospects for the experimental verification of our approach are qualitatively
discussed in section 5 using the hydrogen atom as an example.

We use the system of units in which 2 =1 and ¢ = 1.
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2. HAMILTONIAN AND SCATTERING OPERATORS
2.1. S-operator

In quantum theory, time development of observables in the interval [t', ]
is described by the evolution operator U(t <+ t') = exp(—iH (t—t')), where
H = Hy+V, Hy is a free Hamiltonian, and V is an interaction. However, in
high energy scattering experiments the interaction acts only during a short
time interval of collision [—7, 1], so that inequalities ' €« —n <0< n Kt
hold. Before and after the collision the exact evolution is well approximated
by the free evolutions Up(—n « t') and Up(t + 7), respectively, where
Uo(t < t') = exp(—iHo(t — t')). Therefore, a simplified description is
possible in which the evolution is free at all times except sudden change at
t = 0 described by a unitary operator S:

Ut «t') = Ut < nU(n < —n)U(—n +t)
Uo(t < n)U(n < —n)Uo(—n «t')
Uo(t < 0)SU(0 « t'). (1)

X

X

The S-operator may be interpreted as the difference between exact and free
evolutions integrated over the collision time interval [—n, 5] (for resonance
scattering 7 is the lifetime of the metastable state). The usual definition
of S follows formally from Eq. (1)

S = t_lgrnoo W (t, —o0), (2)
where
W(t,—o0) = . lim Up(0 + t)U(t + t"Up(t' « 0). (3)
!'——o00

Approximation (1) is well suited for description of scattering experiments in
which particles are observed in the asymptotic region. It is clear, however,
that only averaged properties of the exact time evolution in the interval
[-7,m] (such as time delay or the lifetime of the metastable state) can
be obtained from the S-operator. A great deal of information about the
interaction V is lost. Indeed, there are infinitely many Hamiltonians which
yield exactly the same S-operator and are therefore equivalent to each other
as far as scattering is concerned [10, 11].

2.2. Perturbation theory
The operator W (t, —o0) satisfies equation
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2 W (t,~00) = =iV ()W (t, —c0), (4)

where

V(t) — eiHotVef’iHoteﬁt’ (5)

and factor e (¢ — +0) describes the “adiabatic switching” of the inter-
action V(t). Operators with time dependence as in Eq.(5) will be called
regular and will play an important role in our discussion below.

The solution of Eq. (4) with the initial condition W(—o00, —c0) =1 can
be written in a number of equivalent forms. The most familiar form is
the covariant Feynman—Dyson perturbation expansion. However, for our
purposes we found more useful an equivalent solution suggested by W.
Magnus [12]

t
W(t,—oo):exp[—i/F(t')dt'],
where

F@zV@+—/WW%WMW+”.

We will be using convenient symbols for time integrals Y (¢) = ffoo Y (¢")dt
and YV = f_+°° Y (t')dt' and often omit the time arguments of operators.
~~ o

Then Hermitian operator F' is represented as a series of multiple commu-
tators with time integrals

) 1 1 ;
F = V4 lV,V]- LIV, V] - <[V, V], V] - SV, V] V]
i i
- BBV VLV - G5V, VI ©)
and the S-operator is manifestly unitary: S = e~*“, where
G=_F . )

~—~
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In any physically satisfactory theory the S-operator must be (I) relativisti-
cally invariant, (II) cluster separable, and (III) finite. We also assume that
(IV) elementary particles of the theory are stable and have well-defined
masses p > 0 and one-particle energies wp = /pu? + p2. The latter con-
dition excludes from consideration a number of important models, such as
the electroweak theory, in which there are unstable elementary particles,
e.g., W%, Z° muons, etc.

2.3. Relativistic invariance and cluster separability

Condition (I) is a reflection of a more general principle which states
that a full description of any system of interacting particles is given by
ten operators (linear momentum P, angular momentum J, boost K, and
Hamiltonian H) acting in the Hilbert space of states. These operators obey
commutation relations of the Poincaré algebra and generally differ from
their free counterparts (Pg, Jo, Ko, and Hy). However, it has been shown
in [13] that experimentally observed time dilation in moving systems, e.g.,
slowing-down of the decay of relativistic particles, implies that dynamics
has instant form [14], i.e., only the Hamiltonian H = Hy + V and boost
K = Ko+ W are modified by the interaction so that P = Pg, J = Jo, and
V is rotationally and translationally invariant

[V,Jo] =[V,Po] =0. (8)

With certain conditions of smoothness applied to V and W [9], the above
theory yields a relativistically invariant S-operator, i.e., [S, Ho] = [S,Po] =
[S,Jo] =[S, Ko] = 0.

Condition (II) requires that the total scattering amplitude for spatially
separated events is given by the product of individual amplitudes [9]. The
easiest way to satisfy both relativistic invariance and cluster separability is
to build interaction terms V and W from quantum fields which are linear
combinations of creation a™ (q, ) and destruction a~(q, o) operators [q is
momentum and ¢ is spin (or polarization) component] satisfying the usual
commutation/anticommutation relations

a (q,0)at(q,0') at (q,0")a (q,0) = 6(q— q')dse - (9)

Then interaction V () as well as any regular operator can be written as a
sum of normally ordered terms (¢ = (q,0))
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Vi) = Z Z Onum (1),
N=0 M=0
Onm(t) = /dq'l...dqjvdql e dquCnNm(qy - - g - - -qur;t) X
at(q)...a*(gy)a(a1) .- (qm)- (10)

The pair of integers (IV, M) will be referred to as the type of the operator
Opn - All known interactions conserve “number of fermions minus number
of antifermions”. Therefore without loss of generality we can take Oy to
be bosonic, i.e., having even number of fermion operators Ny + M;. Eqgs.
(8) and time dependence (5) imply that the numerical factor in (10) has
the form

N M
Cnum(t) = Dnum(qy ---avar - --an)3(D_d's = Y qz)ePvm =it
i=1 j=1
where the energy function
N M
Enm(dy---dyai---am) = Y /i +ai =) (/i +d
i=1 j=1

is the difference of energies of particles created and destroyed by Onxar, and
the coefficient function Dypr is rotationally invariant. The hypersurface
of solutions

Enm(q)...dyqi...qm) =0 (11)

(if exists) is called the energy shell of the operator Onps. It was shown
in [9] that in order to satisfy condition (II) Dyps must not contain such
singularities as momentum delta functions [9]. Operators with coefficient
functions having the latter property will be called connected. Operators
whose coefficient functions are bounded will be called bounded. Obviously,
bounded operators are connected.

2.4. Multiple commutators and diagram technique
Let us prove that multiple commutator of connected bosonic operators
is connected. First consider a single commutator of two connected bosonic
operators of the form (10)



QFT WITHOUT INFINITIES 7

oMo —_ 0@l (12)

To convert the commutator to the normal form we need to move N(2)
creation operators in the factor O to the left from M) destruction op-
erators in O in the first term and move N(!) creation operators in the
factor O to the left from M) destruction operators in O in the sec-
ond term. According to (9) each permutation of particle operators requires
two actions. First, if two exchanged operators refer to the same particle
we must add a new expression with these operators substituted by a delta
function (pairing). This new expression should be also normally ordered
which may result in new terms with more pairings, and so on. Second,
we must change the sign of the original expression when two fermion op-
erators change places. When the normal ordering is completed we obtain
two terms (OMO®),, and (0P OM),,, which differ from OMO®? and
0@ 0 only by the order of particle operators (no pairings) and a number
of terms with pairings. Let us show that (O 0®),, = (0@ 0W),,. To
obtain (O O®),,, from the original product OV O?) requires MJEI)NJ?)
permutations of fermion operators. Similarly, obtaining (02 0M),,, from
00 requires M }Q)N ](cl) permutations of fermion operators. Additional
N }2)N ](,1) permutations of fermion creation operators and M ;Z)M }1) per-

mutations of fermion destruction operators in (O OM),,, makes it equal
to (OW0?),,, because the total number of permutations of fermion op-

erators (N](e1 + M}l))(N?) + MJ(CQ)) is even since both N](cl) + Mj(el) and

N }2) + M are even. Therefore terms without pairings cancel in the com-
mutator (12).

Let us now show that all remaining terms with pairings are connected.
For each such term with I pairings there are N' = N + N2 4+ p(1) 4
M independent integration variables (E = N — 2I of them are used as
arguments in particle operators) and I + 2 momentum delta functions in
the integrand. We can integrate out I 4+ 1 delta functions. This leaves
I — 1 integrals by loop momenta which can be absorbed into definition of
the coefficient function and one delta function which expresses conservation
of the total momentum as required by the standard form of a connected
operator (10). Repeating the same arguments by induction we see that
multiple commutators are also connected.

The terms ”connected” and ”loop” have their origin in the diagram tech-
nique [9]. Factors Onp can be represented by vertices with N outgoing
and M incoming lines. Then each term OMO® ... 0W) in the multiple
commutator is represented by a connected (every two vertices can be joined
by a sequence of internal lines corresponding to pairings) diagram.
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FIG. 1. A diagram representing one term in the product O(?)0(€)0(B)0(4),
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Consider for example a term in the product O = OP)O) OB O4)
whose diagram is shown in Fig. 1. This diagram has V = 4 vertices, E = 5
external lines, I = 7 internal lines, and L = -V +1 = 4 independent loops.
Note that all internal lines are oriented upwards because the couple of
paired operators is always in the order . at. There are nine independent
integration momenta: 5 momenta of external lines (pi1, p2, P3, P4, and
ps) and 4 loop momenta (ps, p7, Ps, and pg). It is always possible to
chose integration variables in such a way that each loop momentum is
present only in the internal lines forming the corresponding loop. For
example, momentum pyg is confined to the loop BDCB. With this choice O
acquires the general form (10) with the coefficient function involving four
loop integrals

D3 5(p3, pa, Ps; P1,P2) =
/dpedmdpsdpgDA(pa,p7apsap1 + P2 — D6 — D7 — P8; P1,P2) X

Dp(pg,p1 + P2 — Pr — P8 — Po; Pe; P1 + P2 — P6 — P7 — Ps) X
Dc(ps,p1 + p2 — ps — P8 — Po; P7,P1 + P2 — P — Pg — Py) X
Dp(p3,pa;ps;:pa,p1 + P2 — Ps — Pg — Po)-

Consider for example the integral by the loop momentum pg as pg — oo
and all other momenta fixed. Taking into account that at large values of
momentum wp, = |p| and that energy function E4 does not depend on pg
we obtain

E4 — const,

Ep = Wp1+p2—p7—Ps—Po + Wpy — Wpg — Wpi1+p2—ps—P7—Ps
~ 2|p9| — 00,

Ec = Wp1+p2—ps—Ps—py T Wps — Wp; — Wp1+pa—pr—ps—Po
— const,
Ep = Wp; + Wp, — Wps — Wpg — Wpi4ps—ps—ps—po ~ _2|p9| — 0.

In the general case, as in the example above, any loop has a bottom vertex
(B), a top vertex (D), and possibly a number of intermediate vertices (C).
As the loop momentum goes to infinity, energy functions of the top and
bottom vertices tend to infinity, i.e., move away from the energy shell. If
corresponding coefficient functions (Dp and Dp in our case) decay suffi-
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ciently rapidly in this limit, then the loop integral converges. The ultravio-
let divergences in usual QFT theories can occur when coefficient functions
do not fall off rapidly outside the energy shell.

2.5. Types of operators in the Fock space
Let us denote

Onm(t)o( = /dq{ ...dgndqy .. .dgmCnp(qy - --ahar - - -qurs t) X
ar---aya---am)a’ (q1) .. ¥ (ay)e (@1)...a” (am)
the operator that differs from a regular Oy (10) only by a numerical

factor (g} -.-gNq1 ---qum) in the integrand. Then the following equalities
are valid

d .
%ONM(t) = ONM(t)OZENM,
—1
Onum(t) = ONM(t)Om, (13)
Onm = Onp(t) o 276(Enr)- (14)
——

Operator (14) is time-independent, moreover it is non-zero only on the
energy shell. We divide operators (10) into four classes (renorm, unphysical,
decay, and physical) that have different behavior with respect to normal
products, commutators, time derivatives and time integrals (see Table 1),
so that any regular operator O has a unique decomposition O = O™" +
ouwnp 4 Odec + Oph.

Renorm operators have either type (0,0) (a numerical constant) or type
(1,1) in which case both created and destroyed particle belong to the same
species.

Unphysical operators are defined to have types (1, N), (N,1), (0,N), or
(N,0), with N > 1. In addition, we require that either energy shell does
not exist, i.e., Eq. (11) has no solutions [which is obviously true for (0, N)
and (N, 0) operators], or the operator vanishes on the energy shell. Then
equation

0" =) (15)
—~—

holds for any regular operator O.



QFT WITHOUT INFINITIES 11

Decay operators have types (1, N) or (N,1) with N > 1 [operators (1,1)
belong to the decay class if they destroy and create different particle species,
otherwise they are renorm] and have a non-empty energy shell where they
do not vanish. In the S-matrix approach, particle decay is described by
terms G%°, therefore condition (IV) and Eq. (7) imply

Fiec — . (16)

We will also assume that V4¢¢ = ( in theories considered here.

Physical operators have at least two creation operators and at least two
destruction operators [type (N, M) with N > 2 and M > 2] so that the
energy shell always exists. A physical operator Oy whose coefficient
function Dy ps(q ---gna1 ---qur) falls off rapidly, at least exponentially,
when arguments move away from the energy shell will be called localized.
An example of such a function is Dy = e~ B, Any physical operator
OP" yields zero when acting on the vacuum or one-particle states.

OP*10) = OP"a*(q)[0) = 0. (17)
Conversely, any Hermitian operator satisfying Eq. (17) is physical [1].

TABLE 1.

Operations with regular operators in the Fock space.

Type of operator Product or commutator of O with
0° P U D R 7 0 0
P P P+U+D P+U+D P P P P
U P+U+D P+U+D+R P+U+D+R U U U 0
D P+U+D P+U+D+R P+U+D+R D D D D
R P U D R 0 NR

@ Notation: P=physical, U=unphysical, D=decay, R=renorm, NR=non-regular

2.6. Finiteness of the scattering operators

According to condition (IIT), the time limits in (2) and (3) must exist and
be finite. In particular, this implies that for finite ¢ in the limit ¢; — —o0

elHOtW(O, tl)eleot — e’LH(]te’LHhef’LHo)heszot
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— eiHOte—the+iH(t1+t)e—iHO(t1+t)

— e’iHotef’iH(tftl)efiHotl

= W(t,t).

Therefore W (t,—o0) is regular and finite. A product of any number of
regular operators is regular. The time derivative of a regular operator is
regular and does not have a renorm part (see Table 1). Thus operator
F(t) = i [logW (t, —o0)] is regular, finite, and

Fren = . (18)

Eq. (18) together with (15) and (16) implies that G = F' is purely phys-

ical G = GP". Any power of a Hermitian physical operator has property
(17), is Hermitian, and hence physical. Therefore in the decomposition

) 1
S:e’G:1+iG—§G2+...

the first term is renorm [type(0,0)] and all other terms are physical: S™" =
1, SurP 4 Sdec — (0 and due to (17) there is no scattering in the vacuum
and one-particle states, which is exactly the condition used in standard
renormalization theory to ensure that poles and residues of free one-particle
propagators are not affected by the renormalized interaction [9)].

3. AN EXAMPLE: QUANTUM ELECTRODYNAMICS

As an example of a theory satisfying all conditions (I) - (IV) we consider
QED with five kinds of particles and corresponding particle operators: elec-
trons (a®) and positrons (b*) with mass m; protons (d*) and antiprotons
(f*) with mass M; and massless photons (c*).

Using standard QFT approach [9] we obtain the Hamiltonian with coun-
terterms

H(t) = Hy+ V(1)
= Ho+ Vi(t) + VLU ) + Ry + Us(t) + . ... (19)

[here and in what follows we denote the power of the coupling constant e
(the perturbation order of an operator) by a subscript]. The free Hamilto-
nian is
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o=+1/2
+ [dpf Y (o) (b.0) + 1 (90)f (py0)]
o=+1/2
dk|k “(k, T
i /1#0 | |Tzi:1 ”

where wp = \/m? +p? and Qp = /M2 4 p2. The interaction V is con-
structed from quantum fields
a,(x,t) = (2w *3/2/ kex—ilklte (K 7)e™ k,7
u(x,t) = (2m) k;éO\/2|—kZ[ u(k,m)e (k,7)
ekt ()t (K, 7)),
vixt) = (@0 [ dp Y lemr u(p,0)a” (p,o)
+ e Ptrly(p,o)bt (p, o)),
€xt) = (2m)%? / dp 3 [P (p, 0)d™ (p, o)

+ e Py (p o) fF(p, o).

To simplify the notation we assume summation over repeating indices and
introduce operators

AL (p,0) = uu(p,0)a™(p,0),
At(p,0) = Ua(p,0)at(p,0),
D, (p,0) = Ua(p,0)d” (p,0),
D} (p,0) = Ua(p,0)d" (p,0),
Cosk,7) = eu(k,T)vhsc (k,7),
C;_ﬂ(k,T) = e;(k,T)'ysﬁc"‘(k,T).

Then writing the total current as a sum of the electron and proton currents
JH = —iepyH) + ie&yPE, we obtain the first-order interaction at ¢ =0
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— xj* (x,0)a,(x,0) = ie(2r) 3/ gl
V1(0) = /dj(ao)u(=0) (2m) /k;éox/?I_kMZT

(A¥(p +k,0)A5 (p,0")Cop(k,7) + AL (p — k,0)C5(k, 7) A7 (P, 0")
—DI(P + ka J)Dg (p7 JI)C;,@(ka T) - D(—xi_(p - ka O—)C;_ﬁ(ka T)Dg (pa UI)
+.0) (20)

which is unphysical. For brevity, twelve terms involving operators of an-
tiparticles are denoted by dots in (20). The third term on the right hand
side of (19)

Coul .70 JO(Y70)
V3 /dd 8|x_y| (21)

is needed to compensate the non-covariance of the photon propagator [9].
When expressed through particle operators, this direct fermion-fermion
interaction has physical, unphysical, and renorm parts. R in (19) includes
renorm electron and proton self-energy (ata™, b*b~, dtd~, and fTf7)
and vacuum polarization (¢Tc¢~) counterterms. Uz are unphysical charge
renormalization counterterms having the same operator structure as Vj.
Dots in (19) denote higher order counterterms (having the same operator
structure as Ry or Us) needed to ensure that S is finite and consistent with
non-relativistic scattering at low energies. These two conditions appear to
be sufficient to unambiguously determine infinite counterterms R; and U;
in all orders and to obtain the S-operator without ultraviolet divergences.

The next step in obtaining the exact S-operator agreeing with experi-
ment — removal of infrared infinities [9, 15] — is beyond the scope of this
work. The easiest way to avoid infrared divergences in our calculations is to
assign a fictitious small mass to all zero-mass particles, i.e., photons. This,
in particular, removes the k = 0 singularities from interaction operators
(20).

The relativistic invariance and cluster separability of QED were discussed
in detail in [9, 16]. There are no decay terms in the interaction operator
V, and all decay terms in G are forbidden by the charge, energy, and
angular momentum conservation laws. It was shown in [17] that opera-
tors describing the decay of a photon into odd number of photons [e.g.,
ct(ki,m)ct (ko, m2)ct (ks, 73)c™ (k1 + ko + k3, 74)] are zero on the energy
shell (when momenta k; are collinear). Therefore they are unphysical and
do not contribute to G. Thus QED satisfies all conditions (I) - (IV).
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4. CONSTRUCTION OF THE CLOTHED PARTICLE
HAMILTONIAN

4.1. Formulation of the problem

There are two difficulties with the current formulation of QFT presented
above. First, coeflicient functions in the interaction Hamiltonian V' usually
do not tend to zero sufficiently rapidly as their arguments go to infinity.
Therefore, as discussed in section 2.4, loop integrals may be divergent.
Second, interaction V' usually contains unphysical terms: V4P £ (. The
reconciliation of this property with the absence of renorm terms in F' [see
eq. (18) which is a necessary requirement in any theory with a finite S-
matrix] is a non-trivial task: Unphysical terms in V give rise to renorm
terms in F' due to commutators like [V %P VumP|7en  To ensure the ab-
sence of such terms we need to assume that V7" # 0 and that interaction
V has such a balance between unphysical and renorm parts that all renorm
terms in F' cancel. Such cancellation is achieved in current renormalization
theory by introducing (usually infinite) unphysical and renorm countert-
erms in V. The presence of V%™ and V™" leads to a number of spuri-
ous effects: Unphysical terms in V create clouds of virtual particles and
particle-antiparticle pairs out of vacuum and around each physical particle.
Renorm terms in ¥V modify (often by an infinite amount) particle masses
and energies.

These difficulties indicate that interaction Hamiltonians in QFT are not
correct and should be modified. For example, renorm terms in F' can be
avoided if interaction Hamiltonian is made physical (such Hamiltonians are
usually referred to as clothed particle Hamiltonians [1]). Indeed, for physi-
cal interactions, property (18) follows automatically because commutators
and time integrals of physical operators in (6) are physical (see Table 1).
Moreover, a physical interaction acts only when two or more particles are
present [see Eq. (17)], so that there are no clouds of virtual particles and
self-interaction effects [1] .

Of course, modification of interactions cannot be done arbitrarily. Since
S-operator computed using interaction V' is very accurate, we demand that
any modification of the QFT Hamiltonian should preserve the S-operator.
For example, Hamiltonians H and

H™ = e¢®He *®, (22)
related by a unitary transformation e‘®, yield the same scattering as long

as conditions

t_llgoo eiHotéefiHot =0 (23)
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are satisfied. Indeed, in the limit ¢ = +00,t' — —00 we obtain [10]

. . r 7 : 7
ST = ezHote—zH (t—t )e—zHot
. . . , .
— ezHot(ezée—zH(t—t )e—zé)e
. . . - - 1 . ! - ! : :
(ezHotel<1>e—lHot)elHote—lH(t—t )e—zHot (elHot e—z<I>e—zH0t)

—iHotl

. . ! : 7
ezHote—zH(t—t )e—zHgt

= S.

Although Hamiltonians H and H" are scattering equivalent they are not
physically equivalent: they result in different time evolutions.

Let us now state the goal of this paper in a more formal way. We will
consider a general renormalizable quantum field theory with instant form
interaction V' having a non-zero unphysical part and all infinite countert-
erms required to ensure that S-operator satisfies conditions (I)-(IV). In
particular this implies that

Fie = (24)
Frem = Q. (25)

|
o

We will assume that all operators can be written as expansions in powers

of the coupling constant and introduce a simplifying technical condition
(which is valid, for example, in QED)

V'lph — V'lren — V'ldec =0. (26)

We will be looking for the clothed particle Hamiltonian H" in the form

(22)

HT’

Hy+Vr"
= e®(Hy+V)e ™

= (Ho+V)+i[®, (Ho+ V)] - %[@, (@, (Ho+ V)] +... (27)

Our goal is to prove that there exists a clothing transformation e!® such
that
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(A) V" is Hermitian;

(B) V" is physical: (B1) (V7)u = 0, (B2) (V") = 0, and (B3)
(Vr)ren — 0,

(C) V7 isfinite: (C1) V7 is finite on the energy shell and (C2) V" rapidly
falls off outside the energy shell (is localized);

(D) VT is connected;

(E) S-matrices calculated with V' and V" are identical;

(F) The transformed theory belongs to the relativistic instant form dy-
namics, in particular, (F1) [V, Po] = [V",Jo] = 0.

4.2. Clothing transformation in a regulated theory

We begin with introducing a regularization, e.g., a cutoff at large inte-
gration momenta so that all loop integrals converge and all operators are
bounded. (Singularities at |k| = 0 like in (20) can be removed by assign-
ing a small mass to photons as discussed in section 3.) We assume that
regulated interaction V' remains Hermitian, connected, and Egs. (8) hold,
however the regularization may destroy relativistic invariance. First we will
prove that in this regulated theory a bounded operator ® in (27) can be
chosen so that conditions (A), (B1), (C), (D), and (F1) are satisfied in all
orders. Multiplying (27) by et from the left and e~*Hof from the right we
enforce the time dependence (5) characteristic for regular operators. Using
property [®, Hy] = id®/dt and collecting together terms of equal order we
obtain an infinite set of equations

VP o= —d®;/dt + Zi + Vi, (28)

where Z; is a sum of multiple commutators involving ®;, d®;/dt and V;
from lower orders (1 < j < 1), for example,

Zy = i[®1,V;] - %[cpl,d@l/dt]. (29)

We solve equations (28) (i.e., select operators ®; so that properties (A),
(B1), (C), (D), and (F1) are satisfied) using mathematical induction. In
the first order Z; = 0, and we can choose <I>’1’h = @dec = 7" =0 and

1" =14, (30)

Then Vi = 0 so that conditions (A), (B1), (C), (D), (F1) are trivially
satisfied. V; is unphysical (26) and therefore either does not have energy



18 EUGENE V. STEFANOVICH

shell in which case Ey, # 0 or vanishes simultaneously with its energy
function Ey, on the energy shell. In both cases ®1 = V; o (—iEy') is
bounded.

Assume that in all orders j (j < i) we have constructed ®;, so that (A),
(B1), (C), (D), and (F1) are satisfied, and ®; and Z; are bounded. Then,
to satisfy these conditions in order i we can choose ®¢°¢ = ®7°" = 0 and

R e g (31)
o = (2" + VMo (1-G) + 3, (32)

where ¥; is any localized bounded physical Hermitian operator commuting
with Jo and Py, and (; is any real localized bounded rotationally invariant
function such that ¢; = 1 on the energy shell. Substituting (31) to (28) we
see that (B1) is satisfied.

If A and B are Hermitian and commute with Py and Jo then i[A, B], A,
and % = —i[A, Hy] are Hermitian and commute with Py and Jo as well.
Therefore operators F';, &, and V" expressed through multiple commuta-
tors, time integrals and time derivatives of V are Hermitian, translationally
and rotationally invariant, and, as shown in section 2.4, connected [condi-
tions (A), (D), and (F1)]. Z; is bounded due to regularization, and time
integrations in (31) and (32) do not introduce singularities because the
integrands either do not have energy shell or vanish on the energy shell.
Therefore V" is bounded [condition (C)]. Moreover ®; and & = ), ®; are
bounded and we can apply the Riemann-Lebesgue lemma to show that Eq.
(23) holds and that condition (E) is also satisfied [10]. Now we are in a
position to prove (B2) and (B3). Indeed, if (V)% # 0 then F° # 0 in
contradiction to (24). If (V")"e™ #£ 0 then F™" # 0 in contradiction to
(25).

4.3. The limit of removed regularization

We assume that removing regularization does not affect the validity of
(A), (B), (C2), (D), (E), and (F1). However, we still need to prove (C1)
and (F). Inserting V" instead of V' in (6) and (7) we obtain equality

G

Fy + F3 + F4 +...
— N N~

Vi + Vi 4 Vi s V8]
~ O~ ~~ 2

—_——

which is valid even in the non-regulated theory. Comparing these two
forms order by order and using Eqgs. (15), (24), and (25) we obtain a set
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of conditions for V;" on the energy shell where FP" are finite and known
[they can be computed from V using Eq. (6)]

vy = F¥", (33)
~—~ ~~

vy = Ft, (34)
~~ ~~

Vi = FM" 4 Q,i>4 (35)
~— ~ =~

Qi denotes a sum of multiple commutators of V;" from lower orders (2 <
j <i—2) with time integrations, for example Q4 = [V, Vy].

V3 and V4 are finite on the energy shell due to (33), (34), and finiteness
of F. Let us now use mathematical induction and assume that for all j,
such that j < i, operators V}" satisty (C1). We wish to prove that the same
property holds for );, and therefore for V. Let us first consider operators
Qi which differ from @; only by the absence of time integrations. As
discussed in section 2.4, ); can be represented by a connected diagram and
the convergence of loop integrals is determined by the asymptotic behavior
of vertex coefficient functions. All coefficient functions in VJ are localized
[condition (C2)], i.e., they fall off rapidly outside the energy shell. Therefore
all loop integrals are convergent. This conclusion is only strengthened when
we take into account time integrals in @);, because they introduce inverse
energy factors (13) which make convergence properties even better.

Applying the obtained clothing transformation e!® to all generators of
the Poincaré group and using (F1) we obtain

{POaJ05KT7HT} - eié{PmJOaK;H}e_iq):

so that transformed operators satisfy condition (F) [8]. This concludes
the proof of existence of a physical finite relativistically invariant clothed
particle Hamiltonian H" in a theory whose S-operator satisfies conditions
D - (IVv).

4.4. General properties of H”

It should be noted that the above construction does not allow to obtain
full information about V". Functions (; and o; (the coefficient function
of ¥;) can be chosen rather arbitrarily. They just need to be localized,
bounded, rotationally invariant, and {; = 1 on the energy shell. This un-
certainty reflects the one-to-many correspondence between the S-operator
and Hamiltonians [10, 11]. It means that there is a class of finite physical
interactions {V"} all of which can be used for S-matrix calculations without
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encountering divergent integrals. However, there should exist the unique
correct interaction V" € {V"} (and thus unique correct functions ¢; and o;)
such that H™ = Hy + V7 is the exact time evolution generator. As we are
not aware of any theoretical conditions allowing to determine the off-shell
behavior of (; and o;, these functions need to be fitted to experimental
measurements. Such experiments are bound to be rather challenging be-
cause they must go beyond usual information contained in the S-operator
(scattering cross-sections, energies and lifetimes of bound states, etc.) and
should be capable of measuring radiative corrections to the wave functions
and time evolution of observables (more on this at the end of the next
section).

However, there are some properties of H” which are independent on the
choice of (; and o;: Since Hamiltonians H and H" are related by a unitary
transformation and yield the same S-matrices, they have the same energies
(eigenvalues) and widths of bound states (the corresponding eigenfunctions
are, of course, different). Due to (33) - (35), the choice of {; and o; does
not affect V' and V' [and some higher order terms for which @; on the
right hand side of (35) is zero] on the energy shell. These terms can be
explicitly calculated near the energy shell (see next section). Note that
the on-shell Hamiltonian is exactly what we need for applications, because
in all processes (excluding very short virtual events) the total energy is
approximately conserved at all times.

5. CLOTHED PARTICLE HAMILTONIAN IN QED
5.1. Electron-proton interaction

The operator structure and physical meaning of some of the terms in
the perturbation series representing the clothed particle interaction V" in
QED are reported in Table 2. Bold numbers in the third column indicate
perturbation orders in which the operators can be unambiguously obtained
near the energy shell independent on the choice of functions ¢; and o;.

Consider for example the electron-proton interaction term at ¢t =0

V'[dtatd a™] = dpdqdk Z v (pak,oo’o" ") x
K£0

ool o o'

Df(p —k,0)At(qa+k,0')D5 (p,0") A5 (q,0").

From (20), (21), (28) - (30), and (32) the 2nd order approximation for the
coefficient function is
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TABLE 2.

Examples of terms in the clothed particle interaction V" in QED.

Operator Physical meaning Perturbation
Orders
Elastic potentials
atata a” electron-electron 2,4,6,...
dtatd a~ electron-proton 2,4,6,...
ateta= ¢ electron-photon 2,4,6,...
dtctd=—¢ proton-photon 2,4,6,...
ctete e photon-photon 4,6,...
ataTata"a"a” 3-electron 4,6,...
Inelastic potentials
atbte e e~ — e pair creation 2,4,6,...
cteta b e~ — e annihilation 2,4,6,...
dtatetd a~ pt — e~ bremsstrahlung 3,5,...

i

vgﬁw(qu, oo'o"o") = —iagﬁw(qu, oo's" ") E(p,q,k)

e kikn  YasVes VeV
k 15" " IT K)(5. — ny laB Ivé _ “TaB Iy
+4(27T)3 C?(pq , 000 0 )[ (paqa )( In k2 ) |k| k2 ]5
where indices [ and n run over values x, y, and z,
E(p,q,k) = Qp_x + wqtk — Qp — wq,
1 1
T(pa q, k) = -
Watk —wq + k| wqie —wq — K|
N 1 ~ 1
Qp—k - Qp + |k| Qp—k - Qp - |k|
Near the energy shell ((; = 1, E = 0)
e YoV
PR T erE e (36)
L@ 1 ~ 1 Voo klkn)vém%
2027)° wark — wq + K| warx—wq— [k K2 K|
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does not depend on (, and 0.

5.2. The hydrogen atom

The total electron-proton interaction operator V"[dtatd~a~] leaves in-
variant the “one electron + one proton” subspace Hp. of the Fock space.
Therefore we may try to find the bound states of the hydrogen atom as
eigenstates of the mass operator

M[®. > = /(H")2 - P2|T, >

V/(Ho + Vridtatd-a-])? — P3|, >= [T, >

Q

with € < m+ M. This equation assumes more familiar form of the station-
ary Schrodinger equation in the center of mass frame (Po = 0)

(Ho + V'[dtatd a™))|¥. >=¢|T. > . (37)

Using the “plane wave” decomposition

|T.) = /dpdqz ¥.(p,05q,0")d" (p,0)a™ (q,0")[0)

oo’

valid in Hpe, Eq. (37) can be transformed into an integral equation with
respect to the wave function ¥, (p,o;q,0')

e¥.(p,0;q,0") = (wp + Q) ¥ (P, 03 q,0")

+ - dk Y Y(p,q,k,00'0"5")¥.(p + k,0";q - k,0""), (38)
0

gt g

where

ot 1ot

Y(p,q,k,00'0"0") = v*"(p +k,q — k, k,00'0"0"") x
Ua(p;0)u,(a,0")Us(p + k,0")us(a - k,0™). (39)

It would be interesting to demonstrate that in the second-order approxima-
tion (36) equation (38) yields the fine structure of the hydrogen spectrum,
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i.e., provides an alternative to the familiar Dirac equation. Note that unlike
Dirac spinors, the wave functions ¥.(p,o;q,0’) have a direct interpreta-
tion as probability amplitudes in the two-particle momentum-spin space.
In the non-relativistic limit (|k|, |p|, |g| < m) the following approximations
are valid [9]:

Ua(P1,01)Vasus(P2,02) = Ua(P1,01)VasUs(P2,02) = 0,

where n = z,y, or z,

Ua(P1,01)705us(P2,02) = Ua(pP1,01)705Us (P2, 02) & 85100,

wp ~ m+p?/(2m), and Qp = M+p?/(2M). Substituting these approxima-
tions and (36) to (39) and (38) and performing the Fourier transformation
we see that (38) reduces to the usual Schrédinger equation describing en-
ergy levels and stationary state functions of the hydrogen atom as expected

(_L 2 1o &
2m * 2M R 4x|r —R|

= (ge—m—M)¥_(r,0;R,0").

)¥(r,0;R,0")

Adding 3rd and higher order interactions to the 2nd order approximation in
(38) would affect its solutions in three major ways: broadening and shift of
energy levels and modifications of eigenfunctions ¥.. The largest contribu-
tion to the broadening is provided by the 3rd order operators dta*d~a~ ¢~
and dtatctd~a~ which describe absorption and spontaneous emission of a
photon by the atom. These terms in V", rather than ”zero-point vibrations
of the electromagnetic field”, are responsible for the instability of excited
atomic levels.

The Lamb shifts of energy levels are due to V' [dta™d a~] and higher
order terms in V"[dtatd a~]. Unlike V5 [dtatd a~], these terms do not
have the |k| 2 singularity at |k| = 0 which is responsible for the long-
range —e?/(4w|r — R|) behavior of the potential in the position space; this
would be inconsistent with the low-energy classical limit of the Coulomb
scattering. Thus the Coulomb asymptotics of the potential is insensitive
to the choice of (; and o; in all orders. However, this choice does affect the
short range behavior of the potential and the shape of the wave functions
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V.. For example, according to (35), the 4th order operator V;" [dtatd~a™]
depends on second order functions (3 and o5 through commutators like

ild*atd o], Vild*atd a ]

The radiative corrections to the wave functions do not affect scattering
experiments, but they are reflected in the dynamics of electron wave packets
formed as superpositions of states |¥.). Observations of such dynamics
may reveal important information about the Hamiltonian H" and allow, in
principle, to fit {; and o; to experiments. However time-resolved studies of
the wave packets [18] are associated with serious difficulties: The low-lying
atomic levels (where the short-range effect of higher order interactions is
most pronounced) have large energy separations, and the dynamical time
scale is in the femtosecond range. Observing small radiative corrections
with such a resolution is a challenging experimental task.

6. SUMMARY

In relativistic quantum field theories the non-renormalized interactions
can be used only in the lowest non-vanishing perturbation order: in higher
orders the calculated S-matrix is infinite. The remedy suggested by the
renormalization theory is to add counterterms to the interaction Hamil-
tonian V. Unfortunately, the counterterms are infinite in all physically
relevant field theories, and the time evolution cannot be properly described.

In this paper we demonstrate that important properties of relativistic
invariance and cluster separability can be satisfied in a broad class of the-
ories that are related by certain unitary transformations to the traditional
field theories. Using a unitary clothing transformation e® it is possible to
find in this class a finite relativistically invariant clothed particle Hamilto-
nian H" = e!®(Hy + V)e™*® which provides a full dynamical description
of time-dependent processes. H" remains finite in the limit of removed
regularization because infinities present in ® exactly cancel infinities in V.
Since transformation e!® has an additional property that it conserves the
S-operator, the theory constructed from the Hamiltonian H" is consistent
with all experimentally verified predictions of the old theory, but unlike the
old theory it is completely free from ultraviolet divergences. Any physical
information, including time evolution of wave functions and observables,
can be calculated from H" by a straightforward application of quantum
mechanical rules without renormalization corrections. In addition, there
are no self-interactions and clouds of virtual particles in the vacuum and
one-particle states. A close collaboration between theory and experiment
is needed in order to find exact expressions for A" in high perturbation
orders and outside the energy shell.
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